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Abstract

Dispersion management has proven to be an important technique for de-

signing lightwave communication systems as it can be used to lower the average

dispersion of a fiber link even though the group-velocity dispersion is kept rela-

tively large locally for suppressing four-wave mixing. The performance of mod-

ern dispersion-managed lightwave systems depends on a large number of factors.

Gordon-Haus timing jitter, arising from the presence of amplified spontaneous

emission noise, happens to be one of the major limiting factors for long-haul sys-

tems, especially at high bit rates exceeding 10 Gb/s. In this thesis, we analyze the

role of distributed amplification in controlling timing jitter in dispersion-managed

systems. We derive analytical expressions for the timing jitter at any position

within the fiber link in the cases of ideal distributed and lumped amplifications

and show the possibility of reducing timing jitter by up to 40% using Raman or

erbium-based distributed amplification.

It has become apparent in recent years that the dispersion of an optical fiber,

designed to have a fixed value, can vary over a considerable range because of

unavoidable variations in the core diameter along the fiber length. Even though
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such axial variations are static, they can impact the system performance because

of the nonlinear nature of the pulse propagation problem. Although dispersion

fluctuations rarely impact a 10-Gb/s system, their role on the system performance

must be considered for 40-Gb/s lightwave systems for which dispersion tolerance

is relatively tight. In this thesis, we present the results of extensive numerical

simulations performed to identify the impact of dispersion fluctuations on the

performance of 40-Gb/s dispersion-managed lightwave systems, designed using

either the chirped-return-to-zero or the soliton format and employing distributed

Raman amplification.

We consider also the design of dispersion-managed soliton systems. We use

the variational approach to derive approximate analytic expressions for the input

pulse parameters and show the existence of a limiting bit rate, which depends

only on the dispersion-map configuration. Finally, the design rules are proposed

that allow the minimization of the intrachannel pulse interactions in a dispersion-

managed soliton system.
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Chapter 1

Introduction

The choice of single-mode silica fibers over copper coaxial cable for design-

ing telecommunication systems was assured by the mid-1980s, and it tremen-

dously improved their performance, reliability, transmission capacity, and cost-

effectiveness [1]– [4]. Such systems are nowadays referred to as lightwave systems

as they employ an optical carrier in place of a microwave one. Any lightwave

system is composed of an optical transmitter, a communication channel, and an

optical receiver [1]. The optical transmitter converts an electrical signal into op-

tical pulses and launches the resulting optical signal into an optical fiber. The

receiver converts the optical signal back into the original electrical signal at the

output end. The transmitter consi sts of an optical source, a modulator and a

channel coupler. Semiconductor lasers or light-emitting diodes are usually used as

optical sources, and optical signal is generated by modulating the optical carrier

wave [1]. The communication channel provides signal propagation while ensuring
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a high signal-to noise ratio (SNR) at the receiver end. Modern optical lightwave

systems employ a low-loss, usually single-mode, fiber for signal transmission [2].

Although the amount of loss that an optical fiber possesses is quite small (usu-

ally around 0.2 dB/km near 1.55 µm) [2], losses accumulate over long distances,

so that signal has to be periodically amplified during propagation [1]– [4]. Prior

to the advent of optical amplifiers, electronic regenerators were employed to cope

with the attenuation of signal along the fiber span. Such regenerators usually

include a photodetector to detect the weak incoming light, electronic amplifiers,

timing circuitry to maintain the timing of the signals, and a laser along with its

driver to launch the signal along the next span [4]. The regenerators raised the

cost and limited the transmission capacity of lightwave systems since each channel

had to be separately, first, detected, which required a high-speed electronic cir-

cuitry, and then regenerated. After erbium-doped fiber amplifiers (EDFAs) were

developed around 1990 for travelling-wave amplification near 1.5 µm (the wave-

length region in which the fiber losses are minimal), optical amplifiers have been

widely used for signal amplification in lightwave systems [4]. The employment

of optical amplifiers had a tremendous impact on long-haul networks. It allowed

to reduce system cost by eliminating the need to convert an optical signal into

electrical domain and back at each regeneration stage. Besides that, optical am-

plifiers increased dramatically system capacity due to the possibility of amplifying
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simultaneously several frequency channels, which enabled the development of the

wavelength-division multiplexing (WDM) technique.

The advent of WDM technique has transformed the technology behind modern

optical networks. A 1999 book says: “in less than 10 years, the capacity of a sin-

gle optical fiber equipped with commercial transmission equipment has increased

from a single signal, transmitting at a rate of 2.488 Gb/s, to 160 signals, totaling

1600 Gb/s, a factor of close to 1000” [4]. In the latest experiments, long-haul

transmission at up to 6.3 Tb/s [5]– [14] and short-haul transmission at up to

10.2 Tb/s [15]– [18] have been achieved employing the WDM technology. While

a single-channel rate of 10 Gb/s has been used commercially, higher bit rates of

40 Gb/s [6], [8]– [11], [14]– [19], and up to 320 Gb/s [20], [21] have been used in

the laboratory experiments. Transmission of high data rate channels over unre-

generated links with lengths of 1000 to 5000 km poses major challenges on WDM

technology. Foremost among these problems are the distortion due to transmission

effects (including chromatic dispersion, polarization-mode dispersion, and optical

nonlinearities), as well as the accumulation of spontaneous emission noise and

power nonuniformity arising from optical amplification.

Chromatic dispersion in optical fibers is due to the frequency-dependent na-

ture of the propagation characteristics of light in both the material (the refractive

index of glass) and the waveguide structure [1]. Different spectral components of

the modulated data travel at different speeds along the fiber. Hence, chromatic
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dispersion leads to pulse broadening, which in turn limits the maximum data rate

at which information can be transmitted through an optical fiber. The effect of

chromatic dispersion is cumulative and increases linearly with transmission dis-

tance. Although it is possible to manufacture fibers that induce zero chromatic

dispersion [22]– [24], such fibers are incompatible with the deployment of WDM

systems since harmful nonlinear effects would be easily generated in this case. For

example, zero dispersion creates favorable conditions for phase matching of the

four-wave mixing (FWM) [25] process, leading to energy transfer among chan-

nels [26]– [34]. Also, nonlinear effects such as self-phase modulation (SPM) and

cross-phase modulation (XPM) [25] induce a frequency chirp on optical pulses,

which enhances pulse broadening. This chirp could be compensated if a system

had an overall small, but nonzero, negative dispersion. Moreover, a dispersion

value as small as few ps/(nm km) is sufficient to make XPM and FWM neg-

ligible [29] since the different wavelength channels are not phase matched and

“walk-off” from each other quickly, thus ensuring that they interact with each

other only over relatively short distances.

It turns out that, as long as the WDM technique is implemented in practice,

optical fiber used in the system must possess a nonzero amount of chromatic dis-

persion, while overall dispersion must be compensated. If a system were perfectly

linear, it would be irrelevant as to whether the accumulated dispersion along a

path is small or large, as long as the overall dispersion is compensated at the
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end. However, this is not the case in a real system that possesses some amount

of nonlinearity. If too much chromatic dispersion is allowed to accumulate, the

data bits will evolve into odd shapes, potentially creating narrow spikes of very

high peak power. This will enhance the nonlinear effects and prevent the possi-

bility of restoring data bits at the system output, even though total accumulated

dispersion is compensated at the end. The sensitivity with respect to nonlinear

effects and chromatic dispersion increases even more at high bit rates (10 Gb/s

and larger) because pulse separation in time domain becomes relatively small,

while signal power levels required for transmission are large. WDM systems with

large number of channels, dense channel spacing, as well as EDFAs that produce

large output powers, also lead to the enhancement of the nonlinear effects.

A simple and elegant solution is to create a dispersion map, in which fiber

sections with positive and negative dispersion are alternated. In this way, at

each point along the fiber link local dispersion has some nonzero value, effectively

eliminating FWM and XPM, but the total accumulated dispersion at the end of

the link is zero or has a fixed small value, so that minimal pulse broadening is

induced. This technique is called dispersion management.

Many issues are involved in designing dispersion-managed (DM) systems.

One is the choice of the dispersion map. Traditionally, dispersion-compensating

fiber (DCF) [35]– [37] has been used inside dispersion-compensation modules.

Other more recent techniques include chirped fiber-Bragg gratings (FBGs) [38,39],
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higher-order-mode DCFs [40,41], and electronic compensation circuity [42,43]. Be-

sides periodic dispersion compensation, additional compensation modules can be

added at the beginning and at the end of the fiber link, providing pre- and post-

compensation. The performance of the system can be considerably improved

by fine-tuning these end-point modules [44]. With proper dispersion manage-

ment, even ultra-high bit rate signals can be transmitted through the fiber. As

an example, a 640-Gb/s optical time division multiplexed signal was success-

fully transmitted over the 92-km zero-dispersion-flattened transmission line [45].

The transmission line consisted of single-mode fiber, dispersion-shifted fiber, and

reverse-dispersion fiber. Fiber-based dispersion compensation was employed in

several recent WDM transmission experiments, which provided total transmission

capacity of up to 1.5 Tb/s over transoceanic distances with 40-Gb/s per-channel

bit rate [8,9]. Using a fiber-Bragg-grating-based compensator, a 16-channel WDM

transmission over nonzero dispersion-shifted fiber was demonstrated at a per-

channel rate of 20 Gb/s over 400 km [39]. Tunable dispersion-slope compensation

using broadband chirped FBGs [46,47], as well as the employment of higher-

order-mode fiber [40] have been shown to provide good dispersion compensation

in system demonstrations at 40 Gb/s.

The other important question in designing DM lightwave system is the choice of

the kind of amplification scheme one can employ. EDFAs are known to have a very

good efficiency, meaning several decibels of gain can be achieved per milliwatt of
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power [2]. After the development of efficient, high-power pump sources [48]– [55],

there have been a rebirth of interest in Raman amplification in optical fibers [5]–

[7], [9]– [11], [56]– [69]. Raman amplification employs the process of inelastic

scattering of light through which a photon downshifted in frequency is produced

(Stokes wave) together with a vibrating molecule when a pump photon is scattered

by silica glass. The advent of high pump power sources has diminished the disad-

vantage of relatively poor efficiency of Raman amplification in comparison with

erbium amplification, while Raman amplifiers do offer several attractive advan-

tages over EDFAs. One very important feature of Raman amplifiers, which makes

them attractive for lightwave systems, is their capability of providing gain at any

wavelength. In addition to that, Raman amplifiers offer improved noise perfor-

mance because of several reasons. First, the effective inversion parameter [4] for

the Raman scattering process is quite small, close to its quantum-limited value of

1 at room temperature [70]– [72]. Second, accumulated noise power is smaller with

distributed amplification [73]. Since Raman process is highly suitable to provide

distributed amplification, the signal-to-noise ratio in this distributed amplifier is

improved over lumped amplification. Besides the capability of providing gain at

arbitrary wavelengths and an improved noise performance, the nonlinear effects

in the system can be reduced by using Raman amplification, since the improved

SNR allows one to use smaller signal powers [2].

The choice of data propagating format is the next important step in dispersion-
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managed system design. Several propagation formats can be used for data trans-

mission in a DM system, including non-return-to-zero (NRZ) [1], chirped return-

to-zero (CRZ) [74,75], DM-soliton [76]– [81], and differential phase-shift keying

(DPSK) formats [6], [82]– [89]. The return-to-zero (RZ) format is more suscepti-

ble to chromatic dispersion than NRZ, but is more robust to nonlinear effects [90].

The CRZ format, in which optical pulses are first prechirped by propagating them

thorough a piece of fiber with anomalous dispersion, helps to deal with chromatic

dispersion, while keeping the robustness to nonlinear effects that RZ transmission

possesses [91]– [93]. DM solitons have an advantage over the CRZ format as they

can balance the nonlinear and dispersive effects during pulse propagation. The use

of DM solitons also provides a number of other advantages over the conventional

solitons occurring in constant-group-velocity-dispersion fibers [1]. However, the

design of DM soliton systems requires a careful choice of input parameters (such

as the pulse energy, width, and chirp) to ensure that each soliton recovers its input

state after each amplification period. A variational technique is commonly used

to find the periodic solutions of a dispersion map [94]– [99]. However, its use still

requires a numerical approach.

Another important aspect of system design is to ensure the system stability

and to optimize the system with respect to parameter variations. It has become

apparent in recent years that the dispersion of an optical fiber, designed to have a

fixed value, can vary over a considerable range because of unavoidable variations
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in the core diameter along the fiber length [100]– [104]. Even though such axial

variations are static, they can impact the system performance because of the

nonlinear nature of the pulse propagation problem. Another source of dispersion

fluctuations is related to environmental changes. For example, if the temperature

fluctuates at a given location, the local dispersion would also change in a random

fashion. Such dynamic fluctuations can also degrade the system performance.

Although dispersion fluctuations rarely impact a 10-Gb/s system, their role on

the system performance must be considered for 40-Gb/s lightwave systems for

which dispersion tolerance is relatively tight.

The performance of modern DM lightwave systems depends on a large number

of other factors, the most important being the noise added by optical amplifiers [1].

Amplified spontaneous emission (ASE) in optical amplifiers introduces random

fluctuations in pulse position, pulse phase, and pulse amplitude. While random

fluctuations of the latter quantity degrade the SNR, fluctuations in pulse position

and phase eventually lead to the Gordon-Haus timing jitter [105,106], which hap-

pens to be one of the major limiting factors for long-haul optical communication

systems, especially at high bit rates exceeding 10 Gb/s [105]– [113]. A general

approach for calculating timing jitter in DM systems was developed by Grigoryan

et al. in 1999 [108]. In the past, attention was mostly paid to estimating timing

jitter in lightwave systems with lumped amplifiers placed periodically along the

DM link [109]– [111]. Although the effect of distributed amplification on timing
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jitter has been studied for uniform-dispersion fibers [112,113], the combination

of distributed amplification and dispersion management was not yet investigated

until our research results were published.

This thesis analyzes several aspects of dispersion-managed systems design.

The research work is organized as follows. In Chapter 2, the design of DM soliton

systems is considered. We derive analytical expressions for the input parameters

that ensure a periodic propagation of DM solitons and analyze how those param-

eters and the dispersion map can be optimized to increase the possible bit rate in

a DM soliton system. Based on the results, simple design rules are proposed that

can be quite beneficial in practice. In Chapter 3, the impact of dispersion fluc-

tuations on the performance of 40-Gb/s DM lightwave systems having different

modulation formats is investigated. Although dispersion fluctuations have been

considered in some recent papers [114]– [119], the emphasis was mostly on the

broadening of a single pulse transmitted through the fiber link. In contrast, we

model a realistic lightwave system in which a data-coded pulse train consisting of

0 and 1 bits is transmitted through a periodically amplified, dispersion-managed

fiber link. The system performance is quantified by the well-known Q parameter

that is related to the bit-error rate in a simple way. My emphasis is on identifying

how the nonlinear effects are affected by dispersion fluctuations and how the local

value of average dispersion affects the interplay among the nonlinear effects and

dispersion fluctuations. In Chapter 4, we consider the role of distributed amplifi-
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cation in controlling timing jitter in DM systems. We use the approach developed

in Ref. [108] to derive analytical expressions for timing jitter in DM systems with

ideal distributed and lumped amplifications and compare the two cases. This re-

sults, as well as numerical simulations, are then employed to analyze how timing

jitter can be reduced using erbium-based distributed, Raman, and hybrid Raman

amplification. The main results of this thesis are summarized in Chapter 5.



12

Chapter 2

Design Rules for Soliton Systems

2.1 Introduction

In this section we consider the DM soliton system design. We introduce basic

notation used throughout the text and describe the techniques that are usually

used to find the input parameters that ensure periodical pulse propagation in the

system. One of these techniques, variational analysis, is then employed to find

approximate analytical expressions for the input parameters. The expressions

show a good agreement with numerical solutions of variational equations and

reveal several interesting results used for designing DM soliton systems. Finally,

a system design that allows minimization of intrachannel pulse interactions is

described.
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2.2 Dispersion Management

The principal scheme of a dispersion map used in a DM lightwave system is

shown in Fig. 2.1. Each map period Lm is composed of two fiber sections with

opposite dispersion signs, and each amplification period LA can contain one ore

more map periods. When the amplification period contains more than one map

period, the system is called dense dispersion-managed system. Dispersion maps

composed of alternating-group-velocity-dispersion fibers are attractive for WDM

data transmission because their use lowers the average dispersion of the whole

system while keeping the group velocity dispersion (GVD) of each section large

enough that the four-wave mixing effects remain negligible.

One of the parameters used for characterizing a DM system is the map

strength, defined for a two-fiber-section dispersion map as

Smap =
(β21 − β̄2)l1 − (β22 − β̄2)l2

T 2
min

, (2.1)

where β2i and li are the dispersion and the length of the ith fiber section (i = 1,2),

respectively, Tmin is the full width at half maximum (FWHM) of the pulse at the

... ... ...
β21

β22

l1

l2

Lm

LA

Figure 2.1: Schematic of dispersion map with the notations used
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Figure 2.2: Propagation of a DM soliton over one map period (left). Pulse shape and spectrum
of a DM soliton while propagating over 100 amplification periods (right).

chirp-free point inside the fiber section, and β̄2 is the average dispersion in the

system defined as β̄2 ≡
∑N

i=1 β2ili
/∑N

i=1 li, N being the number of fiber sections

within the amplification period.

Examples of pulse propagation over one map period of 10 km and over a dis-

tance of 8000 km (in the absence of noise) are shown in Fig. 2.2. The graphs on

the right represent the pulse shape and spectrum at the output of every amplifier.

One can see that, while pulse oscillates noticeably within each fiber section, it

almost regains its shape and energy after each amplifier for quite a long propa-

gation distance, so that pulse propagation resembles very much that of a soliton.

A DM system having β2i = ±4 ps2/km, l1 ≈ l2 = 5 km, β̄2 = −0.01 ps2/km,

LA = 8Lm = 80 km, and fiber losses of 0.25 dB/km is used for constructing

Fig. 2.2. The Gaussian pulse shape was used at the input and the initial pulse
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parameters, ensuring periodical pulse propagation, were found numerically using

the variational analysis described in section 2.4.

2.3 Nonlinear Schrödinger equation

Pulse propagation in a DM lightwave system is generally described by the

nonlinear Schrödinger (NLS) equation. In this section, we outline the derivation

of this equation and point out the approximations implied [25].

Similar to all electromagnetic phenomena, the propagation of light in optical

fiber is governed by Maxwell’s equations, that can be written in SI units as follow:

∇× E = −∂B/∂t, (2.2)

∇×H = Jf + ∂D/∂t, (2.3)

∇ ·D = ρf , (2.4)

∇ ·B = 0, (2.5)

where E and H are, respectively, the electric and magnetic field vectors, D and

B are the corresponding electric and magnetic flux densities, and Jf and ρf are,

respectively, the current density vector and the charge density. Both the last two

quantities vanish in the absence of free charges in a medium such as optical fibers.

In a dielectric medium, the flux densities D and B are related to the electric

and magnetic fields as

D = ε0E + P, (2.6)
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B = µ0H + M, (2.7)

where ε0 and µ0 are, respectively, the vacuum permittivity and permeability, while

P and M are the induced electric and magnetic polarizations (note that M= 0

for a nonmagnetic media such as an optical fiber).

In a nonlinear medium, electric polarization P can be represented as a sum of

its linear part PL and nonlinear part PNL:

P (r, t) = PL (r, t) + PNL (r, t) , (2.8)

Using the electric-dipole approximation such that the medium response is lo-

cal, including only the third-order nonlinear effects governed by the third-order

susceptibility χ(3) (noticing that the second order susceptibility χ(2) vanishes for

an isotropic medium like silica glass [25,120]), the linear and nonlinear parts of

the induced polarization can be related to the electric field by the general rela-

tions [25,121]

PL (r, t) = ε0

∞∫
−∞

χ(1) (t− t′) · E (r, t′)dt′, (2.9)

PNL (r, t) =

ε0

∫ ∞∫
−∞

∫
χ(3) (t− t1, t− t2, t− t3)

...E (r, t1)E (r, t2)E (r, t3) dt1dt2dt3,

(2.10)

where we assumed also that the optical frequency of the electromagnetic field is

far from any resonances of the medium.
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Taking curl of Eq. (2.2) and using Eqs. (2.3), (2.4), (2.6), (2.7), and (2.8), we

obtain the wave equation

∇2E− 1

c2

∂2E

∂t2
= −µ0

∂2PL

∂t2
− µ0

∂2PNL

∂t2
, (2.11)

where c is the velocity of light in vacuum and 1/c2 = µ0ε0. In deriving Eq (2.11)

we assumed that the nonlinear polarization PNL is a small perturbation to the

total induced polarization and that the dielectric constant ε, defined as

ε(ω) ≡ 1 + χ̃(1)(ω) + εNL, (2.12)

is independent of the spatial coordinates for both core and cladding so that the

equation ∇ ·D = ε∇ · E = 0 can be used, leading to the relation ∇×∇ × E =

∇(∇ · E) −∇2E = −∇2E. In Eq. (2.12), εNL represents the contribution to the

dielectric constant from the nonlinear polarization: εNL ≡ 3
4
χ(3)

xxxx |E(r, t)|2 [25]

and is much less than 1 + χ̃(1). Also, χ̃(1)(ω) is related to χ(1)(t) by a Fourier

transform.

Several simplifying assumptions are made in order to solve the wave equation

(2.11) [25]. First, as it was mentioned, PNL is a small perturbation to PL. Second,

the optical field is assumed to maintain its polarization along the fiber length so

that a scalar approach is valid. Third, the optical field is assumed to be quasi-

monochromatic, meaning that its spectrum, centered at ω0, has a spectral width

∆ω such that ∆ω/ω0 � 1. For ω0 ∼ 1015 s−1 the last assumption is valid for

pulses whose width is ≥ 0.1 ps (∆ω ≤ 1013 s−1). We use now the slowly varying
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envelope approximation to separate the rapidly varying part of the electric field

by writing it in the form

E (r, t) = 0.5x̂ [E (r, t) exp (−iω0t) + c.c.] , (2.13)

where c.c. stands for complex conjugate, x̂ is the polarization unit vector of the

light assumed to be linearly polarized along the x axis, and E(r, t) is a slowly

varying function of time (relative to the optical period). The polarization compo-

nents PL and PNL are then expressed in a similar way. Using those expressions in

Eqs. (2.9) and (2.10) and making a further simplification assuming that a medium

nonlinear response is instantaneous, the Fourier transform Ẽ(r, ω−ω0) of E(r, t)

is found to satisfy [25]

∇2Ẽ + ε (ω) k2
0Ẽ = 0, (2.14)

where k0 = ω/c, ε(ω) is given by Eq. (2.12) and εNL is assumed to be constant

while performing the Fourier transform. We note that by assuming the instanta-

neous nonlinear response, we neglect the contribution of molecular vibrations to

χ(3), i.e. neglect the Raman effect. The generalized NLS equation that includes

this effect can be found in [25].

Equation (2.14) is solved using the method of separation of variables. We

assume the solution of the form

Ẽ (r, ω − ω0) = F (x, y) Ã (z, ω − ω0) exp (−iβ0z) , (2.15)

where Ã(z, ω) is a slowly varying function of z and β0 is the wavenumber de-
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termined later. We use this solution in Eq. (2.14) and obtain the following two

equations for F (x, y) and Ã(z, ω):

∂2F

∂x2
+

∂2F

∂y2
+
[
ε (ω) k2

0 − β2
]
F = 0, (2.16)

2iβ0
∂Ã

∂z
+
(
β̃2 − β2

0

)
Ã = 0. (2.17)

In deriving Eq. (2.17) the second derivative ∂2A/∂z2 is neglected, since Ã(z, ω)

is assumed to be a slowly varying function of z.

As a next step, ε(ω) in equation (2.16) is represented as a sum of two parts:

ε = n2 +2n∆n, where n represents the (linear) refractive index and ∆n is a small

perturbation that includes contributions from the intensity-dependent portion of

refractive index and from absorption loss α, ∆n = n2 |E|2 + iα
2k0

We then solve the wave equation (2.16), first, assuming ∆n = 0 to obtain the

modal distribution F (x, y) and the wavenumber β(ω). After that, the first-order

perturbation theory is used to include the effect of ∆n. As a result, the eigenvalue

β̃ can be represented as

β̃ (ω) = β (ω) + ∆β, (2.18)

where ∆β represents the part of the eigenvalue affected by ∆n and is expressed

in terms of ∆n and F (x, y) [25].

With the expression (2.18) for the eigenvalue, Eq. (2.17) can be rewritten as

∂Ã

∂z
= i [β (ω) + ∆β − β0] Ã, (2.19)

where an approximation 2β0(β̃ − β0) is used for β̃2 − β2
0 .



2.3. NONLINEAR SCHRÖDINGER EQUATION 20

We now expand β(ω) in a Taylor series, neglecting the terms of the third and

higher orders (which is consistent with the requirement ∆ω � ω0), and perform

an inverse Fourier transform in Eq. (2.14). Using the relation between the ∆β and

∆n [25], we finally arrive at the following equation for the propagation of A(z, t):

∂A

∂z
= −β1

∂A

∂t
− i

β2

2

∂2A

∂t2
+ iγ0 |A|2 A− α

2
A, (2.20)

where βi is the ith derivative of β(ω) with respect to ω taken at ω = ω0, and the

nonlinearity coefficient γ0 is defined by

γ0 ≡
n2ω0

cAeff

, (2.21)

with the effective core area Aeff =

(
∞∫
−∞

∞∫
−∞

|F (x, y)|2 dxdy

)2/ ∞∫
−∞

∞∫
−∞

|F (x, y)|4 dxdy.

For a single-mode fiber, if the fundamental mode is approximated by a Gaussian

shape as F (x, y) = exp[−(x2 + y2)/w2], Aeff is evaluated to be Aeff = πw2 [25].

We note that if the units of m2/W are used for n2 in Eq. (2.21), then the pulse

amplitude A in this equation is assumed to be normalized so that |A|2 represents

the optical power.

Equation (2.20) is the final equation that is generally used to describe prop-

agation of optical pulses in single-mode fibers. It is often referred as the NLS

equation since it can be reduced to that equation under certain conditions [25].

In the way it is presented in Eq. (2.20), it includes the effects of fiber losses through

α, of fiber nonlinearity through γ0, and of chromatic dispersion through β1 and

β2. Describing in short the physical significance of β1 and β2, we say that the
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pulse envelope moves at the group velocity vg = 1/β1, while GVD is accounted for

by β2. The effects of higher-order dispersion can be included in the equation by

keeping the higher-order terms in the Taylor expansion of β(ω), keeping in mind

that the condition of narrow spectral width should be satisfied.

2.4 Variational Analysis

As discussed in the previous section, pulse propagation in a DM lightwave

system can be described by the following NLS equation:

i
∂A

∂z
− β2

2

∂2A

∂t2
+ γ0 |A|2 A =

i

2
(g − α) A, (2.22)

where we performed a change of variables t → t − z/vg to eliminate the β1 term

in Eq. (2.20), which is equivalent to working in a coordinate frame propagating

with the pulse. We also assume that, besides the loss α, the system possesses a

gain g, which may be either distributed or lumped. All the parameters A, β2, γ0,

g, and α are periodic functions of z for a DM system.

Several approaches exist to find the input pulse parameters that provide peri-

odical pulse propagation in the system. One is to solve the NLS equation (2.22)

approximately using a Hermite-Gaussian expansion of pulse amplitude A(z, t) [80].

Another approach solves the equation in the spectral domain using perturbation

theory [133]– [135]. A common technique implements the variational method [94]–

[99], described below.
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With a change of variable A ≡ V
√

G, where G represents the cumulative net

gain from 0 to z and is given by

G (z) ≡ exp

 z∫
0

[g(z′)− α(z′)] dz′

 , (2.23)

Eq. (2.22) can be rewritten as

i
∂V

∂z
− β2

2

∂2V

∂t2
+ γ (z) |V |2 V = 0, (2.24)

where γ(z) ≡ γ0G(z). The variational method solves Eq. (2.24) using the La-

grangian density of the form

L =
i

2

[
V

∂V ∗

∂z
− V ∗∂V

∂z

]
− β2

2

∣∣∣∣∣∂V

∂t

∣∣∣∣∣
2

− γ (z)

2
|V |4 (2.25)

with the following Gaussian ansatz:

V (z, t) =

√
E0√
πT

exp

[
−(1 + iC)

(t− tp)
2

2T 2
− iΩ (t− tp) + iφ

]
, (2.26)

where E0 is the input energy of the pulse, tp is peak position, T is the width, C

is the chirp, Ω is the frequency shift, and φ is the phase of the pulse. The latter

five parameters are periodic functions of z. In practice, Ω and φ can be chosen

to be zero at z = 0. However, the input values E0, T0, and C0 of the remaining

three parameters need to be specified to ensure periodic propagation of the input

pulse through the dispersion map.

The variational approach makes use of the fact that the NLS equation (2.24)

is equivalent to the following Euler-Lagrange equation

∂L

∂V
− d

dt

(
∂L

∂Vt

)
− d

dz

(
∂L

∂Vz

)
(2.27)
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which, in turn, results from the variational principle

δ
∫ ∫

L (V, V ∗, Vz, V
∗
z , Vt, V

∗
t ) dzdt ≡ δΛ = 0, (2.28)

where L in Eqs. (2.27) and (2.28) is given by Eq. (2.25) and a variable in a

subscript denotes a partial derivative with respect to that variable [94,95]. In

other words, the function V (z, t) that is a solution of the NLS equation (2.24) is

the one that provides a possible extremum to the Lagrangian Λ.

Using Eq. (2.26) for V (z, t) in Lagrangian density (2.25), we can accomplish

the integration over time in Eq. (2.28) and calculate the reduced Lagrangian

R ≡
∞∫

−∞

LGdt, (2.29)

where LG denotes the result of inserting the Gaussian ansatz (2.26) in the La-

grangian density (2.25). The detailed derivation of R is provided in Appednix A

and results in the following expression:

R =

√
π

2
p2

{
2Ω

dtp
dz

+ 2Tϕz −
CzT

2
+ CTz −

γ√
2
p2T − β2

2

1 + C2

T
− β2Ω

2T

}
,

(2.30)

where p (z) ≡
√

E0/
√

πT (z) is the peak amplitude of the pulse.

The variational principle (2.28) converts then to the reduced variational prob-

lem

δ
∫

Rdz = 0, (2.31)

where the reduced lagrangian R, after using the Gaussian ansatz in Lagrangian

density, is a function of pulse amplitude p, width T , chirp C, phase ϕ, frequency
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shift Ω, position tp, and their derivatives with respect to z, as it is seen from

Eq. (2.30).

As it can be shown from the theory of variational analysis [95], the reduced

variational principle (2.31) is equivalent to the set of following ordinary differential

equations:

∂R

∂η
− d

dz

(
∂R

∂ηz

)
= 0, (2.32)

where parameter η takes values p, T , C, ϕ, tp, and Ω. While the equation for

η = ϕ leads to the energy conservation law

√
πTp2 = const, (2.33)

the rest of the equations (2.32) can be used to obtain the following equations

describing the evolution of the pulse width T (z), chirp C(z), and phase ϕ(z) in

each fiber section of a DM system:

dT

dz
=

β2C

T
, (2.34)

dC

dz
=

γ0E0G√
2πT

+
β2 (1 + C2)

T 2
, (2.35)

dϕ

dz
=

5γ0E0G

4
√

2πT
+

β2

2T 2
− β2

2
Ω2. (2.36)

dtp
dz

= β2Ω, (2.37)

dΩ

dz
= 0. (2.38)

The detailed derivation of the Eqs. (2.33) – (2.38) is given in Appendix B.

Equation (2.36) for the phase φ is decoupled from Eqs. (2.34) and (2.35).

We can ignore it if we are not interested in the phase of the optical pulse. Also,
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Ω and tp remain zero, if they vanish initially, in the absence of noise, as seen

from Eqs. (2.37) and (2.38). Thus, solving Eqs. (2.34) and (2.35) for pulse

width and chirp is enough for finding the input parameters that ensure periodical

pulse propagation in the system. The DM soliton corresponds to a solution of

Eqs. (2.34) and (2.35) with the periodic boundary conditions: T (0) = T (LA) and

C(0) = C(LA), LA being the amplification period in the system.

2.5 Numerical Results

Solving the variational equations (2.34) and (2.35) numerically, we find pe-

riodic solutions over a relatively large range of input energy E0. For illustration

purposes, we focus on two kinds of maps that are used commonly in practice. Each

map is made of two types of fibers with dispersions β21 and β22 and lengths l1 and

l2. The map A consists of dispersion-shifted and reverse-dispersion fibers of nearly

equal length (l1 ≈ l2 = 5 km) with β21 = −β22 = −4 ps2/km. We focus on the

case of dense dispersion management [126]– [129] in the case of map A and assume

that the amplification period LA includes 8 map periods Lm: LA = 8Lm = 80 km.

The map B employs ordinary dispersion management and is made using standard

(SMF) fiber of 65-km length (β21 = −22 ps2/km) and dispersion-compensating

fiber of about 14.3 km length (β22 = 100 ps2/km). We adjust the average disper-

sion of both maps in the range −0.005 ps2/km to −0.15 ps2/km by changing the

length l2. Although the nonlinear parameter γ0 is generally different for different



2.5. NUMERICAL RESULTS 26

Input energy (pJ)

0.001 0.010 0.100 1.000

P
ul

se
 w

id
th

 (p
s)

0

5

10

15

20

Input energy (pJ)

0.0 0.5 1.0

In
pu

t c
hi

rp

0

1

2

3

4

Tm

T0

T0
min

Figure 2.3: Input pulse width T0 and corresponding minimum pulse width Tm as a function of
input energy E0 for the map A with β̄2 = − 0.01 ps2/km. Solid curves are for the loss-less case
(α = 0), while α = 0.25 dB/km for dashed. The inset shows the input chirp in the two cases.

types of fibers, in this work we use γ0 = 2.5 W−1km−1 unless stated otherwise.

This choice does not affect our conclusions.

Figure 2.3 shows the values of input pulse width as a function of E0 for the

dispersion map A with average dispersion β̄2 = − 0.01 ps2/km. The curves

marked “T0” represent the input width while the curves “Tm” correspond to the

minimum pulse width occurring in the fiber section with anomalous GVD. The
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inset shows the input chirp C0 as a function of E0. Solid curves in Fig. 2.3 represent

the lossless case (α = 0) and dashed curves correspond to a loss of 0.25 dB/km in

each fiber section. We have verified that the input parameters shown on Fig. 2.3

lead to stable propagation of solitons over more that 105 km (in the absence

of noise) when Eq. 2.22 is solved numerically by using the split-step method.

Examples of pulse peak power oscillations during single pulse propagation (in the

absence of noise) is shown on Fig. 2.4. Figure represents pulse propagation in maps

A and B, with β̄2 = −0.01 ps2/km and −0.05 ps2/km and with the input energy

E0 = 0.032 pJ and 0.016 pJ for maps A and B, respectively. We see that peak

power variations for both maps A and B do not exceed few percent of its mean

value for distances up to 40000 km. From Fig. 2.3 we can see that, for low pulse

energies, both T0 and Tm decrease rapidly. Moreover, T0 and Tm values nearly

coincide, indicating that in this region pulse width does not oscillate and remains

nearly equal to T0. An important feature is that at some value of E0 = Ec the

curve T0(E0) has a minimum value Tmin
0 . When E0 exceeds Ec, T0 and Tm curves

diverge from each other, and pulse width starts to oscillate more and more within

each fiber section. The qualitative character of the curve Tm(E0) also changes

around Ec from a rapid to a relatively slow decrease, while T0 slowly increases.

The qualitative features shown in Fig. 2.3 hold for any two-section dispersion map

having a negative value of average dispersion.

Two parameters are especially important for DM solitons —the ratio
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Figure 2.4: Peak power variations during pulse propagation for maps A and B with β̄2 =
−0.01 ps2/km. Input energy E0 = 0.032 pJ and 0.016 pJ for maps A and B, respectively.

β̄2/γ0 [128] and the stretching factor St [130]. In place of the stretching factor we

introduce a new parameter

Tmap ≡
∣∣∣∣∣ β21β22l1l2
β21l1 − β22l2

∣∣∣∣∣
1/2

, (2.39)

which depends only on the map parameters β2i and li and has units of time.

The use of this parameter is justified later. Figure 2.5 shows variations of T0(E0)

and Tm(E0) for two values of the ratio β̄2/γ0 and two values of Tmap. Dispersion

maps A, for which Tmap = 3.16 ps (solid curves), and B, with Tmap = 26.9 ps

(dashed curves), each with two different values of average dispersion (β̄2 = −0.01
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and −0.15 ps2/km) are used in this calculation. We see from the figure that the

solutions for both maps look similarly, only the whole set of curves for system with

Tmap = 26.9 ps is shifted up from the case of system with Tmap = 3.16 ps. As we

also see from the figure, the β̄2/γ ratio affects dramatically the energy, at which T0

takes its minimum value Tmin
0 (in agreement with the result of [128]), but it does

not affect much the minimum value itself, or the range of pulse stretching from

T0 to Tm. In contrast, the value of Tmin
0 , as well as the asymptotic value of Tm at

large energies, depends only on the parameter Tmap. These results show that for a

given two-section map configuration, there exists a limiting bit rate that depends

on the value of Tmap, which will be discussed in details in section 2.8.2.

Considering a wide variety of dispersion maps with different values of β̄2/γ0

and Tmap, we find that for the lossless case, the value of Tmin
0 always corresponds

to C0 = ±1 (the choice of sign depends on whether β21 is negative or positive,

respectively). An important feature is that, in a large range of β̄2 values, not only

the value of Tmin
0 , but also the whole curve T0(C0) is invariant with respect to the

ratio β̄2/γ0. In the next section we use this result and the qualitative features of

Fig. 2.5 to find the dependence of T0 on C0 in an approximate analytic form.

2.6 Analytical Estimate of T0

We obtain an approximate analytic formula for the input pulse width in the

lossless case, setting α = 0 in Eq. (2.35). This approach is justified because, as one
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Figure 2.5: Same as Fig. 2.3 except that two different values of b̄2/γ0 are shown for two different
maps. (a)β̄2/γ0 = 0.004 (ps2W), (b)β̄2/γ0 = 0.06 (ps2W). Solid curves are for map A (Tmap =
3.16 ps) while dashed curves are for map B (Tmap = 26.9 ps). Loss α = 0 in all cases.

can see from Fig. 2.3, Tmin
0 value and the range of pulse oscillations are almost the

same in a DM system with no loss and in a DM system having 0.25 dB/km loss in

each fiber section. This observation remains valid for systems with short-period

dispersion maps, having any number of map periods within the amplification

period. In such systems, Tmin
0 also corresponds to |C0| ≈ 1 even in the presence of

loss. This is the consequence of the fact that in short-period maps the chirp-free
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point is close to the middle of fiber segments even in the presence of losses (in the

loss-less case it is exactly in the middle [131]). The importance of this observation

will become clear from what follows. Equation (2.34) can be integrated formally

to find

T 2 (z) = T 2
0 (z) + 2

z∫
0

β2 (z′) C (z′) dz′. (2.40)

Thus, T (z) can be determined if C(z) is known. Since a closed form expression

for C(z) is not available, we follow an empirical method. Numerical simulations

show that the chirp C can be represented, with an accuracy better than 0.1%,

as a linear function of z in each fiber section for energy values in the range from

0 to about 5Ec. Examples of chirp and pulse width variation within one map

period, obtained by solving variational equations (2.34) and (2.35) numerically

for the maps used in the previous section are shown on Figs. 2.6 and 2.7. Fig. 2.6

represents chirp and pulse width variation in maps A and B in the lossless case,

with different values of input energy, while Fig. 2.7 assumes 0.25 dB/km losses in

each fiber section. We see that chirp varies practically linearly in all cases, so that

linear approximation is justified up to quite large values of energy. One can also

note that a chirp-free point is located exactly in the middle of each section for all

maps in the lossless case [131], as it was mentioned before, while in the presence of

loss it is close to the middle of the section only in a dense dispersion map. Using

the fact that chirp-free points are located in the middle of each section for α = 0,
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Figure 2.6: Variation of input chirp C0 and input pulse width T0 within one map period for
maps A and B in the lossless case, with two different values of input energy.

we approximate the chirp in each map period as

C(z) =


C0

(
1− 2

l1
z
)
, if 0 ≤ z ≤ l1,

−C0

(
1− 2

l2
(z − l1)

)
, if l1 ≤ z ≤ Lm.

(2.41)

Using Eq. (2.41) in Eq. (2.40), we obtain the following approximate expression

for pulse width:

T 2 (z) =


T 2

0 + 2β21C0

(
1− z

l1

)
z, if 0 ≤ z ≤ l1

T 2
0 − 2β22C0

(
1− (z−l1)

l2

)
(z − l1) , if l1 ≤ z ≤ Lm.

(2.42)

In order to connect T0 and C0 values, we consider the ratio (1 + C2)/T 2 because
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Figure 2.7: Variation of input chirp C0 and input pulse width T0 within one map period for
maps A and B. Loss α = 0.25 dB/km in each fiber section.

it represents the spectral width of a chirped pulse. In a linear system, this ratio

remains constant and is equal to 1/T 2
m. Numerical simulation show, that this ratio

does not change much with propagation even in a DM system when the nonlinear

length [25] is much larger than the local dispersion length. More specifically, it

oscillates within each map period around its average value (1 + C2
0)/T 2

0 by less

than 1%. Since the ratio (1 + C2)/T 2 is almost constant during the propagation,

the integral

I (z) ≡
z∫

0

1 + C2 (z′)

T 2 (z′)
dz′ ≈ 1 + C2

0

T 2
0

z (2.43)

grows almost linearly with z. We can estimate the error by calculating I using

Eqs. (2.41) and (2.42). we show a few steps in deriving the result. Consider first

the interval z ∈ [0, l1]. Making a change of variables ξ ≡ l1 − 2z, noticing that ξ

changes from l1 to −l1 when z ∈ [0, l1], and using Eqs. (2.41) and (2.42), the ratio
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(1 + C2)/T 2 can be rewritten as

1 + C2

T 2
=

1 + (l1 − 2z)2 C2
0

/
l21

T 2
0 − (2l1 − 2z) z |β21C0|/l1

=
1 + ξ2C2

0/l21
T 2

0 − (l1 + ξ) (l1 − ξ) |β21C0|/2l1

=
1 + a1ξ

2

p1 + q1ξ2
, (2.44)

where

a1 ≡
C2

0

l1
, p1 ≡ T 2

0 −
|β21C0| l1

2
, q1 ≡

|β21C0|
2l1

. (2.45)

In deriving Eq. (2.44), we used the fact that the sign of input chirp sgn(C0) in

a DM soliton system is always opposite to the sign of second-order dispersion in

the first segment sgn(β21), since the pulse is supposed to be compressed in each

fiber section, i.e. β21C0 = − |β21C0|. Using Eq. (2.44), the integral I(z) in the

first fiber segment can be found as

I (z) ≡ β21

z≤l1∫
0

1 + C2 (z′)

T 2 (z′)
dz′

=
β21

2

l1∫
ξ≥−l1

1 + a1ξ
′2

p1 + q1ξ′2
dξ′

= 0.5β21

{
(p1q1)

−0.5 tan−1
(
ξ
√

q1/p1

)∣∣∣∣l1
ξ≥−l1

+

[
a1ξ

/
q1 − a1

√
p1

/
q3
1 tan−1

(
ξ
√

q1/p1

)]∣∣∣∣∣
l1

ξ≥−l1


=

β21

2

(
a1l1
q1

− a1ξ

q1

)

+
β21

2

q1 − a1p1√
p1q3

1

[
tan−1

(√
q1

p1

l1

)
− tan−1

(√
q1

p1

ξ

)]
(2.46)

Going back to the z variable and using again the relation β21C0 = − |β21C0|, the
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integral I(z) in the first fiber segment is found to be

I(z) =
1

2

a1

q1

(l1 − (l1 − 2z))

+
1

2

q1 − a1p1√
p1q3

1

[
tan−1

(√
q1

p1

l1

)
− tan−1

(√
q1

p1

(l1 − 2z)

)]

=
a1

q1

z +
1

2

q1 − a1p1√
p1q3

1

[
tan−1

(√
q1

p1

l1

)
− tan−1

(√
q1

p1

(l1 − 2z)

)]

=
2C2

0z

|β21C0| l1
+

1

2

q1 − a1p1√
p1q3

1

[
tan−1

(√
q1

p1

l1

)
− tan−1

(√
q1

p1

(l1 − 2z)

)]

= − 2C0

β21l1
z +

1

2

q1 − a1p1√
p1q3

1

[
tan−1

(√
q1

p1

l1

)
− tan−1

(√
q1

p1

(l1 − 2z)

)]
,

(2.47)

where z ∈ [0, l1].

Similarly, considering the second fiber section z ∈ [l1, Lm = l1 + l2], using the

change of variables ζ ≡ l2 − 2 (z − l1), and noticing that in this section β22C0 =

|β22C0|, the ratio (1 + C2)/T 2 can be rewritten as

1 + C2

T 2
=

1 + a2ζ
2

p2 + q2ζ2
, (2.48)

where

a2 ≡
C2

0

l2
, p2 ≡ T 2

0 −
|β22C0| l2

2
, q2 ≡

|β22C0|
2l2

. (2.49)

The integral I(z) in the second fiber section is then equal to

I(z) = I(l1) +

z≤l1+l2∫
l1

1 + C2 (z′)

T 2 (z′)
dz′

= I(l1) +
2C0

β22l2
(z − l1)

+
1

2

q2 − a2p2√
p2q3

2

[
tan−1

(√
q2

p2

l2

)
− tan−1

(√
q2

p2

[l2 − 2 (z − l1)]

)]
.

(2.50)
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Summarizing the result, the integral over one map period is found to be

I (z) =


− 2C0

β21l1
z + ε1 (z) , 0 ≤ z ≤ l1,

I (l1) + 2C0

β22l2
(z − l1) + ε2 (z − l1) , l1 ≤ z ≤ Lm,

(2.51)

where εi(z) (i = 1,2) is defined as

εi (z) ≡ 1

2

qi − aipi√
q3
i pi

[
tan−1

(√
qi

pi

(li)

)
− tan−1

(√
qi

pi

(li − 2z)

)]
, (2.52)

and ai, pi, qi are given by

ai ≡
C2

0

l2i
, pi ≡ T 2

0 −
|β2iC0| li

2
, qi ≡

|β2iC0|
2li

. (2.53)

For all practical maps, ε1 and ε2 are found to be negligible. Numerical simulations

also confirm that the error in Eq. (2.43) does not exceed 0.2 %. Neglecting ε1 and

ε2 in Eq. (2.51), we notice that I(z) varies linearly with z but with different slopes.

Assuming that the average dispersion is relatively small, we find the average slope

and equate it to (1 + C2
0)/T 2

0 from Eq. (2.43):

1

2

[
− 2C0

β21l1
+

2C0

β22l2

]
=

1 + C2
0

T 2
0

. (2.54)

We then obtain the following expression for the input pulse width in terms of C0

and dispersion map parameters:

T0 = Tmap

√√√√1 + C2
0

|C0|
. (2.55)

Note the appearance of a single map parameter Tmap defined as in Eq. (2.39).

This parameter has units of time and plays an important role in the following

discussion.
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Figure 2.8: Comparison of the input pulse width predicted by Eq. (2.55) (circles) with the
numerically calculated values (solid curves) as a function of input chirp for the four maps of
Fig. 2.5. Only two curves appear since results are nearly independent of the ratio β̄2/γ.

The dependence of input pulse width on the input chirp C0 for the four DM

systems of Fig. 2.5 is shown in Fig. 2.8. Open circles represent the values of input

pulse width T0 calculated using Eq. (2.55), while solid lines show the results

obtained by solving variational equations (2.34) and (2.35) numerically. We find

a very good agreement up to chirp values of |C0| = 3. Although four dispersion

maps are used for in Fig. 2.8, only two curves appear on this figure because, as was
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mentioned before, the dependence of T0(C0) curve on the ratio β̄2/γ is negligible

when the average dispersion is much smaller than the local dispersion value. For

that reason, the curves for β̄2/γ = −0.004 and −0.06 ps2W are indistinguishable

in Fig. 2.8.

Equation (2.55) can be used to find the minimum pulse width. Noticing that

the chirp is zero at the location of the minimum pulse width point and using the

fact that (1 + C2
0)/T 2

0 ≈ 1/T 2
m, the minimum pulse width is given by

Tm =
Tmap√
|C0|

. (2.56)

Equation (2.56) provides the average value of minimum pulse width in sections

with positive and negative dispersions, but these values do not differ much in

the region around |C0| ≈ 1. A comparison with numerical solutions shows that

Eq. (2.56) is accurate to within 2% up to the values of input chirp |C0| ≈ 3. The

examples of the comparison of numerical and analytical results will be shown in

the next section.

Several interesting conclusions can be drawn from Eq. (2.55) and (2.56). First,

Eq. (2.56) shows that the qualitative change of the Tm(E0) curve in Figs. 2.3 and

2.5 from a very rapid to a very slow decrease is due to 1/ |C0| dependence of

the minimum pulse width. This results from the fact that, as seen in the inset

of Fig. 2.3, the value of |C0| increases rapidly with increased energies. Second,

the minimum value of the input pulse width from Eq. (2.55) indeed occurs for

|C0| = 1, as also found numerically. Third, when |C0| = 1, Tm is just equal to
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the map parameter Tmap. The input pulse width in this case is T0 =
√

2Tmap,

showing that pulse width is stretched by the factor of
√

2 within each fiber link

when input pulse width corresponds to its minimum width allowed for a given

dispersion map. This indicates that the map parameter Tmap is an important

design parameter for system characterization, since
√

2Tmap and Tmap describe,

respectively, the minimum possible input width and the corresponding shortest

pulse width in the fiber link for a given dispersion map.

2.7 Input energy estimation

Equation (2.55) provides the input pulse width corresponding to a given input

chirp, while the full set of input parameters also includes the value of input energy

E0. In this section we estimate E0 with the help of the approximate solution given

in Eqs. (2.41) and (2.42). Setting α = 0 in Eq. (2.35), integrating it over one

map period and using the periodicity condition C(0) = C(Lm) we obtain

Lm∫
0

γ0E0√
2πT

+

Lm∫
0

β2
1 + C2

T 2
dz = 0. (2.57)

From Eq. (2.57) the input energy can be found as

E0 =
√

2π
I1 + I2

I3 + I4

, (2.58)

where

I1 ≡ −β21

l1∫
0

1 + C2 (z)

T 2 (z)
dz, (2.59)
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I2 ≡ −β22

Lm∫
l1

1 + C2 (z)

T 2 (z)
dz, (2.60)

I3 ≡ γ01

l1∫
0

dz

T (z)
, (2.61)

I4 ≡ γ02

Lm1∫
l2

dz

T (z)
, (2.62)

and γ0i is the nonlinear coefficient in the ith fiber section.

Using the result of Eq. (2.51), we can calculate the first two integrals in

Eq. (2.58) as

I1 = −β21I (l1) = 2C0 − β21ε1 (l1) , (2.63)

and

I2 = −β22 [I (l1 + l2)− I (l1)] = −2C0 − β22ε2 (l2) . (2.64)

Using Eq. (2.42) with the change of variables ξ ≡ l2 − 2z for z ∈ [0, l1] and

ζ ≡ l2 − 2 (z − l1) for z ∈ [l1, Lm = l1 + l2], the rest of the integrals in Eq. (2.58)

can be found as follows:

I3 ≡ γ01

2

l1∫
−l1

[
T 2

0 +
β21C0

2l1

(
l21 − ξ2

)]−1/2

dξ

=
γ01

2

l1∫
−l1

dξ√
p1 + q1ξ2

=
γ01

2

1
√

q1

ln

√
p1 + q1l21 +

√
q1l1√

p1 + q1l21 −
√

q1l1

=
γ01

2
√

q1

ln
T0 + l1

√
q1

T0 − l1
√

q1

=
γ01

2
√

q1

ln
T0 +

√
|β21C0| l1/2

T0 −
√
|β21C0| l1/2

, (2.65)
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where Eq. (2.53) is used for qi and pi and the relation β21C0 = − |β21C0| was

employed. Similarly,

I4 ≡ γ02

2

l2∫
−l2

[
T 2

0 −
β22C0

2l2

(
l22 − ζ2

)]−1/2

dζ

=
γ02

2
√

q2

ln
T0 + l2

√
q2

T0 − l2
√

q2

=
γ02

2
√

q2

ln
T0 +

√
|β22C0| l2/2

T0 −
√
|β22C0| l2/2

. (2.66)

Using Eqs. (2.63)-(2.66) in Eq. (2.58), we arrive at the following expression for

the input energy:

E0 = 2
√

2π
β21ε1 (l1) + β22ε2 (l2)(

γ01

/√
q1

)
ln r1 +

(
γ02

/√
q2

)
ln r2

, (2.67)

where

ri ≡
T0 − li

√
qi

T0 + li
√

qi

=
T0 −

√
|β2iC0| li/2

T0 +
√
|β2iC0| li/2

, (2.68)

and εi and qi are given by Eqs. (2.52) and (2.53), respectively. Note that, from

Eq. (2.52), εi(li) are equal to:

ε1 (l1) =
q1 − a1p1√

p1q3
1

tan−1

(√
q1

p1

l1

)
,

ε2 (l2) =
q2 − a2p2√

p2q3
2

tan−1

(√
q2

p2

l2

)
, (2.69)

so that Eq. (2.67) can be expressed as

E0 = 2
√

2π
β21

q1−a1p1√
p1q3

1

tan−1

(
l1
√

q1

p1

)
+ β22

q2−a2p2√
p2q3

2

tan−1

(
l2
√

q2

p2

)
(
γ01

/√
q1

)
ln r1 +

(
γ02

/√
q2

)
ln r2

. (2.70)
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Figure 2.9: Comparison of numerical and analytical results for dense DM system with no loss
and with Tmap = 3.16 ps.

A comparison of numerical and analytical results is represented in Figs. 2.9–

2.11. Figs. 2.9 and 2.10 show the comparison in the case of no loss for two of the

systems used in Fig. 2.5: for the dense DM system with Tmap = 3.16 ps (map A)

and for ordinary DM system with Tmap = 26.9 ps (map B). Solid lines represent

the numerical solution while circles show analytical results. The inserts show

pulse width and energy as functions of input chirp, as suggested by the analytical

solution (2.55),(2.56), and (2.67), while the larger graphs are the same kind of
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Figure 2.10: Comparison of numerical and analytical results for ordinary DM system with no
loss and with Tmap = 26.9 ps.

curves considered in Figs. 2.3 and 2.5. In all cases we see an excellent agreement

for input and minimum pulse width results, for all values of input chirp, and we

see a good agreement for the energy up to chirp values of about 1.5. The energy

values obtained from Eqs. (2.67) or (2.70) differ by at most 5% from numerically

obtained values in the region around |C0| = 1, while the difference becomes about

10% for |C0| ≈ 1.25.
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Note that Eqs. (2.67) and (2.70) are derived for a lossless system or for systems

with distributed amplification. The effect of periodic gain/loss variation can be

included by increasing E0 by a factor of

k =

{
(1/LA)

∫ LA

0
exp

[∫ z

0
(g(z′)− αs(z

′)) dz′
]
dz

}−1

=



1, no loss

GlnG/(G− 1) , lumped amplification{
(1/LA)

∫ LA
0 exp [

∫ z
0 (g(z′)− αs(z

′)) dz′] dz
}−1

, Raman

(2.71)

where G represents the cumulative net gain from 0 to LA and g(z) is the local gain

in the case of distributed amplification. This is the same factor as it is required for

a classical soliton to maintain itself over long fiber length (satisfying L � LNL)

in the average sense in the presence of loss and lumped amplification [25]. This

scaling is valid for values of Sm up to 4 for DM systems with short fiber sections.

The comparison of the results for system with losses is shown in Fig. 2.11. The

same dense DM system with Tmap = 3.16 ps as in Fig. 2.9 is considered here,

except that 0.25 - dB/km losses are included. Dashed lines and open circles show

the results from Fig. 2.9 for the lossless case. We see again an excellent agreement

for input and minimum pulse width for all values of input chirp, and a good

agreement for energy for chirp values up to 1.5. We see also that the set of

curves for system with losses is shifted from the lossless case to the larger values

of energy in accordance with the scaling factor (2.71). We have verified that

energy values obtained using Eq. (2.67) give a stable pulse propagation up to
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Figure 2.11: Comparison of numerical and analytical results for dense DM system with
0.25 dB/km loss in each fiber section (Tmap = 3.16 ps.)

about 40,000 km. Although the error in E0 leads to larger peak power oscillations

during propagation, the amplitude of such oscillations does not exceed ± 5% of

the average peak power.

Summarizing the results of Figs. 2.9 – 2.11, we can conclude that for ideal

distributed amplification which is, basically, the lossless case, there is a good

agreement of results for arbitrary DM system and for system with losses and

lumped amplification, there is a good agreement in the case of dense dispersion
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management. The reason that, in the case of lumped amplification, Eqs. (2.55),

(2.56), and (2.67) work only for dense DM system comes from the fact that the

assumption of chirp free point location to be in the center of fiber section, used

in the derivation [see Eq. (2.41)], is strictly valid only for a lossless system, and is

approximately valid in system with losses only in the case of short map periods,

as it was mentioned in the beginning of section 2.6.

We can also see from Eqs. (2.67) and (2.70), that the input energy increases

for larger value of the ratio β2/γ0, in accordance with Fig. 2.5 and with the results

of [130], and in analogy with the classical soliton behavior.

2.8 Design Rules

2.8.1 Optimum chirp values

Eqs. (2.55) and (2.67) provide the values of input pulse width and energy

as functions of input chirp. We now consider which range of input chirp values

should be used to obtain the best pulse sequence propagation. From Figs. 2.3,

2.5, and 2.9-2.11 we note that just after T0 takes its minimum value, Tm continues

to decrease while T0 is relatively constant. We expect the longest propagation

distance, as well as a highest bit rate for a given distance, to occur in this region

(|C0| ≈ 1, E0 ≈ Ec). For energies smaller than Ec, the bit rate is limited by

the large values of T0 and Tm and for energies much larger than Ec it would be
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Figure 2.12: Maximum propagation distance as function of input chirp for systems operating
at 80 and 160 Gb/s bit rates. Loss parameter α = 0 for solid curves but α = 0.25 dB/km for
dashed curves.

limited by pulse interactions because of increased pulse stretching and higher pulse

energies. This is confirmed in Fig. 2.12, where we show the maximum propagation

length as a function of input chirp C0 for pseudorandom bit sequence at 80 and

160 Gb/s. The figure represents the results of numerical simulations, not including

noise in the system, so that propagation was limited only by pulse interactions. As

the criterion for figure construction, the requirement was used that timing jitter
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because of pulse interactions is less than 8% of the bit slot and an eye closing

is not more than 5%. The map with β21 = 4 ps2/km and β22 = −4 ps2/km is

used in this calculation by choosing β̄2 = −0.01 and −0.005 ps2/km for 80 and

160 Gb/s systems, respectively. We also reduce the section length to l1 = 0.6 km,

for 160 Gb/s system, and use l1 = 3 km for 80 Gb/s systems. The solid curves

represent the results when losses are neglected and the dashed curves include

0.25 dB/km loss in each fiber section and assume 80 km amplifier spacing. Two

points are noteworthy. First, maximum distance can exceed 6000 km even at a bit

rate of 160-Gb/s when dense DM is used [132]. Second, in all cases the maximum

occurs in the region 1.1 < |C0| < 1.2.

2.8.2 Limiting bit rate

Using this optimum region of chirp values, we can estimate, from Eq. (2.55)

and (2.56), the maximum possible bit rate for a given map configuration. For

example, consider a dispersion map made using 70 km of standard fiber (β21 =

−22 ps2/km) and 15.3 km of DCF (β22 = 100 ps2/km). The average dispersion

for this map is β̄2 ≈ −0.1 ps2/km, while Tmap = 27.7 ps. From Eqs. (2.55) and

(2.56), T0 is about 39.3 ps and Tm ≈ 26.4 ps for |C0| = 1.1, the chirp value within

the optimum range. Since the shortest pulse width that can propagate as a DM

soliton is 26.4 ps, such a map configuration can never provide a bit rate of 40 Gb/s

for which the bit slot is only 25 ps.
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To increase the bit rate, according to Eqs (2.55) and (2.56), one needs to reduce

the value of the map parameter Tmap. From Eq. (2.39) this is possible by reducing

either the dispersion or the length of fiber segments. Consider the design of a 160

Gb/s system. Since the bit slot is only 6.25 ps wide, the map parameter Tmap

should not exceed 1.06 ps to avoid soliton interaction. For (β2i− β̄2) = ±1 ps2/km

(i = 1 and 2 in the first and second fiber sections, respectively), according to

Eq. (2.39), we need to take li ≈ 2.24 km. Moreover, the section lengths reduce

to only li ≈ 0.6 km if it is necessary to use larger local dispersion values of

±4 ps2/km to avoid four-wave mixing in WDM applications. This result explains

why dense dispersion management is a necessity for designing systems at bit rates

> 40 Gb/s [126]– [129].

2.8.3 Optimum map strength values

We now discuss the range of map strength [130] Sm corresponding to the

values of input chirp 1.1 < |C0| < 1.2 . The map strength parameter in our

notation can be written as

Sm =

∣∣∣(β21 − β̄2

)
l1 −

(
β22 − β̄2

)
l2
∣∣∣

(1.665Tmap)
2 |C0| , (2.72)

where the factor of 1.665 results from using the full width at half maximum.

For small average dispersion values, |β21l1| ≈ |β22l2|, and Eq. (2.72) can be

approximated as Sm ≈ 1.443 |C0|. As discussed above, pulse interactions are

minimized for value of input chirp |C0| between 1.1 and 1.2. Using those values,
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we find that using chirp values from the optimum region is equivalent to having

a system with map strength of 1.59 < Sm < 1.73. This explains the previously

known empirical result that the least interactions occur for Sm values around

1.65 [125].

2.8.4 Optimum fiber section length

Eq. (2.55) together with the fact that optimum chirp values are around 1.1

also suggests that an optimum fiber section length exists. For a small average

dispersion value, we can approximate Eq. (2.55) as T 2
0 ≈ |β21l1| (1 + C2

0)/(2 |C0|).

Using C0 ≈ 1.1 and LD ≡ T 2
0 / |β21|, the configuration giving the map strength of

about 1.65 corresponds to the map for which the length of each fiber segment is

approximately equal to the local dispersion length LD.

Although Eq. (2.55) and 2.56) appear similar to those obtained for a linear

system, the presence of nonlinearity is critical for DM solitons. In fact, a periodic

solution of Eqs. (2.34) and (2.35) does not exist in the linear case (γ0 = 0) unless

the average dispersion β̄2 is zero. We have verified through numerical simulations

that Eq. (2.55) remains valid in the region 1 < |C0| < 1.5 with an accuracy better

than 1% as long as the value of β̄2Lm does not exceed ≈ 12% of (β2i − β̄2)li in

the ith section (i = 1, 2). This relation gives, for example, average dispersion as

large as β̄2 = −0.5 ps2/km for (β2i − β̄2)li = 20 ps2 and β̄2 ≈ −2 ps2/km for

(β2i − β̄2)li = 1500 ps2.
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2.9 Conclusions

In this chapter, using the approximate analytic solutions of the variational

equations (2.35) and (2.34), we derived analytical expressions for input pulse

parameters that ensure a periodical pulse propagation in a two-fiber-section dis-

persion map. The expressions are explicit and relatively simple. We compared the

approximate values of the input chirp, width, and energy with numerical solutions

of the variational equations and found a very good agreement with the numeri-

cal results. The derived analytical expressions also show several interesting facts

about a DM soliton system design; these which can be summarized as follow.

– There exists a minimum input pulse width Tmin
0 , and this value limits the

bit rate for a given map configuration.

– A new map parameter is introduced that allows the estimation of the limiting

bit rate and explains the need of dense DM at high bit rates.

– The expressions provide simple suggestions on how to design a system so

that intrachannel pulse interactions are minimized.

– The optimal input chirp value is around 1.1. This optimum explains the

previously known empirical result that pulse interactions are minimized for

the map strength of 1.65 [125].

– Expressions also show that this optimal design corresponds to the case when

fiber section length is approximately equal to the local dispersion length.
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Chapter 3

Impact of dispersion fluctuations

3.1 Introduction

In this chapter we present the results of extensive numerical simulations per-

formed to identify the impact of dispersion fluctuations on the performance of

40-Gb/s dispersion-managed lightwave systems with several different modulation

formats. The emphasis in this analysis is on identifying how the nonlinear effects

degrade the system performance in the presence of dispersion fluctuations. The

chapter is organized as follow. In Section 3.2 we discuss the numerical approach.

Section 3.3 focuses on non-soliton systems based on the CRZ format and employ-

ing backward-pumped distributed Raman amplification. We start by considering

a perfectly linear system and study how the presence of nonlinearity aggravates

the extent of system degradation induced by dispersion fluctuations. We then

discuss the ways to improve system tolerance to dispersion fluctuations. In Sec-

tion 3.4, we consider DM soliton systems. We first address the questions of the
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optimization of input parameters for a given dispersion map and then investigate

the influence of dispersion fluctuations on the system performance. The main

conclusions of the paper are summarized in Section 3.5.

3.2 Numerical approach

Accounting for the presence of noise and dispersion fluctuations, the NLS

equation (2.22), describing propagation of pulses on optical fiber, can be modified

as follow:

∂A

∂z
= −i

β̃2

2

∂2A

∂t2
+ iγ0 |A|2 A +

1

2
(g − α)A + fn(z, t), (3.1)

where β̃2(z) is a fluctuating second-order dispersion parameter and fn(z, t) repre-

sents the contribution of noise along the fiber length.

In this section, we assume that distributed Raman amplification is employed

for the gain g(z) in Eq. (3.1). This technique of amplification is used for simu-

lations because it provides a better SNR compared with lumped EDFAs and is

rapidly being adopted in practice.

We solve Eq. (3.1) numerically using the split-step Fourier method [25]. This

method obtains an approximate solution of the NLS equation (3.1) by assuming

that in propagating the optical field over a small distance h, the dispersive and

nonlinear effects can be pretended to act independently. In short, propagation

from z to z +h is carried out in two steps. In the first step, fiber is assumed to be

nondispersive, so that nonlinearity acts alone and a pulse just acquires a nonlinear
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phase shift during propagation. In the second step, the system is assumed to be

linear, so that the equation can be solved in the Fourier domain. Mathematically,

Eq. (3.1) can be formally written in the form [25]

∂A

∂z
= (D̂ + N̂)A, (3.2)

where D̂ is a differential operator that accounts for dispersion, absorption, and

noise in a linear medium and N̂ is a nonlinear operator that governs the effect

of fiber nonlinearities on pulse propagation. Propagation from z to z + h is then

calculated as

A(z + h, T ) ≈ exp(hD̂) exp(hN̂)A(z, T ), (3.3)

where the execution of the exponential operator exp(hD̂) is carried out in the

Fourier domain by using the prescription

exp(hD̂)B(z, T ) = F−1 exp[hD̂(iω)]FB(z, T ). (3.4)

In the last equation, F denotes the Fourier-transform operation and D̂(iω) is

obtained from D̂ by replacing the differential operator ∂
∂z

by iω, ω being the

frequency in the Fourier domain. The discussion of the accuracy of this method

and the ways to achieve the best accuracy can be found in [25].

We model dispersion fluctuations as

β̃2 (z) = β2 (z) + δβ2 (z) , (3.5)

where β2(z) is the average value of local dispersion and δβ2(z) is a small random

variable assumed to have a Gaussian distribution with zero mean. In numerical
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simulations, δβ2 is changed every step (0.3 km) along the fiber length using a

Gaussian random variable with zero mean and with standard deviation of up to

0.2β2(z). We use 15 different realizations of this stochastic Gaussian process,

representing 15 different fiber links.

To account for the ASE noise for each of the 15 links, the Q parameter (de-

fined later) is evaluated by averaging over an ensemble of 1280 pulses, realized

by repeated propagation of a 64-bit pseudorandom bit sequence with 20 differ-

ent ASE noise realizations. As it was mentioned in chapter 1, there are two main

sources of dispersion fluctuations. One of them is the variation of the material and

waveguide portions of the refractive index along the fiber length. Such variation

introduces static dispersion fluctuations. Another source comes from environ-

mental changes and leads to varying in time, or dynamic, dispersion fluctuations.

Since time-dependent dispersion fluctuations happen on quite a long time scale

(> 1 ms), there are no dynamic fluctuations during a single run for a bit stream

of 128 bits or less. Assuming static and dynamic dispersion fluctuations to be

independent events, the impact of both types of fluctuations can be treated by

considering the results of propagation of the same bit stream over multiple fiber

links with different realizations of dispersion fluctuations.

For numerical simulations, we use two dispersion maps. Each map consists

of two fiber sections of nearly equal length (5 km) with opposite signs of the

dispersion parameter (but the same absolute value). For map 1, β2 = ±4 ps2/km,
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while for map 2 β2 = ±8 ps2/km. In both cases, the average dispersion β̄2 is

−0.01 ps2/km and LA = 8Lm = 80 km, LA and Lm being the amplification and the

map periods, respectively. We adopt the dense DM technique (Lm � LA) because,

according to the results of Chapter 2, its use improves the performance of 40-Gb/s

systems especially when DM solitons are used. Fiber losses are included using αs =

0.2 and αp = 0.27 dB/km in each fiber section, αp being pump power losses at the

pump wavelength. We employ the technique of Raman distributed amplification

with backward pumping for compensating fiber losses. The gain profile g(z) is

obtained by solving the appropriate equations for the Raman amplification process

[3]. In particular, in the case of distributed Raman amplification, gain g(z) in

Eq. (3.1) can be shown to be expressed as [25]

g(z) = gs |Ap(z)|2 , (3.6)

where gs is related to the peak Raman gain gR as gs = gR/Aeff . Raman gain gR

is, in turn, related to the cross section of spontaneous Raman scattering [121,120]

and is a measurable quantity [25,136,137]. In the expression for g(z), |Ap(z)|2 is

the pump power. In the case of continuous-wave backward pumping and with the

undepleted pump approximation, pump power Ip ≡ |Ap(z)|2 can be approximated

as Ip = Ip0 exp[−αp(LA − z)], where Ip0 ≡ |Ap(L)|2 is the peak pump power at

z = LA and pump power losses are assumed to be constant throughout the fiber

link. We choose the input peak power Ip0 at z = LA from the condition of complete

loss compensation, such that
∫ LA
0 g(z)dz = αsLA. Using the expression (3.6) for
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g(z), we find Ip0 = αp
∑N

i=1 αsili
/

(gs

[
1− exp−αpLA

]
), where N is the number of

fiber sections within the amplification period. At the input, we use 6-ps input

pulses with the input chirp C0 = 0.3. We also use optical filters with 400 GHz

bandwidth separated by LA.

The system performance is quantified by the well-known Q parameter that

is related to the bit-error rate in a simple way [1]. We calculate the Q parame-

ter in two ways. The first measure Q1 uses the detector current filtered with a

Butterworth filter of 35 GHz (∆f = 0.875 B) bandwidth at the receiver. More

specifically, Q1 is calculated using [1]

Q1 =
I1 − I0

σ1 + σ0

, (3.7)

where I1 and I0 are the average values for 1 and 0 bits at the center of the bit

slot, and σ1 and σ0 are the corresponding standard deviations. In this approach,

I1 and I0 correspond to the peak power of the optical pulse (assuming that the

timing jitter introduced by Raman amplification is negligible).

In the second approach we calculate the optical Q parameter by using the

pulse energy obtained by integrating over the entire bit slot and define Q as

Q2 =
E1 − E0

σ1 + σ0

, (3.8)

where E1 and E0 are the average energies for 1 and 0 bits and σ1 and σ0 are the

corresponding standard deviations.
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3.3 CRZ systems

We start by considering a perfectly linear 40-Gb/s system. For this case,

nonlinearity is set to zero (γ0 = 0) temporarily in Eq. (3.1). For the 15 fiber

Figure 3.1: Influence of dispersion fluctuations in a linear 40-Gb/s CRZ DM system with β2 =
±8 ps2/km. The Q1 parameter is shown as a function of distance for 15 fiber links with 5%
dispersion fluctuations (standard deviation σD = 0.4 ps2/km ). The insert shows Q1 in the
absence of fluctuations.

links, we find the Q parameter (averaged over 1280 pulses for each fiber link) as

a function of propagation distance for several values of the standard deviation of

local dispersion. As an example, Figure 3.1 shows the Q1 parameter for all 15 fiber

links for the map with β2 = ±8 ps2/km with 5% of dispersion fluctuations, which
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corresponds to the standard deviation σD of local dispersion of 0.4 ps2/km for

this map. The input peak power of each pulse is P0 = 2 mW, which corresponds

to an average power of 0.42 mW for the pseudorandom bit sequence. The insert

shows the Q1 parameter in the absence of fluctuations.

We see that, in the linear case, the Q parameter does not change much in the

presence of fluctuations for all 15 fiber links used. The reason for small difference

in Q along the distance for 15 fiber links comes from additional accumulated dis-

persion dr =
∫ L
0 δβ2 (z)dz that varies randomly for different fibers. This additional

contribution broadens the pulse even more during signal propagation [114,115].

The value and the sign of this additional broadening depend on dr [115]. This

random broadening leads to a change in the Q value. For the 15 fiber links used,

dr at 2400 km ranged from −12.6 ps2 to 22.8 ps2 when 5% of dispersion fluctua-

tions were introduced, while the deterministic value of accumulated dispersion at

this distance is −24 ps2.

We consider now the worst-case Q-parameter at 2400 km. Figure 3.2 shows

the dependence of the worst-case Q for the two maps on the standard deviation of

dispersion fluctuations. The levels of fluctuations used correspond to the standard

deviation σD ranging from 0 to 20% of the local dispersion value. For each value of

standard deviation, the same 15 sequences of random numbers, scaled accordingly,

were used, and the fiber link with the worst value of Q at 2400 km was then

considered.
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Figure 3.2: The worst-case Q parameter at 2400 km for two linear 40-Gb/s CRZ DM systems.
Dispersion map is such that (a) β2 = ±4 ps2/km and (b) β2 = ±8 ps2/km. Solid and dashed
lines show Q1 and Q2 calculated using peak powers and pulse energies, respectively.
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As seen in Fig. 3.2, the Q parameter decreases in all cases even in a purely linear

system as the standard deviation of dispersion fluctuations increases. Although

this decrease is relatively slow, eventually Q becomes small enough that the system

will be limited by dispersion fluctuations. The decrease of Q parameter with

increased β2 fluctuations even for a linear system is due to the larger values of

dr for larger amounts of fluctuations. The results indicate that, for a given fiber

link, Q can be improved by post-compensating or periodically compensating the

accumulated random dispersion.

We note from Fig. 3.2 that Q1 is up to 1.1 dB larger than Q2. The reason

is related to the fact that Q1 samples the pulse power at the bit center while Q2

measures the pulse energy spread over the entire bit. As a result, Q1 parameter

is much more sensitive to timing jitter than Q2. This result suggests that the

use of a receiver that integrates the signal over the bit slot rather than makes a

measurement at one point would improve the system performance. Since most

receivers currently sample the signal at the bit center, we use the Q1 parameter

for system characterization in this thesis.

The results shown in Fig. 3.2 were obtained by turning off the nonlinear term

in Eq. (3.1) by setting γ0 = 0. However, the nonlinearity is inherent in any

real system. In the presence of nonlinearity, the pulse propagation is affected

by the interplay between the local dispersion and nonlinearity (rather than been

dependent only on the total accumulated dispersion). We consider next how the
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Figure 3.3: Influence of dispersion fluctuations in the presence of nonlinearity for the same 40-
Gb/s CRZ system shown in Fig. 3.1. The inserts show Q1 in the absence of fluctuations. The
input peak powers are (a) 1 mW and (b) 2 mW.
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impact of dispersion fluctuations is changed when the nonlinear effects are taken

into account by choosing γ0 = 2.5 W−1/km in all fiber sections.

Figure 3.3 shows the Q1 parameter as a function of distance for the 15 fiber

links for the DM system with β2 = ±8 ps2/km using P0 = 1 and 2 mW. For both

peak power levels the standard deviation of local dispersion is 5% (0.4 ps2/km).

The inserts show Q1 in the absence of fluctuations. We see that, as nonlinear

effects become stronger, the impact of dispersion fluctuations on system perfor-

mance becomes much more noticeable. While the decrease in Q1 at 2400 km is at

most 0.46 dB for 1 mW peak power, it becomes 1.8 dB at 2 mW.

For any peak power, larger fluctuations lead to more degradation. As an

example, the worst-case Q1 parameter at a peak power of 1.5 mW is shown on

Fig. 3.4 for several levels of σD. We see that fluctuations with σD = 1.6 ps2/km

can lead to about 6.5 dB degradation of the Q parameter. We note also that, for

all fiber links considered, the worst case Q at 2400 km for CRZ systems is usually

obtained in the fiber which has the largest random accumulated dispersion dr at

2400 km.

The results of Figs. 3.3 and 3.4 are summarized in Fig. 3.5 which shows the

worst-case Q1 at 2400 km for several values of input peak power as a function of

σD. Comparing to Fig.3.2, we see that in all cases the Q parameter degrades much

faster with increasing dispersion fluctuations than in a linear system. The rate of
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Figure 3.4: Dependence of the worst-case Q1 parameter on transmission distance for several
values of σD. Dispersion maps are such that (a) β2 = ±4 ps2/km and (b) β2 = ±8 ps2/km.
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Figure 3.5: Effect of dispersion fluctuations on Q1 at several peak power levels for the same
two systems shown in Fig. 3.2 except that the nonlinear effects are turned on by setting γ0 =
2.5 W−1/km.
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Figure 3.6: Dependence of the worst-case Q1 parameter on the input peak power for the same
40-Gb/s system shown in Fig. 3.5(b) for several levels of dispersion fluctuations.

degradation increases when the nonlinear effects are intensified using larger input

powers.

For any CRZ system, an optimum input power exists that provides the best

system performance for a certain propagation distance [138]. For input powers

smaller than the optimum, the CRZ system becomes limited by noise added by

amplifiers, while for larger input powers it is limited by the increased nonlinear
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effects. An example of such a behavior at a distance of 2400 km for the 40 Gb/s

system designed with β2 = ±8 ps2/km, is shown on Fig. 3.6, where we plot

Q1 as a function of input power. The optimum peak power in the absence of

dispersion fluctuations is about 2 mW. Even 5% dispersion fluctuations (standard

deviation 0.4 ps2/km) reduce the optimum peak power to near 1.3 mW while

lowering the value of Q by about 26%. Larger values of fluctuations make the

situation worse. To increase the system tolerance to dispersion fluctuations it

may be better, according to figs. 3.5 and 3.6, to use input peak powers slightly

less than the optimum value predicted in the absence of fluctuations.

3.4 DM soliton systems

A natural question is how the impact of dispersion fluctuations on system per-

formance is affected when DM solitons are used as bits. In this section we answer

this question. Since DM soliton systems require a balance between the disper-

sive and nonlinear effects, the presence of dispersion fluctuations might break this

balance and degrade the system performance even more. We study how much

the rate of degradation increases when the input power and, hence, the nonlinear

effects in DM soliton system become larger.

The new feature of DM solitons is that the system is designed such that the

pulse in each bit slot recovers its width, chirp, and energy after each amplification

period. Thus, all pulse parameters vary periodically during the propagation with
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a period equal to LA. As discussed in Chapter II, the periodicity can be ensured

only if the input pulse parameters have specific values for a given dispersion map.

As shown in the previous chapter, the input width of a chirped pulse T0 and the

input energy E0 can be found as functions of input chirp using Eqs. (2.55) and

(2.67). The input parameters for chirp values ranging from 0.03 to 3 is shown in

Fig. 3.7 for the same two maps used in CRZ case.

As it is shown in Chapter 2, in the absence of noise but accounting for in-

trachannel pulse interactions, the best pulse propagation occurs near this region

|C0| ≈ 1, E0 ≈ Ec, Ec being the value of input energy corresponding to |C0| = 1.

In this section we consider several input parameters sets, with the energies rang-

ing from Ec to ≈ 5Ec, where the nonlinear effects become quite strong. The

sets of input parameters used are shown with arrows in Fig. 3.7. For comparison

purposes, we employ same two dispersion maps used earlier for CRZ systems. We

note from Eq.(2.39) that reducing the length of fiber segments decreases the Tmap

parameter, which helps to increase the possible bit rate of a DM soliton system.

For that reason, dense dispersion management is used in this chapter. The map

parameter is Tmap = 3.17 ps and Tmap = 4.47 ps for systems with β2 = ±4 and

± 8 ps2/km, respectively.

We consider the same 15 fiber links with random dispersion fluctuations as in

the CRZ case. Figure 3.8 shows the Q1 parameter as a function of distance for

the map β2 = ±8 ps2/km for input parameters sets corresponding to C0 = −1.2
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Figure 3.7: Input pulse width T0 and corresponding minimum pulse width Tm at the chirp-free
point for a DM soliton system plotted as functions of the input pulse energy. The arrows indicate
the input pulse parameters used in Figs. 3.8 and 3.9 simulations.
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Figure 3.8: Effect of dispersion fluctuations on Q1 parameter for a DM soliton system for the
same map used in Fig. 3.3. The input parameters are obtained from Fig. 3.7 for (a) C0 = −1.2
and (b) C0 = −2.0
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and −2. The level of fluctuations is 5% (σD = 0.4 ps2/km) for both sets of input

parameters. The inserts show Q1 in the absence of fluctuations.

Since the input energy is increased for C0 = −2, the nonlinear effects are much

stronger in this case and the Q parameter is affected much more by dispersion

fluctuations than in system with C0 = −1.2. We have chosen to label the graphs

with the input chirp C0 because, as described before, the optimization of this

parameter will apply to almost any dispersion map while the optimum value of

pulse energy is map dependent.

The dependence of the worst case Q1 parameter on the standard deviation of

β2 at a distance of 2400 km is shown on Fig. 3.9 for several input parameters sets.

The σD values are in the range from 0 to 20% of the local dispersion for each map.

Similarly to the CRZ case, the use of higher energy pulses (and higher average

power at the input end) decreases the system tolerance to dispersion fluctuations.

This behavior is the same for both maps. In the absence of both noise and

dispersion fluctuations (〈δβ2
2〉 = 0) the optimum value of the Q parameter is

obtained for input chirp values near 1.1, as discussed in Chapter 2. According to

Fig. 3.9, in the presence of noise but without dispersion fluctuations, Q increases

for larger values of C0 because the use of higher-energy pulses improves the SNR

while the nonlinear effects are balanced by the use of DM solitons. However,

dispersion fluctuations change this behavior because they perturb the balance

between the dispersive and nonlinear effects. For example, in the presence of
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Figure 3.9: Effect of dispersion fluctuations on Q1 parameter in DM soliton systems for the
same two dispersion maps used in Fig. 3.5.
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10% dispersion fluctuations, it is better to reduce the pulse energy by lowering

the chirp in the neighborhood of C0 = 1.2. We conclude that while accounting

for both noise and dispersion fluctuations, the optimum input parameters should

remain in the region around C0 ≈ 1.2. Comparing DM solitons with the CRZ

case, we note that Q1 decreases with increasing β2 fluctuations in nearly the same

manner, suggesting that the impact of dispersion fluctuations does not depend on

the use of solitons as long as the RZ format is employed.

3.5 Conclusions

In this chapter we investigated numerically the influence of second-order dis-

persion fluctuations on the performance of 40 Gb/s systems designed with dis-

tributed Raman amplification. We have considered both the CRZ and DM soliton

formats and used the Q parameter for judging the system performance.

We have shown that dispersion fluctuations can lead to performance degra-

dation even in a linear system when the change in the total accumulated disper-

sion, introduced by fluctuations, is not completely compensated. The presence of

nonlinearity aggravates the extent of system degradation induced by dispersion

fluctuations for both CRZ and DM soliton systems. We show that this degrada-

tion increases fast when the nonlinear effects in the system are made stronger by

using higher-energy pulses. The system tolerance to dispersion fluctuations can

be improved by employing a receiver that integrates the signal over some portion



3.5. CONCLUSIONS 74

of the bit slot, rather than making a measurement at the center of the bit slot. We

discuss the impact of dispersion fluctuations on the optimum input parameters

and show that, for CRZ systems, one should use the input peak powers slightly

smaller than the optimum values predicted in the absence of fluctuations.

For DM soliton systems, accounting for both noise and the presence of dis-

persion fluctuations, the optimum input pulse width and pulse energy should be

calculated from Eqs. (2.55) and (2.67) by choosing |C0| ≈ 1.2. For such values of

C0 , the map strength is about 1.65, and the effects of intrapulse interaction are

also minimized, as it is discussed in Section 2.8. Although we have focused here

on a single-channel system, the preceding discussion should apply even for WDM

systems.

In our simulations, dispersion values were changed after every step, in effect

making the correlation length of dispersion fluctuations equal to the step size

(0.3 km). The correlation length lc in actual fibers may vary over a considerable

range and is not often known precisely. Our results can be used for other values of

lc by noting that the product σ2
Dlc determines the extent of pulse broadening for

long link lengths [115], where σ2
D is the variance of dispersion fluctuations. Thus,

one should scale σD with lc such that σ2
Dlc remains constant.

Finally, we note that the fluctuations of the second-order dispersion β2 result

from the static or dynamic fluctuations in the frequency-dependent refractive in-

dex. This implies that fluctuations are present in all orders of dispersion. When
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the refractive index fluctuations are dynamic, including the first-order dispersion

fluctuations results in the presence of one more fluctuating term in the nonlinear

Schrdinger equation that depends on fluctuations in the group velocity and can

lead to a new source of timing jitter. However, if dynamic fluctuations happen on

a sufficiently long time scale, the effect of fluctuations in the group velocity may

be compensated electronically.
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Chapter 4

Timing jitter

4.1 Introduction

In this chapter, we use the approach developed in Ref [108] to compare the

ASE-induced timing jitter in DM systems for the cases of lumped, distributed, and

hybrid Raman amplification. In Section 4.2 we extend the theory of [108] to the

case of distributed amplification. In Section 4.3 we derive an analytic expression

for the timing jitter at any position within the fiber link in the case of ideal

distributed amplification for which losses are compensated by gain perfectly at

every point. We also derive an analytical expression for the timing jitter induced

by lumped amplifiers and compare the two cases. In Section 4.4 we investigate

timing jitter in DM systems for the case of erbium-based distributed amplification,

realized when the transmission fiber itself is lightly doped with erbium ions. We

show that timing jitter can be reduced by about 40% with proper system design

and is quite close to the ideal case. In Section 4.5 we consider timing jitter in DM
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soliton systems making use of Raman amplification. We show that considerable

timing reduction occurs when bidirectional, backward, or even partial Raman

amplification is employed. We also investigate timing jitter dependence on other

system parameters such as the bit rate and the map strength.

4.2 General formalism

We give in this section a short description of the moment method for cal-

culating timing jitter [108] and extend the method for the case of distributed

amplification. Optical pulse propagation in any lightwave system, accounting for

the presence of noise and neglecting for now dispersion fluctuations, is governed

by the NLS equation, similar to the one used in Chapter 3 [25]

∂A

∂z
= −i

β2

2

∂2A

∂t2
+ iγ0

∣∣∣A2
∣∣∣A +

1

2
(g − α)A + fn(z, t), (4.1)

where β2 is now a fixed quantity within each fiber section and fn(z, t) represents

the contribution of noise (distributed or lumped) along the fiber length. The ASE

noise contribution vanishes on average, i.e. 〈fn(z, t)〉 = 0, but has a correlation

function of the form [3,106]

〈fn(z, t)f ∗n(z′, t′)〉 = g(z)nsp(z)hν0δ(z − z′)δ(t− t′), (4.2)

where nsp(z) is the spontaneous emission factor, hν0 is the photon energy at the

central frequency ν0, and δ represents Dirac’s delta function. Both nsp(z) and
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g(z) are nonzero only within the amplifier in the case of lumped amplification,

but vary with z continuously in the case of distributed amplification

As in Chapter 2, with a change of variables A ≡ V
√

G, where G represents

the cumulative net gain from 0 to z and is given by Eq. (2.23), Eq. (4.1) can be

rewritten as

∂V

∂z
= −i

β2

2

∂2V

∂t2
+ iγ0

∣∣∣V 2
∣∣∣V + fn(z, t)

/√
G, (4.3)

In the moment method [122], the central position tp and the central frequency

Ω of an optical pulse are defined as

tp (z) =
1

E0

∞∫
−∞

t
∣∣∣V 2

∣∣∣dt, (4.4)

Ω (z) =
1

2iE0

∞∫
−∞

(V ∗
t V−VtV

∗)dt, (4.5)

where Vt stands for the time derivative of V and

E0 ≡
∞∫

−∞

∣∣∣V 2 (z, t)
∣∣∣ dt (4.6)

is the input energy of the pulse.

In order to calculate the timing jitter, it is necessary to know how tp and Ω

evolve with z. Following [108], Eqs. (4.4) and (4.5) for tp and Ω are differentiated

with respect to z and Eq. (4.3) is used to eliminate V (z). We then obtain the

following two differential equations:

dtp
dz

= β2Ω +
i

E0

√
G

∞∫
−∞

(t− tp) [f ∗nV − fnV
∗] dt, (4.7)

dΩ

dz
=

iΩ

E0

√
G

∞∫
−∞

(fnV
∗ − f ∗nV )dt− 1

E0

√
G

∞∫
−∞

(fnV
∗
t − f ∗nVt)dt. (4.8)
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Introducing a new variable q ≡ V exp iΩ(t− tp), which has a meaning of eliminat-

ing a shift from the carrier frequency, equations (4.7) and (4.8) can be rewritten

as

dtp
dz

= β2Ω +
i

E0

√
G

∞∫
−∞

(t− tp)
[
qf ∗ne−iΩ(t−tp) − q∗fne

iΩ(t−tp)
]
dt, (4.9)

dΩ

dz
=

1

E0

√
G

∞∫
−∞

(
q∗t fne

iΩ(t−tp) − qtf
∗
ne−iΩ(t−tp)

)
dt. (4.10)

One can integrate the Eqs. (4.9) and (4.10) and introduce the random time shift

δtp ≡ tp − 〈tp〉, which is found to vary with z as

δtp(z) = F (z) + S(z), (4.11)

where F and S represent the contributions to δtp from frequency and position

fluctuations, occurring because of ASE noise along the fiber link. Their explicit

expressions are

F (z) ≡
z∫

0

β2 (z′) δΩ (z′) dz′, (4.12)

S (z) = i

z∫
0

 1

E0

√
G

∞∫
−∞

(t− tp)
[
qf ∗ne−iΩ(t−tp) − q∗fne

iΩ(t−tp)
]
dt

 dz′,

(4.13)

where δΩ is defined as

δΩ(z) ≡
z∫

0

 1

E0

√
G

∞∫
−∞

[
q∗t fne

−iΩ(t−tp) + qtf
∗
neiΩ(t−tp)

]
dt

 dz′ (4.14)

As discussed in Ref. [108], Eqs. (4.12) and (4.13) are linearized with respect to the

noise term fn, meaning that q and G in those equations correspond to the deter-

ministic solution of Eq. (4.3), obtained after setting fn = 0. Following Ref. [108],
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linearized equations (4.11)–(4.14) are used to calculate the timing jitter σ defined

as σ2 = 〈δt2p〉 and given by

σ2 = 〈F 2〉+ 2〈FS〉+ 〈S2〉. (4.15)

Since all quantities, except for fn, are deterministic after linearization of

Eqs. (4.12)–(4.14), the correlation 〈F 2〉 can be expressed in terms of the cor-

relation of δΩ, as it is seen from Eq. (4.12). The correlation δΩ , in turn, can be

found using noise correlation function (4.2). Similarly, equation (4.2) is used to

obtain the expressions for 〈FS〉 and 〈S2〉 terms. The complete derivation of the

〈F 2〉, 〈FS〉, and 〈S2〉 terms is provided in Appendix C and results in the following

expressions, which are valid for arbitrary pulse shape:

〈
F 2
〉

=
4hν0

E2
0

z∫
0

β2(z1)dz1

z1∫
0

β2(z2)dz2

z2∫
0

g(z′)nsp(z
′)G−1(z′)

∞∫
−∞

|qt|2 dtdz′,

(4.16)

〈FS〉 =
ihν0

E2
0

z∫
0

β2(z1)dz1

z1∫
0

g(z′)nsp(z
′)G−1 (z′)

∞∫
−∞

(t− tp) [qtq
∗ − q∗t q] dz′,

(4.17)

〈
S2
〉

=
2hν0

E2
0

z∫
0

g(z′)nsp(z
′)G−1 (z′)

∞∫
−∞

(t− tp)
2 |q|2 dtdz′. (4.18)

We apply those expressions to a chirped Gaussian pulse of the form:

V (z, t) = V0 exp

(
−(1 + iC)(t− tp)

2

2T 2
− iΩ(t− tp) + iφ

)
, (4.19)

or, according to the definition of q,

q (z, t) = q0 exp

(
−(1 + iC)(t− tp)

2

2T 2
+ iφ

)
, (4.20)
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where C is chirp, T is the pulse width at 1/e point, q0 = V0 is the peak amplitude

of the pulse, and ϕ is the phase, all those variables been functions of z. Using

Eq. (4.20) in Eqs. (4.16)–(4.18), we obtain the following expressions:

〈
F 2
〉

=
2hν0

E0

z∫
0

β2(z1)dz1

z1∫
0

β2(z2)dz2

z2∫
0

g(z′)nsp(z
′)

1 + C2(z′)

G(z′)T 2(z′)
dz′,(4.21)

〈FS〉 =
hν0

E0

z∫
0

β2(z1)dz1

z1∫
0

g(z′)nsp(z
′)G−1 (z′) C(z′)dz′, (4.22)

〈
S2
〉

=
hν0

E0

z∫
0

g(z′)nsp(z
′)G−1 (z′) T 2(z′)dz′. (4.23)

Equations (4.15) and (4.21)–(4.23) provide semi-analytical expressions for the

timing jitter. They can be used for any amplification scheme, whether lumped,

distributed, or hybrid. The only assumption made is that we use a chirped Gaus-

sian shape for pulses propagating inside a DM system. Analysis based on the

variational and Hermite-Gauss-expansion methods have shown [123,124] that nu-

merically calculated pulse shapes are close to Gaussian (except in the pulse wings).

In the next section, we justify this approximation by comparing timing jitter cal-

culated using the actual pulse shape (taken from a NLS-based propagation code)

and the pulse shape given by Eq. (4.19).

4.3 Analytical treatment

In this section we use Eqs. (4.21)–(4.23) to calculate variances and cross-

correlation of F and S for a DM soliton communication system and calculate

timing jitter for lumped and distributed amplification scheme. We focus on the
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case of ideal distributed amplification first. We consider a DM system in which

each map period Lm consists of two fiber sections with dispersion parameters β21

and β22, respectively, and the local gain g(z) ≡ α at every point, so that G(z) = 1

in (4.21)–(4.23). We assume for simplicity that both fiber sections have the same

value of losses α. The results can be generalized later to the case of an arbitrary

loss profile. The variables G(z), g(z), and nsp(z) are now constants in Eqs. (4.21)–

(4.23). Using the variational equation for the pulse width (2.34) in Eq. (4.22), we

can express the variance of S in terms of cross-correlation of F and S as

〈S2〉 = 2〈FS〉+ QdT
2
0 z/Lm, (4.24)

where

Qd ≡ hν0nspgLm/E0 (4.25)

is a dimensionless parameter.

To calculate the variance of F and cross-correlation of F and S, we need to

calculate in Eqs. (4.21)–(4.23) the integrals like

I1 (z) ≡
z∫

0

1 + C2 (z)

T 2 (z)
dz, (4.26)

I2 (z) ≡
z∫

0

C (z) dz. (4.27)

Performing the first integral numerically, we find that I1 grows with z almost

linearly (with an accuracy of about 0.01%) as I1(z) ≈ (1 + C2
0)/T 2

0 , where C0 and

T0 are the input values of chirp and pulse width, respectively. This result has a

physical basis since the ratio represents spectral width of a chirped pulse. The
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spectral width remains constant for a linear system and does not change much if

the nonlinear length of the system is much larger than the local dispersion length.

Even numerical solutions of the nonlinear variational equations show that the

ratio oscillates around its input value within each map period with a negligible

amplitude. To estimate the integral in Eq. (4.27), we approximate C(z) by a

linear function of z in each fiber section as in Eq. (2.41), making use of the fact

that, for ideal loss compensation (g = a), chirp-free point is located in the middle

of each fiber section [131].

Using Eq. (4.24) in Eq. (4.21), we perform the remaining two integrations for

calculating 〈F 2〉 using a geometrical approach. In short, noting that β2(z2)I1(z2)

is a piecewise continuous function, we carry out the integration over z2. We then

repeat the same process for integrating over z1 and completing the integration in

Eqs. (4.22) and (4.23). Using the notation z = mLm + x, where m is the number

of complete map periods up to the distance z and x is a fractional distance in the

next map period (0 ≤ x ≤ Lm), the final result for timing jitter is given as:

σ2
d (m,x) = Qd

1 + C2
0

T 2
0

[
b2
0m (m− 1) (2m− 1)

/
6 + b0b1m(m− 1)/2 + ∆0m/3

+ b (x) b0m (m− 1) + b2 (x) m + b (x) b1m + ∆ (x)/3
]

+Qd4C0 [ε0m + ε (x)] + QdT
2
0 [m + x/Lm] , (4.28)

where b(x) is the dispersion accumulated over a distance x:

b (x) ≡
x∫

0

β2 (x′) dx′, (4.29)
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so that b0 ≡ b(Lm) = β21l1 + β22l2 = β̄2Lm, β̄2 being the average dispersion of the

map. Further, b1 ≡ b0 + (β22− β̄2)l2, and the functions ∆(x) and ε(x) are defined

as

∆ (x) ≡


xb2 (x)/Lm, if 0 ≤ x ≤ l1,[
l1b (x) [b (x) + β22 (x− l1)] + β2

22 (x− l1)
2 x
]/

Lm, if l1 ≤ x ≤ Lm,

(4.30)

where ∆0 ≡ ∆ (Lm), ε0 ≡ ε (Lm) in Eq. (4.28).

Before discussing this analytic result, we derive a similar formula for the

lumped amplification case, for which both nsp(z) and g(z) are nonzero only within

each amplifier whose length is quite short (∼ 10 m). Using Gl = exp(αLA) for

the amplifier gain, where LA is the amplifier spacing, the integrals in Eqs. (4.21)–

(4.23) can be performed analytically as

hν0

E0

z2∫
0

g(z′2)nsp(z
′
2)

1 + C(z′2)
2

G(z′2)T (z′2)
2
dz′2 = Ql

1 + C2
0

T 2
0

Nl (z2) , (4.31)

hν0

E0

z1∫
0

g(z′1)nsp(z
′
1)G

−1 (z1) C (z1)dz′1 = QlC0Nl (z1) , (4.32)

hν0

E0

z∫
0

g(z′)nsp(z
′)G−1 (z′) T 2

0 (z′)dz′ = QlT
2
0 Nl (z) , (4.33)

where Nl(zi) is a staircase function representing the number of amplifiers up to

the coordinate zi, and

Ql ≡ hν0nsp(Gl − 1)/E0. (4.34)

Using expressions (4.31)–(4.33) we complete the integrations in Eqs. (4.21)–(4.23),

employing the same geometrical approach described earlier. The final result for
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the variance of timing jitter at a distance z = nLA + x in system for an arbitrary

dispersion map within each amplification period is given as

σ2
l (n, x) = Ql

1 + C2
0

T 2
0

[
b2
0n (n− 1) (2n− 1)/6 + b (x) b0n (n− 1) + b2 (x) n

]
+QlC0 [b0n (n− 1) + 2b (x) n] + QlT

2
0 n, (4.35)

where n is the number of amplifiers up to the distance z and x is the fractional

distance in the next amplification period (0 ≤ x ≤ LA). We keep different no-

tations for amplification period LA and map period Lm since Eq. (4.35) applies

to the case of dense DM in which each amplification period contains several map

periods.

From Eqs. (4.28) and (4.35) we note that the largest contribution to timing jit-

ter comes from the first term resulting from frequency fluctuations and increasing

with distance as z3. If we use Eq. (4.14), the variance of frequency fluctuations

〈δΩ2〉, accumulated within one map period (or amplification period in the case of

lumped amplifiers) is given by:

〈
δΩ2

〉
d,l

= Qd,l
1 + C2

0

T 2
0

, (4.36)

where the subscripts “d” and “l” stand for distributed and lumped amplification,

respectively. In (4.28) and (4.35), the term in the first square brackets represents

the variance 〈F 2〉. For constant-dispersion fibers (β21 = β22 ≡ β2) and for lumped

amplification, 〈F 2〉 term with x = 0 converts to the standard Gordon-Haus for-

mula [105,107] 〈F 2〉 = 〈δΩ2〉l β2
2L

2
A

n∑
i=1

(n− i)2. We have also verified that, for
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constant dispersion, 〈δΩ2〉l reduces to the equivalent expression in Refs. [105,107]

when a hyperbolic secant pulse shape is used instead of a Gaussian shape in

Eq. (4.1).

We now focus on the effect of distributed amplification on timing jitter. Con-

sider first the timing jitter at the end of a map period by setting x = 0. Several

differences are apparent from Eqs.(4.28) and (4.35). In the case of lumped ampli-

fication, the 〈F 2〉 term depends only on the average dispersion irrespective of the

actual map configuration, while this is not the case for ideal distributed ampli-

fication. The 〈F S〉 term grows as z2 for lumped amplification, but only linearly

with z in Eq. (4.28), indicating that cross-correlation is less important in the case

of distributed amplification. For lumped amplification, the variance 〈S2〉 , repre-

senting direct temporal shift of a soliton by ASE, does not depend on dispersion,

but this is not so for distributed amplification, as seen from Eq. (4.24). This is the

consequence of the fact that such position fluctuations happen only when noise

is added. For lumped amplification, noise is not added outside amplifiers, while

noise is added all along the fiber length in the case of distributed amplification.

Consider now the timing jitter inside a map period so that x 6= 0. As seen

from Eqs. (4.28) and (4.35), the x-dependent terms provide additional contribu-

tion to timing jitter within each map period, which depends on the accumulated

dispersion b(x) over the fractional distance x within each map period Lm (or the

amplification period LA). Since b(x) is periodic, we expect timing jitter to exhibit
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oscillatory behavior. As seen from Eqs. (4.28) and (4.35), the amplitude of such

oscillations grows as z2 with distance, while the first term in Eq. (4.28) and in

Eq. (4.35) grows as z3. This means that jitter never oscillates down to zero as z

increases and the relative contribution of the oscillating terms to the total timing

jitter decreases as 1/z. For long distances such that L � Lm, taking the limit

m � 1 and n � 1 in x-dependent terms in Eqs. (4.28) and (4.35), we note that

this additional contribution is positive or negative depending on the sign of the

product b(x)b0. For example, for the system with even number of fiber sections

within the map period, this contribution is negative if the sign of β21 is opposite

to the sign of average dispersion β̄2.

An important question is how much timing jitter can be reduced by using

distributed amplification. To answer this question, we consider a long-haul light-

wave system such that the number of map periods Lm (or amplifies in the case

of lumped amplification) is very large. Taking the limit m � 1 and n � 1 in

Eqs. (4.28) and (4.35), the timing jitter is reduced for distributed amplification

by the factor

fr ≡
σ2

d

σ2
l

≈ 〈δΩ2〉d
〈δΩ2〉l

=
αLA

(Gl − 1)

nd
sp

nl
sp

El
0

Ed
0

[(1 + C2
0)/T 2

0 ]d
[(1 + C2

0)/T 2
0 ]l

. (4.37)

In the most cases of practical interest [(1 + C2
0)/T 2

0 ]l � [(1 + C2
0)/T 2

0 ]d when the

system is designed to have the same value of the minimum pulse width. The

energy ratio El
0/E

d
0 > 1 under such conditions, increasing fr. However, this

increase, being of the order of Gl ln Gl/(Gl − 1), does not overcome the reduction
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in timing jitter due to the ratio αLA/(Gl− 1). The net result is that timing jitter

can be reduced by using distributed amplification. Physically, the possibility of

timing jitter reduction with distributed amplification comes from the fact of the

smaller power spectral density of noise in the case of distributed amplification.

Figure 4.1 shows timing jitter for lumped and distributed amplification

schemes calculated at the end of each amplifier (each map period in the dis-

tributed case) using Eqs. (4.28) and (4.35) based on the Gaussian shape ansatz

(solid curves). To estimate the error introduced by this ansatz, circles show

the results when the exact pulse shape obtained by solving the NLS equation

is used in Eqs. (4.16)–(4.18). In the lumped case, we consider a dense DM sys-

tem with an amplifier spacing of 80 km and assume 8 map periods within one

amplifier period. Each map period has 5 km of fiber with β21 = 3.9 ps2/km

and 5 km of fiber with β22 = −4.1 ps2/km, resulting in the average dispersion of

−0.1 ps2/km. Losses in each fiber section are 0.2 dB/km, and the value of nonlin-

earity is γ0 = 2.5 W−1km−1. The input pulse parameters (width T , chirp C, and

energy E0) are obtained by solving the variational equations (2.35) and (2.34) nu-

merically. The minimum value Tmin of pulse width is kept fixed at 3.11 ps [FWHM

5.18 ps] in all cases to ensure a 40 Gb/s bit rate. For lumped amplification, the

input parameters are T0 = 4.94 ps, C = −1.2, E0 = 0.22 pJ, while for ideal

distributed amplification T0 = 4.47 ps, C = −1.0, and E0 = 0.0597 pJ. The map
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Figure 4.1: Comparison of timing jitter as a function of transmission distance for lumped and
ideal distributed amplification schemes for dispersion maps with Smap = 1.49 (solid lines) and
Smap = 3.73 (dashed lines). Circles represent results obtained using the numerical pulse shape.

strength of this system, defined as in Eq. (2.1), where TFWHM ≈ 1.665Tmin is the

FWHM of the pulse at the minimum pulse width point, is equal to Smap ≈ 1.49.

Since the deviation of pulse shape from Gaussian ansatz increases with map

strength, we consider a similar system with a map strength of Smap ≈ 3.73. To

increase the map strength we keep same geometry but increase dispersion values
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in both fiber sections to β21 = 9.9 ps2/km, β22 = −10.1 ps2/km. The input

parameters in this case are T0 = 8.61 ps, C = −2.31, E0 = 0.729 pJ for lumped

amplification and T0 = 8.29 ps, C = −2.31, E0 = 0.270 pJ in the ideal distributed

amplification case. In all cases we use nsp = 1.5 for lumped amplifiers (corresponds

to a noise figure of 4.8 dB) and nsp = 1 for ideal distributed amplification.

Several conclusions can be drawn from Fig. 4.1. Timing jitter increases with

transmission distance L as L3 in all cases, as expected for the Gordon-Haus jitter.

However, it is smaller by about a factor of 2 when distributed amplification is used.

The approximations made in deriving Eqs. (4.28) and (4.35) lead to the 0.02%

error in comparison with the result of Eqs. (4.21)–(4.23) and are not noticeable

at the scale of Figure 4.1. The curves calculated using the exact pulse shape

(obtained by solving the NLS equation) show that the error in timing jitter values

by using a Gaussian pulse shape is less than 2% and nearly vanish for smaller

values of Smap.

To see how well Eq. (4.37) for the reduction factor works, we compare its

predictions with the results shown in Figure 4.1. We find that the error in the

reduction factor given by Eq. (4.37), in comparison with the similar factor calcu-

lated using full analytical theory [Eqs. (4.28) and (4.35)] reduces to below 10%

after about 7 amplification periods. Moreover, at the distances larger than 14

amplification periods the error becomes less than 5%. We have also verified that

these error values do not change much with the map strength.
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Figure 4.2 shows how timing jitter oscillates within each map period for lumped

and distributed amplification schemes. In the lumped case (Figure 4.2a), no jitter

occurs until first amplifier is encountered at a distance of 80 km. Since in the

map considered the sign of β21 is opposite to the sign of average dispersion, jitter

is reduced within each map period in comparison with its values in the ends of

the periods. The value in the end of each period increases with distance as L3.

For long distances such that L � Lm, eventually the oscillations in timing jitter

within each period become small in comparison with its average value, so that

the oscillations are important at short propagation distances. In the distributed

amplification case (Figure 4.2b)), similar behavior occurs, except that jitter starts

to grow from L = 0 and has overall smaller values.

In the following two sections, we calculate timing jitter accounting for local

gain variations which occur invariably in real DM systems. In section 4.4, we

consider the case in which gain is provided by erbium ions distributed throughout

the fiber link and take into account pump absorption and depletion [g(z) 6= α] for

the bidirectional pumping scheme. In section 4.5 we focus on the case of Raman

amplification.

4.4 Erbium-based distributed amplification

To calculate the actual variations of the gain g(z) along the fiber, we use

the two-level model of Ref. [4]. We solve numerically the multiple rate equations,
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Figure 4.2: Timing jitter variations within each map period for lumped and distributed ampli-
fication for the map with Smap = 1.49.
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accounting for gain saturation and pump depletion and assuming a bidirectional

pumping scheme at 1480 nm. The inversion factor nsp is obtained using

nsp = σeN2/(σeN2 − σaN1), (4.38)

where N2 and N1 are the ion densities of the upper and lower energy levels partic-

ipating in stimulated emission, respectively, and σe and σa are the emission and

absorption cross-sections for the signal wavelength, respectively. The distributed

gain can be written as g(z) = Γ(σeN2 − σaN1), where Γ is the overlap factor be-

tween the doped region and the fiber mode. Neglecting the population N3 of the

third and higher levels, the total dopant density is Nt = N1 + N2. The parameter

nsp is then related to the gain as

nsp =
σe

σe + σa

[
1 +

σaΓNt

g (z)

]
. (4.39)

We take σe = 3.9 × 10−21 cm2, σa = 3.5 × 10−21 cm2 and Γ = 0.4, the

values appropriate for a Ge-Er-doped silica fiber at 1550 nm [139]. From the

noise standpoint of view, Nt should be as small as possible. However, pump

power increases as Nt approaches its minimum possible value [140,141]. As a

compromise, we choose Nt = 5.5× 1014 cm−3, a value that requires pump power

of about 100 mW for a 80-km pump-station spacing. We also consider a larger

density value of Nt = 9×1014 cm−3 with a reduced pump power of about 50 mW.

Such values are normally used for distributed erbium-doped fibers [140]. For each

density value, we calculate timing jitter numerically using Eqs. (4.21)–(4.23) with
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Figure 4.3: Timing jitter at the end of each map period for the systems with erbium-
based amplification (solid lines) for the dopant densities of Nt = 5.5 × 1014cm−3 (a) and
Nt = 9× 1014cm−3(b). Dotted lines show the results obtained assuming perfect loss compensa-
tion. Dashed line represents timing jitter for the same DM system with lumped amplification.

the actual gain profile and using Eq. (4.28) obtained for ideal loss compensation

[g(z) = α]. In both cases, inversion parameter nsp is calculated from Eq. (4.39).

For perfect loss compensation nsp is constant with values of 1.41 and 1.97 for the

Nt values given above.

Figure 4.3 shows the timing jitter calculated at the end of each amplifier.

Solid curves represent timing jitter with the actual gain profile and dotted curves
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represent timing jitter assuming g = α. Timing jitter for the case of lumped am-

plification with nsp = 1.5 is also shown for comparison (dashed curve). The input

parameters in each case are calculated by solving the variational equations numer-

ically and are close to the parameters used in section 4.3. In order to verify, how

much the soliton interaction itself would limit the transmission distance, the three

cases shown in Fig. 4.3 were checked for propagation of a 40 Gb/s pseudorandom

pulse train by solving Eq. (4.1) numerically with the split-step method. As an

example, we solve Eq. (4.1) using V (0, t) =
∑

bnVn (0, t) , where bn is a binary

random variable with values 0 and 1, and Vn(0, t) is given by Eq. (4.19). In the

case of distributed amplification with Nt = 5.5 × 1014 cm−3, using T0 = 4.48 ps,

C = −1.0, and E0 = 0.0593 pJ (parameters, corresponding to 3.11 ps minimum

pulse width, accounting for the actual gainprofile), we obtain the contour map

shown in Fig. 4.4. These results were obtained without including amplifier noise

and show that interaction among solitons does not affect the pulse train at dis-

tances as large as 10,000 km. The results for the other two cases from Figure 4.3

look similarly.

Figure 4.3 shows that it is possible to achieve about 40% jitter reduction

using distributed amplification with bidirectional pumping. Assuming Gaussian

statistics for timing jitter σ, the bit error rate (BER) can be found as

BER =
2√
2πσ

∞∫
TB/2

exp

(
− t2

2σ2

)
dt = erfc

(
TB

2
√

2σ

)
≈ 4σ√

2πTB

exp

(
− T 2

B

8σ2

)
,

(4.40)



4.4. ERBIUM-BASED DISTRIBUTED AMPLIFICATION 96

−400 −300 −200 −100 0 100 200 300

1000

2000

3000

4000

5000

6000

7000

8000

9000

10000

Time (ps)

D
is

ta
nc

e 
(k

m
)

Figure 4.4: Contour map of the bit sequence over 10000 km for the 40-Gb/s system employing
erbium-based distributed amplification with bidirectional pumping

where TB is the bit slot and erfc (x) ≡ (2/
√

π)
∫∞
x exp (−y2)dy. According to

Eq. (4.40), for a BER of less than 10−9, timing jitter should be less than 8%

of bit slot [107]. This value can be increased to 12% by using a forward-error

correction technique that can tolerate a BER of 10−4. In the following discussion,

we use the 8% criteria, which gives a value of 2 ps for the limiting timing jitter

at 40 Gb/s. Dashed line in Figure 4.3 shows that transmission distance is limited

to about 2900 km in the case of lumped amplification, but can be increased up to

4300 km using the distributed amplification scheme. The dotted lines in Figure 4.3

show that timing jitter is well approximated by the analytical result in Eq. (4.28),
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especially for relatively low dopant concentration values. The reason for better

agreement for lower Nt values is that gain variations become smaller as Nt is

reduced. Note that even for larger values of Nt, Eq. (4.28) is accurate to within a

few percent.

4.5 Distributed Raman amplification

In this section we consider the distributed Raman amplification (DRA)

scheme for the same dispersion map used earlier. The input parameters, cor-

responding to the 3.11-ps minimum pulse width, are T0 = 4.737 ps, C = −1.1,

and E0 = 0.0494 pJ for Raman amplification with bidirectional pumping, and

T0 = 4.696 ps, C = −1.08, and E0 = 0.192 pJ for backward pumping. These

parameters were obtained by solving the variational equations (2.34), (2.35) and

were checked numerically for the 40 Gb/s propagation over long distance. For

both pumping schemes we use nsp = [1 − exp(−hν/kT )]−1 ≈ 1.13 at room tem-

perature. Gain variations g(z) for Raman amplification are calculated analytically

using the condition of full loss compensation and neglecting pump depletion [3].

Figure 4.5 shows timing jitter at the end of each amplifier as a function of

transmission distance for bidirectional and backward pumping schemes. The lim-

iting cases of lumped and ideal distributed amplification are shown for compari-

son. Considerable reduction occurs for both bidirectional and backward pumping

schemes although the bidirectional pumping scheme gives smaller jitter values.
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Figure 4.5: Timing jitter at the end of each map period for distributed Raman amplification
(solid lines) with bidirectional and backward pumping schemes. For the same DM system,
lumped amplification (nsp = 1.5) and ideal distributed amplification (nsp = 1) are also shown
for comparison (dashed lines).

The horizontal dashed line in Figure 4.5 shows that transmission distance can be

increased up to about 4200 km using a bidirectional Raman amplification scheme

whereas it would be limited to 2900 km for lumped amplifiers. Larger jitter values

for a backward pumping scheme result from larger gain variations along the fiber.

According to Eqs. (4.21)–(4.23), timing jitter is proportional to nsp and is in-

versely proportional to the input energy of the pulse. Although the nsp parameter
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for Raman amplification is almost the same as for ideal distributed amplification,

timing jitter is larger for Raman amplification. This is the consequence of larger

gain variations along the fiber when Raman amplification is used. Comparing

Figures 4.3 and 4.5 we note that jitter values are within 10% of each other for

Raman and erbium-based distributed amplification although gain variations are

larger in the Raman case. This is due to larger nsp values for erbium dopants.

We consider now the practical case of hybrid amplification, in which a coded

pulse train is amplified periodically using a module consisting of a lumped fiber

amplifier and a Raman-pump laser injected backward into the fiber to provide

the DRA. In this hybrid scheme, total fiber losses Gtot are compensated using the

combination of lumped and Raman amplification such that GR + GL = Gtot, or,

equivalently,

exp

 LA∫
0

gR(z)dz

+ GL = exp

 LA∫
0

α(z)dz

 , (4.41)

where gR and GR are, respectively, local and accumulated Raman gain, GL is the

gain of lumped amplifier, and LA is the amplifier spacing. The same dispersion

map is used and input parameters are also comparable to those given earlier.

Figure 4.6 shows timing jitter after each amplifier as a function of transmission

distance for several values of the Raman gain. While the smallest value of jitter

occurs when 100% of losses are compensated using DRA, considerable reduction

occurs even when losses are only partially compensated by the Raman gain.

We consider the question whether distributed amplification can allow a longer
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Figure 4.6: Timing jitter after each amplifier as a function of transmission distance for several
values of Raman gain. Losses are 16 dB over 80 km of amplifier spacing.

amplifier spacing. Figure 4.7 shows timing jitter after 3100 km as a function of

the Raman gain for 40-Gb/s systems employing a hybrid amplification scheme

with amplifier spacings of 60, 80, and 100 km. The systems have 6, 8, and 10 map

periods within each amplifier spacing, respectively, while the other parameters are

the same as before. In each case, jitter is reduced by up to 40% by using DRA.

More importantly, the use of lumped amplifiers alone leads to limiting jitter in

excess of 2 ps when LA exceeds 70 km. In contrast, amplifiers can be placed as
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much as 100 km apart when an hybrid amplification scheme is employed. The

required Raman gain is only 2 dB for 80-km spacing but becomes 10 dB when

amplifiers are 100 km apart.

Finally, we investigate timing jitter dependence on the map strength of the

system. To change the map strength, we vary the values of the second order

dispersion β21 and β22 while keeping the average dispersion β2 and minimum
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pulse width Tmin constant. Figure 4.8(a) shows timing jitter dependence on the

map strength at a distance of 4000 km for systems with lumped amplifiers and

bidirectionally pumped DRAs. The nsp parameter values used are the same as

in Figure 4.5. Solid curves correspond to Tmin = 3.11 ps and are suitable for a

40-Gb/s system while dashed curves with Tmin = 8 ps are appropriate for a 10-

15 Gb/s system. In each case, timing jitter decreases as map strength is increased.

The reason for this decrease is that larger values of the map strength require higher

values of input pulse energy in order to keep the pulse width fixed. Since timing

jitter is inversely proportional to the pulse energy, the jitter decreases as map

strength increases. Input pulse energies for each value of the map strength are

shown on Figure 4.8(b) and support this conclusion. Note, however, that pulse

breathing increases significantly for large map strengths, and the system may be

limited by soliton interaction.

Figure 4.8a also shows that timing jitter values are larger for shorter pulse

widths although shorter pulse widths require larger pulse energies. We have ver-

ified that this behavior holds for erbium distributed amplification as well. The

reason for this can be understood from Eqs. (4.28) and (4.35), which show that the

term growing as z3 with distance z is proportional to the ratio (1 + C2
0)/(T 2

0 E0).

Numerical solutions of the variational equations show, that this ratio increases for

smaller T0 values, thus giving rise to a larger timing jitter.
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4.6 Conclusions

We have compared the ASE-induced timing jitter in dispersion-managed

systems for the cases of lumped, distributed, and hybrid Raman amplification

schemes. We show that, while the erbium-based distributed amplification gives

the smallest timing jitter value, considerable reduction occurs when bidirectional,

backward, or even partial Raman amplification is employed. We have derived an

analytical expression for the timing jitter at any position within the fiber link in

the case of ideal distributed amplification for which losses are exactly compen-

sated by gain at every point. We show that in the case of a low erbium-dopant

density timing jitter is well approximated by this formula. We also derive an an-

alytical expression for the timing jitter for lumped amplifiers and compare it to

the case of distributed amplification. Finally, we show that timing jitter decreases

for stronger maps at a given bit rate (fixed minimum pulse width).
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Chapter 5

Conclusions

In this thesis, we have considered different aspects of DM systems design.

We started by considering a DM soliton system design and derived approximate

analytic expressions for the input pulse parameters that provide periodical pulse

propagation in such a system. The expressions showed a good agreement with

the numerically found values of input parameters and revealed several interesting

features in the DM soliton system design. In particular, they showed that there

exists a minimum input pulse width, and this fact limits the bit rate for a given

map configuration. We introduced a new map parameter that allowed the estima-

tion of the limiting bit rate. The way in which this parameter depends on the map

configuration explains the need of dense DM at high bit rates. The expressions

provided also simple suggestions on how to design a system so that intrachannel

pulse interactions are minimized. In particular, optimal input chirp values are

found to be around ±1.1. This value was expected based on the expressions and

was confirmed by the numerical analysis of pseudorandom bit sequence propaga-
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tion in the absence of noise and parameters fluctuations. This optimum explains

the previously known empirical result that pulse interactions are minimized for

the map strength of 1.65 [125]. Expressions also showed that this optimal design

corresponds to the case when fiber section length is approximately equal to the

local dispersion length.

In a real system, practically any parameter, designed to have a fixed value,

usually deviates more or less from that value in a random fashion. In particu-

lar, the dispersion of an optical fiber can vary over a considerable range because

of unavoidable variations in the core diameter along the fiber length, as well as

because of the environmental changes. We investigated numerically the impact

of dispersion fluctuations on the performance of 40-Gb/s DM lightwave systems

designed with distributed Raman amplification. We have considered both the

CRZ and DM soliton formats and used the Q parameter for judging the sys-

tem performance. The analysis showed that dispersion fluctuations can lead to

performance degradation even in a linear system when the change in the total ac-

cumulated dispersion, introduced by fluctuations, is not completely compensated.

The presence of nonlinearity aggravates the extent of system degradation induced

by dispersion fluctuations for both CRZ and DM soliton systems. We have shown

that this degradation increases fast when the nonlinear effects in the system are

made stronger by using higher-energy pulses. The system tolerance to dispersion

fluctuations can be improved by employing a receiver that integrates the signal
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over some portion of the bit slot, rather than making a measurement at the center

of the bit slot.

Discussing the impact of dispersion fluctuations on the optimum input param-

eters we showed that, for CRZ systems, one should use the input peak powers

slightly smaller than the optimum values predicted in the absence of fluctuations.

For DM soliton systems, in the absence of both noise and dispersion fluctuations

the optimum value of the Q parameter is obtained for input chirp values near

±1.1, as discussed before. In the presence of noise but without dispersion fluc-

tuations, Q increases for larger values of C0 because the use of higher-energy

pulses improves the SNR while the nonlinear effects are balanced by the use of

DM solitons. However, dispersion fluctuations change this behavior because they

perturb the balance between the dispersive and nonlinear effects. As a result,

while accounting for both noise and dispersion fluctuations, the optimum input

parameters should remain in the region around |C0| ≈ 1.2.

The fluctuations of the second-order dispersion β2 result from the static or

dynamic fluctuations in the frequency-dependent refractive index, which implies

that fluctuations are present in all orders of dispersion. When the refractive index

fluctuations are dynamic, including the first-order dispersion fluctuations results

in the presence of one more fluctuating term in the nonlinear Schrödinger equation

that depends on fluctuations in the group velocity and can lead to a new source

of timing jitter. However, if dynamic fluctuations happen on a sufficiently long
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time scale, the effect of fluctuations in the group velocity may be compensated by

electronically.

Finally, we analyzed the role of distributed amplification in controlling ASE-

indused timing jitter in DM systems. We have derived an analytical expression

for the timing jitter at any position within the fiber link in the case of ideal dis-

tributed amplification for which losses are exactly compensated by gain at every

point. We showed that in the case of a low erbium-dopant density timing jitter is

well approximated by this formula. We also derived an analytical expression for

the timing jitter for lumped amplifiers and compare it to the case of distributed

amplification. The comparison have shown that timing jitter is reduced by about

50% in a system with ideal distributed amplification, having an inversion param-

eter equal to its quantum limit of 1.

As a next step, we calculated timing jitter accounting for local gain variations

which occur invariably in real DM systems, and considering the actual values of the

inversion parameter. The ASE-induced timing jitter in dispersion-managed sys-

tems has been compared for the cases of lumped, distributed, and hybrid Raman

amplification schemes. We have shown that while the erbium-based distributed

amplification gives the smallest timing jitter value, considerable reduction occurs

when bidirectional, backward, or even partial Raman amplification is employed.
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Appendix A

Reduced Lagrangian

In this appendix, we derive the reduced lagrangian (2.30) used in variational

analysis of chapter 2.4. Representing Gaussian function (2.26) as

V (z, t) = p (z) exp

[
− (1 + iC)

(t− tp)
2

2T 2
− iΩ (t− tp) + iφ

]

≡ ν exp (iΦ) , (A.1)

where p (z) ≡
√

E0/
√

πT (z) is a peak amplitude, and ν and Φ are the modulus

and the phase of the complex quantity V (z, t):

ν ≡ p (z) exp

(
− [t− tp(z)]2

2T 2

)
, (A.2)

Φ ≡ −C (t− tp)
2

2T 2
− Ω(z) [t− tp(z)] + ϕ (z) , (A.3)

we can write the first term in Lagrangian density (2.25) as

i

2

[
V

∂V ∗

∂z
− V ∗∂V

∂z

]
=

i

2

[
νeiΦ (νz − iνΦz) e−iΦ − νe−iΦ (νz + iνΦz) eiΦ

]
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= − i

2

[
ννz + iν2Φz − ννz + iν2Φz

]
= ν2Φz (A.4)

Using Eq. (A.4), this first term can be integrated as

∞∫
−∞

i

2

[
V

∂V ∗

∂z
− V ∗∂V

∂z

]
dt =

∞∫
−∞

p2e−
(t−tp)2

T2

[
ϕz − (t− tp)

2
(

C

2T 2

)
z
+

C

T 2

dtp
dz

(t− tp)− (t− tp) Ωz + Ω
dtp
dz

]
dt

= p2

[
ϕz + Ω

dtp
dz

]
T

∞∫
−∞

e−x2

dx

+p2

[
C

T 2

dtp
dz

− Ωz

]
T 2

∞∫
−∞

xe−x2

dx

−p2
(

C

2T 2

)
z
T 3

∞∫
−∞

x2e−x2

dx

=
√

πp2T

[
ϕz + Ω

dtp
dz

− T 2

2

(
C

2T 2

)
z

]
. (A.5)

We follow the same procedure for integrating the rest of the terms in Eq. (2.25).

For example,

−β2

2

∣∣∣∣∣∂V

∂t

∣∣∣∣∣
2

=

−β2

2

∣∣∣∣∣pe−iϕ−iΩ(t−tp)

(
−(1 + iC) (t− tp)

T 2
− iΩ

)
exp

[
−(1 + iC) (t− tp)

2

2T 2

]∣∣∣∣∣
2

= −β2

2
p2

[
(1 + C2) (t− tp)

2

T 4
+

2ΩC (t− tp)

T 2
+ Ω2

]
exp

[
−(t− tp)

2

T 2

]
. (A.6)

We can now perform integration to obtain

∞∫
−∞

−β2

2

∣∣∣∣∣∂V

∂t

∣∣∣∣∣
2

dt =
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−β2

2
p2

(1 + C2
) ∞∫
−∞

e−
(t−tp)2

T2
(t− tp)

2

T 4
dt

+2ΩC

∞∫
−∞

(t− tp)

T 2
e−

(t−tp)2

T2 dt + Ω2

∞∫
−∞

e−
(t−tp)2

T2 dt


= −β2

2
p2

(1 + C2)

T

∞∫
−∞

x2e−x2

dx + 2ΩC

∞∫
−∞

xe−x2

dx + Ω2

∞∫
−∞

e−x2

dx



= −
√

π

2

β2

2
p2

[
(1 + C2)

T
+ 2Ω2T

]
, (A.7)

Similarly, using

−γ (z)

2
|V |4 = −1

2
γp4e−2

(t−tp)2

T2 , (A.8)

∞∫
−∞

−γ (z)

2
|V |4 dt ≡ −1

2
γp4 T√

2

∞∫
−∞

e−x2

dx

= −
√

π

2

1

2
γp4T. (A.9)

Using the Eqs. (A.5), (A.7), and (A.9) in Eq. (2.29), we arrive at the following

expression for the reduced Lagrangian R:

R =

√
π

2
p2

{
2Ω

dtp
dz

+ 2Tϕz −
CzT

2
+ CTz −

γ√
2
p2T − β2

2

1 + C2

T
− β2Ω

2T

}
.

(A.10)
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Appendix B

Variational equations

We present here in detail the derivation of variational equations (2.33)-(2.36).

Let η = ϕ in Eq. (2.32). Using Eq. (2.29) in Eq. (2.32) for R , we receive in this

case

0 = Rϕ −
d

dz
Rϕz =

d

dz

(
Tp2

)
, (B.1)

which leads to the energy conservation law

E0 ≡
√

πTp2 = const. (B.2)

Similarly, for η = p in Eq. (2.32), noticing that 2p 6= 0, and T 6= 0, we obtain:

0 = CTz −
CzT

2
+ 2Tϕz −

√
2γTp2 − β2

1 + C2

2T
− β2Ω

2T + 2ΩT
dtp
dz

, (B.3)

or

2ϕz =
Cz

2
− CTz

T
+
√

2γp2 + β2
1 + C2

2T 2
+ β2Ω

2 − 2Ω
dtp
dz

. (B.4)
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Let now η = T in Eq. (2.32). We have

0 = 2Ωp2dtp
dz

+ 2p2ϕz −
p2Cz

2
− γp4

√
2

+ β2
1 + C2

2T 2
p2 − β2Ω

2p2 − d

dz

(
p2C

)
. (B.5)

Using Eq. (B.2), we can write

d

dz

(
p2C

)
=

d

dz

(
p2T

C

T

)
= p2Cz −

Cp2Tz

T
. (B.6)

Using Eq. (B.6) in Eq. (B.5) and noticing that p2 6= 0, we receive

2ϕz =
Cz

2
− CTz

T
+

1√
2
γp2 − β2

(1 + C2)

2T 2
+ β2Ω

2 − 2Ω
dtp
dz

+ Cz. (B.7)

Comparing (B.4) and (B.7), we find

dC

dz
=

γp2

√
2

+ β2
1 + C2

T 2
, (B.8)

and, noticing that p2 = E0/
√

πT and γ ≡ γ0G, we arrive at the following expres-

sion describing evolution of the pulse chirp C(z) in each fiber section of a DM

system:

dC

dz
=

γ0E0G√
2πT

+
β2 (1 + C2)

T 2
. (B.9)

Using now η = C in Eq. (2.32), we have

0 = Tzp
2 − β2p

2

T
C − 1

2

d

dz

(
p2T

)
. (B.10)

Using Eq. (B.2) in (B.10) and noticing that p2 6= 0, we obtain the following

equation for pulse width evolution in each fiber section

dT

dz
=

β2C

T
. (B.11)
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Similarly, considering η = Ω and η = tp, we receive:

0 =

√
π

2
p2T

[
2
dtp
dz

− 2β2Ω

]
, (B.12)

and

0 =

√
π

2
p2T

[
−2dΩ

dz

]
. (B.13)

Noticing that
√

π
2

p2T 6= 0, we obtain the following equations for the pulse position

tp and for the central frequency shift Ω:

dtp
dz

= β2Ω, (B.14)

dΩ

dz
= 0. (B.15)

Finally, using Eqs. (B.11) and (B.9) in Eq. (B.4), we have

2ϕz =
γp2

2
√

2
+β2

(1 + C2)

2T 2
−C

T

(
β2C

T

)
+

2γp2

√
2

+β2
(1 + C2)

2T 2
+β2Ω

2−2β2Ω
2, (B.16)

and we obtain the following expression for pulse phase evolution in each fiber

section

dϕ

dz
=

5γp2

4
√

2
+

β2

2T 2
− 1

2
β2Ω

2, (B.17)

which can be rewritten in terms of the input energy E0 ≡
√

πp2T and of the

nonlinear parameter γ0 ≡ γ/G as

dϕ

dz
=

5γ0E0G

4
√

2πT
+

β2

2T 2
− β2

2
Ω2. (B.18)

Eqs. (B.2), (B.9), (B.11), (B.14), (B.15), and (B.18) are the final variational

equation describing the evolution of pulse parameters within each fiber section.
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Appendix C

Details of timing jitter calculation

We derive here the correlation terms 〈F 2〉, 〈FS〉, and 〈S2〉 used in Eq. (4.15)

for timing jitter. According to Eq. (4.12), since we assume here the dispersion β2

to have a deterministic value, correlation 〈F 2〉 can be expressed as

〈
F 2
〉

=

z∫
0

z∫
0

β2 (z1)β2 (z2) 〈δΩ (z1) δΩ∗ (z2)〉 dz1dz2. (C.1)

We first find the correlation 〈δΩ(z1)δΩ
∗(z2)〉. Noticing that all the quantities in

Eq.(4.14) are deterministic except for fn, we can represent this correlation as

〈δΩ (z1) δΩ∗ (z2)〉 =
1

E2
0

(a + a∗), (C.2)

where

a ≡
z1∫
0

z2∫
0

dz′1dz′2√
G (z′1) G (z′2)

∞∫
−∞

∞∫
−∞

q∗t (z′1, t
′) qt (z′2, t

′′) 〈fn (z′1, t
′) f ∗n (z′2, t

′′)〉 e−iΩ(t′′−t′)dt′dt′′
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(C.3)

Using Eq. (4.2) and noticing that integration limits over time are infinite for both

t′ and t
′′

in Eq. (C.3), we have for the a term:

a ≡
z1∫
0

z2∫
0

dz′1dz′2
G (z′1) G (z′2)

∞∫
−∞

∞∫
−∞

{q∗t (z′1, t
′) qt (z′2, t

′′) g (z′1) nsp (z′1) hυ0

×δ (z′1 − z′2) δ (t′ − t′′) e−iΩ(t′′−t′)
}

dt′dt′′

=

z1∫
0

z2∫
0

dz′1dz′2
G (z′1) G (z′2)

∞∫
−∞

q∗t (z′1, t) qt (z′2, t) g (z′1) nsp (z′1) hν0δ (z′1 − z′2) dt.

(C.4)

Care should be taken in integrating over the δ-function δ(z′1− z′2) since the result

depends on the relative values of z1 and z2, both of which vary between 0 and z.

Let us define

θ (z′1, z
′
2, t) ≡

q∗t (z′1, t) qt (z′2, t) g (z′1) nsp (z′1) hν0

G (z′1) G (z′2)
, (C.5)

so that Eq. (C.4) can be written as

a =

∞∫
−∞


z1∫
0

z2∫
0

θ (z′1, z
′
2, t) δ(z′1 − z′2)dz′1dz′2

 dt. (C.6)

One can show that

z1∫
0

z2∫
0

θ (z′1, z
′
2, t) δ(z′1 − z′2)dz′1dz′2 =

min(z1,z2)∫
0

θ (z′′, t)dz′′, (C.7)

where min(x, y) denotes the minimal of the values x and y. The proof of Eq. (C.7)

is straightforward. We can represent the integral in Eq. (C.7) as

z1∫
0

z2∫
0

θ (z′1, z
′
2, t) δ(z′1 − z′2)dz′1dz′2 =

z2∫
0

θ̄ (z′2, z1, t) dz′2, (C.8)
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where

θ̄ (z′2, z1, t) ≡
z1∫
0

θ (z′1, z
′
2, t) δ (z′1 − z′2) dz′1. (C.9)

The integral in Eq. (C.9) can be easily shown to be

θ̄ (z′2, z1, t) =


θ (z′2, t) , if z′2 ∈ [0, z1]

0, if z′2 /∈ [0, z1] .

(C.10)

For simplicity of discussion, we do not consider the boundary point z1 = z′2; taking

it into account does not change the final result. Using the result of Eq. (C.10)

and noticing that z′2 always varies from 0 to z2, the integral in Eq. (C.8) is found

to be

z2∫
0

θ̄ (z′2, z1, t) dz′2 =


z1∫
0

θ (z′2, t) dz′2, if z2 > z1

z2∫
0

θ (z′2, t) dz′2, if z2 < z1

=
min(z1,z2)∫

0
θ (z′2, t) dz′2,

(C.11)

which proves Eq. (C.7). Using Eqs. (C.6), (C.7), and (C.5), the a term is found

to be

a = hν0

min(z1,z2)∫
0

∞∫
∞

|qt (z′′, t)|2 g (z′′) nsp (z′′) G−1 (z′′) dtdz′′. (C.12)

Using the result (C.12) in Eq. (C.2), the whole correlation in Eq. (C.2) is then

equal to

〈δΩ (z1) δΩ∗ (z1)〉 =
2hν0

E2
0

min(z1,z2)∫
0

∞∫
∞

|qt (z′′, t)|2 g (z′′) nsp (z′′) G−1 (z′′) dtdz′′

≡ f (z1, z2) . (C.13)
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Using this result in Eq. (C.1), we have

〈
F 2
〉

=

z∫
0

z∫
0

β2 (z1)β2 (z2) f (z1, z2) dz1dz2, (C.14)

where f(z1, z2) is defined in Eq. (C.13). Since both z1 and z2 take arbitrary

(positive) values on the plane (z1, z2), while f(z1, z2) depends on the relative values

of z1 and z2, we need to consider separately the regions z1 < z2 and z1 > z2. We

can represent the 〈F 2〉 term as a sum of two integrals, 〈F 2〉 = I1 + I2, where

the integration in I1 and I2 is considered on the half-planes z1 < z2 and z1 > z2,

respectively. Consider the half-plane z1 < z2. In this region, z2 varies from 0 to z,

while z1 changes from 0 to z2, and min(z1, z2) = z1, so that f (z1, z2), according

to the definition (C.13), is equal to

f (z1, z2) =
2hν0

E2
0

z1∫
0

∞∫
∞

|qt (z′′, t)|2 g (z′′) nsp (z′′) G−1 (z′′) dtdz′′. (C.15)

The integral I1 is then found to be

I1 =
2hν0

E2
0

z∫
0

β2 (z2) dz2

z2∫
0

β2 (z1) dz1

z1∫
0

∞∫
∞

|qt (z′, t)|2 g (z′) nsp (z′) G−1 (z′) dtdz′.

(C.16)

Similarly, for I2 we have

I2 =
2hν0

E2
0

z∫
0

β2 (z1) dz1

z1∫
0

β2 (z2) dz2

z2∫
0

∞∫
∞

|qt (z′, t)|2 g (z′) nsp (z′) G−1 (z′) dtdz′.

(C.17)

We see that integration in the regions z1 < z2 and z1 > z2 produces the same

result, i.e. I1 = I2, and we have the following final expression for 〈F 2〉:

〈
F 2
〉

= I1 + I2
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=
4hν0

E2
0

z∫
0

β2 (z1) dz1

z1∫
0

β2 (z2) dz2

z2∫
0

g (z′) nsp (z′)

G (z′)

∞∫
∞

|qt (z′, t)|2 dtdz′.

(C.18)

Consider now the cross-correlation term 〈FS〉. Using Eqs. (4.12, (4.13), and

(4.14), and using again the fact that all the quantities are deterministic in those

equations except for fn, we can write:

〈FS〉 =

i

E2
0

〈 z∫
0

β2 (z1)dz1

z1∫
0

dz′

G (z′)

∞∫
−∞

(
q∗t (z′, t′) fn (z′, t′) eiΩ(t′−tp)

+qt (z′, t′) f ∗n (z′, t′) e−iΩ(t′−tp)
)
dt′

×
z∫

0

dz2

G (z′′)

∞∫
−∞

(t′′ − tp)
(
q (z2, t

′′) f ∗n (z2, t
′′) e−iΩ(t′′−tp)

−q∗ (z2, t
′′) fn (z2, t

′′) eiΩ(t′′−tp)
)
dt′′
〉

=
i

E2
0

z∫
0

β2 (z1)dz1

z∫
0

 dz2

G (z2)

z1∫
0

dz′

G (z′)

∞∫
−∞

∞∫
−∞

(t′′ − tp)
[
q∗t (z′, t′) q (z2, t

′′) e−iΩ(t′′−t′)

−qt (z′, t′) q∗ (z2, t
′′) eiΩ(t′′−t′)

]
〈fn (z′, t′) f ∗n (z2, t

′′)〉 dt′dt′′
}

=
ihν0

E2
0

z∫
0

β2 (z1)dz1

z∫
0

dz2

G (z2)

z1∫
0

dz′

G (z′)

∞∫
−∞

∞∫
−∞

{
(t′′ − tp)

[
q∗t (z′, t′) q (z2, t

′′) e−iΩ(t′′−t′)

−qt (z′, t′) q∗ (z2, t
′′) eiΩ(t′′−t′)

]
g (z′) nsp (z′) δ (z′ − z2) δ (t′ − t′′)

}
dt′dt′′ (C.19)

where we used the fact that 〈fn (z′, t′) f ∗n (z2, t
′′)〉 = 〈f ∗n (z′, t′) fn (z2, t

′′)〉. Noticing

that the integration over both t′ and t′′ is in the same infinite limits, we can

accomplish the integration over time to obtain:

〈FS〉 =
i

E2
0

z∫
0

β2 (z1)dz1

z∫
0

dz2

G (z2)

z1∫
0

dz′

G (z′)

∞∫
−∞

{(t− tp)

× (q∗t (z′, t) q (z2, t)− qt (z′, t) q∗ (z2, t)) δ (z′ − z2)} dt. (C.20)
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We proceed further by considering, first, the integration over z′. Let us define

f (z′, z2) ≡
1

G (z′)

∞∫
−∞

(t− tp) (q∗t (z′, t) q (z2, t)− qt (z′, t) q∗ (z2, t)) dt, (C.21)

and

f̄ (z2, z1) ≡
z1∫
0

dz′f (z′, z2)δ (z′ − z2) . (C.22)

Integrating Eq. (C.22) over z′, we obtain

f̄ (z2, z1) =


f (z2) , if z2 ∈ [0, z1]

0, if z2 /∈ [0, z1]

(C.23)

Since we always have z1 ≤ z, we can represent the integral over z2 in Eq. (C.20)

as a sum of two integrals: from 0 to z1 and from z1 to z. Using the result of

Eq. (C.23), we have

z∫
0

dz2f̄ (z2, z1) =

z1∫
0

f̄ (z2, z1) dz2 +

z∫
z1

f̄ (z2, z1) dz2 =

z1∫
0

f (z2) dz2. (C.24)

Note that the same result one could obtain considering, first, integration over z2.

With the result of Eq. (C.24), the final expression for the cross-correlation 〈FS〉

is found to be

〈FS〉 =
ihν0

E2
0

z∫
0

β2(z1)dz1

z1∫
0

g(z′)nsp(z
′)G−1 (z′)

∞∫
−∞

(t− tp) [qtq
∗ − q∗t q] dtdz′.

(C.25)

Similarly, we calculate the expression for the 〈S2〉 term:

〈
S2
〉

=
1

E2
0

z∫
0

z∫
0

dz1dz2√
G (z1)G (z2)

∞∫
−∞

∞∫
−∞

{
(t1 − tp) (t2 − tp)

[
q (z1, t1) q∗ (z2, t2) e−iΩ(t1−t2)

+q∗ (z1, t1) q (z2, t2) eiΩ(t1−t2)
]
〈fn (z1, t1) f ∗n (z2, t2)〉

}
dt1dt2

=
2hν0

E2
0

z∫
0

g (z′) nsp (z′) G−1 (z′)

∞∫
−∞

(t− tp)
2 |q (z′, t)|2 dtdz′. (C.26)



135

Equations (C.18), (C.25), and (C.26) provide the final expressions for the three

terms composing the timing jitter in Eq. (4.15).
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Appendix D

List of abbreviations

ASE Amplified spontaneous emission

BER Bit error rate

CRZ Chirped return to zero

DCF Dispersion compensating fiber

DM Dispersion managed

DPSK Differential phase shift keying

DRA Distributed Raman amplification

EDFAs Erbium-doped fiber amplifiers

FBGs Fiber Bragg gratings

FWHM Full width at half maximum

FWM Four wave mixing

GVD Group velocity dispersion
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NLS Nonlinear Schrödinger equation

NRZ Non-return to zero

RZ Return-to zero

SMF Single mode fiber

SNR Signal-to-noise ratio

SPM Self-phase modulation

WDM Wavelength division multiplexing

XPM Cross-phase modulation


