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Abstract

We study the nonlinear response and signal-processing capabilities of distributed

feedback semiconductor optical amplifiers, and seek to advance their application to

optical communication networks.

Bistability occurring for optical signals tuned near a Bragg resonance is useful for

switching and memory applications, but traditionally exhibits a limited wavelength

range. We relax this constraint by varying the grating pitch along the length of the

distributed feedback amplifier. A transfer-matrix method is developed for simulat-

ing this improvement, and for studying changes in the shape of the hysteresis curve

throughout this wavelength range. We predict a new hysteresis-curve shape on reflec-

tion, and show how the grating-pitch variation can suppress or enhance this shape.

Optical memory based on bistability is useful for sequential signal-processing

applications, but previous control techniques operate with wavelengths only in the

vicinity of the bistable-signal wavelength. We propose, model, and demonstrate con-

trol techniques via auxiliary optical signals that exhibit a very wide wavelength range.

Set and reset signals vary the refractive index in opposite ways and shift the upward-

and downward-switching thresholds, respectively, of the hysteresis curve through the
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holding-beam input power, which is kept constant. We develop a numerical model

and an experimental system to investigate the performance of the all-optical flip–flop

pertaining to speed, power, polarization, and response to back-to-back ‘set’ pulses.

We propose and numerically simulate a sequential processing application to fiber-

optic networks — data format conversion from high-speed, return-to-zero signals to

low-speed, non-return-to-zero signals.

We demonstrate data-wavelength conversion to a signal wavelength of 1547 nm

(in the vicinity of the Bragg wavelength) from initial data signals at 1306 nm, 1466

nm, and 1560 nm. This research demonstrates that cross-phase-modulation-based

conversion using signals that generate charge carriers (e.g., those at 1306 and 1466

nm) can be implemented in gain-biased amplifiers, a principle that is applicable to

other semiconductor-optical-amplifier-based data-wavelength converters. We also

demonstrate how to select the converted-data polarity and to achieve a digital-like

transfer function.
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Chapter 1

Introduction

1.1 Motivation: All-Optical Processing

in Optical Communication Networks

Optical communication systems have ushered in an information age of unparalleled

capacity and growth. In such systems, data is represented by optical pulses and is sent

along low-loss silica fiber. Optical signals currently carry about 6.5 petabits (1015

bits) per day over global public networks [1]; the majority of this data is for internet

services such as graphics, video, music, and text, whereas the more traditional voice

data is already a minority [2]. Demand for internet services will continue to fuel

the growth in the capacity of fiber-optic communication systems. The capacity over

public networks is expected to grow to between 64 and 160 petabits per day within

the next two years (2001–2002) [1].

The successful delivery of information through such networks requires the optical

signals to be manipulated orprocessedis some way; processing applications include

amplification, regeneration, retiming, multiplexing and demultiplexing, reshaping,

and routing. Commonly, data is processed by being converted from optical to elec-
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trical signals, electronically processed, and then converted back to optical signals for

transmission [2] (i.e., data is converted from the optical layer to the electrical layer

and then back to the optical layer).

Electronic processing techniques, however, may not continue to be cost effective

when they are scaled up to accommodate the growth in network capacity. In the

mid-1990s, the technique of wavelength-division multiplexing (WDM), in which the

capacity of a single fiber is increasedN times by simultaneously usingN differ-

ent signal wavelengths [3], began to be implemented in fiber-optic communications

systems. Using electronic regeneration for signals within WDM systems, however,

would require demultiplexing the wavelength channels, detecting and electronically

regenerating each individual channel, and then multiplexing all wavelength channels

back together again; electronic processing would therefore be costly in high-capacity

systems with large channel countN [4]. WDM systems became affordable, in part,

by the use of erbium-doped fiber amplifiers (EDFAs) to amplify data signalsat the

optical layer[5], without electronic conversion.

Optical-processing techniques will continue to be implemented in optical net-

works as long as they meet a capacity demand at a lower cost than electronic means

[2]. An example of a promising application for optical processing is data-wavelength

conversion, where data is transferred from one signal wavelength to another (see

Chapter 7 for a discussion on the utility of data-wavelength conversion in WDM sys-

tems). Although data-wavelength conversion in the electrical domain is economical

at present-day data rates of 10 gigabits/second (Gb/s) and slower, it is expected to be

prohibitively more expensive at faster data rates [4]. All-optical techniques (in which

only optical signals are used) have been used to demonstrate data-wavelength con-
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version at speeds as fast as 100 Gb/s while using relatively inexpensive components

[6].

This thesis explores the nonlinear response and all-optical signal-processing ca-

pabilities of distributed feedback (DFB) semiconductor optical amplifiers (SOAs),

and seeks to advance their application to optical communication networks. A history

of research on DFB SOAs is presented in the following section.

1.2 Historical Review of Research in

Resonant-Type Semiconductor Optical Amplifiers

Semiconductor optical amplifiers (SOAs) possess many characteristics that make

them well suited for all-optical signal-processing applications. Gain saturation is

accompanied by a significant change in the refractive index; this carrier-induced

nonlinear refractive index has been estimated to have an effective Kerr nonlinear-

ity n2 � 10�9 cm2/W [7], seven orders of magnitude greater than the value ofn2

in silica fiber. SOAs also have the advantages of being compact (< 500 �m3 active

volume), integrateable with other devices, and operable at any wavelength used in

fiber-optic communication systems [8]. Furthermore, since SOAs provide amplifi-

cation (with modal gain� 300 cm�1, four orders of magnitude larger than that of

erbium-doped silica), they allow high fan–out and high cascadability, which are gen-

eral requirements for large photonic circuits and multi-component lightwave systems

[9].
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1.2.1 Fabry–Perot Amplifiers

In the 1980s, researchers began exploring the nonlinear response of SOAs within

Fabry–Perot cavities. Such devices were readily available — they are just Fabry–

Perot diode lasers driven below lasing threshold. In 1982, Otsuka and Iwamura of

NTT presented a theoretical analysis of optical bistability in Fabry–Perot SOAs [10],

and showed that the bistable-switching thresholds decrease as the strength of the

nonlinearity increases, and as the detuning of the probe signal from the resonance

decreases. Within a year, optical bistability was experimentally demonstrated in a

GaAs semiconductor operating at 0.8�m by groups at the University of Tokyo [11]

and NTT [12].

In 1985, research groups from British Telecom Research Laboratories (Adams,

Collins, Henning, O’Mahony, Westlake, and Wyatt) and GTE Laboratories (Sharfin

and Dagenais) reported new theoretical and experimental findings, and contributed

over 15 journal papers on bistable Fabry–Perot SOAs by the end of 1987. Researchers

have investigated basic bistable behavior (e.g., switching and hysteresis) [11], [13]–

[21], multistability [22], and differential gain [11], [23], as well as applications for

optical communications and computing, such as data-wavelength conversion [24]–

[26], wavelength-division demultiplexing [27], [28], optical limiting [17], [23], signal

regeneration [26], logic gates [9], [17], neural-network processing [29], and memory

[23], [30]. Bistability was demonstrated in InGaAsP/InP amplifiers at 1310 nm [31],

and at 1550 nm [14], as well as in bulk [11], strained quantum well [32], and multi-

quantum well [33] active regions.

Bistable switching was found to occur at optical powers three orders of magnitude
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smaller than those of bistable passive semiconductors (which operate via the Kerr

nonlinearity) [34], at switching powers� 1�W [14], [31]. Thus, these devices easily

operate at power levels available in fiber-optic communication systems. The largest

reported on–off ratio for the switched signal has been 5:1 [35], and the largest optical

gain through the Fabry-Perot SOAs has been 20 dB [23].

Rise and fall times of the switched output power have been measured to be as

small as 0.5 ns [35], which are on the order of the carrier lifetime� � 1 ns. Rise

and fall times were predicted to occurfasterthan the carrier lifetime for high-finesse

cavities driven near 98% of lasing threshold [36]. Nonetheless, the repeatability of

the bistable system is ultimately limited by the carrier lifetime� ; for example, slow

repeatability manifested as a substantial closing down of the bistable hysteresis curve

even for an input signal having a 4-ns sinusoidal modulation period [37]. Repeata-

bility is limited because, for example, although the initial fall time may a fraction

of the carrier lifetime, switch–off is is followed by a relatively slow recovery to the

initial carrier density [35]. Moreover, the repeatability of the bistable system can also

be limited by a switch–on delay (from the moment of pulse impact) [38]; attributed

as “critical slowing down,” this delay is on the order of the carrier lifetime, but can

be decreased below� by choosing a high input optical power, or a small spectral

detuning between the optical signal and the Fabry–Perot resonance [23].

Since typical switching times and powers are� 1 ns and� 1 �W, respectively,

femtojoule switching energies are expected. The lowest energy reported thus far has

been 500 attojoules (0.5 ns� 1 �W) [35], which corresponds to about 3000 photons

for a signal wavelength of 1310 nm [27]. Fabry–Perot SOAs also exhibit a high
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optical switching energy per gain (� 100 fJ), and a large switching energy per unit

surface area (� 1 fJ /�m2 [27]).

Although the optical energy for switching is low, a substantial amount of energy is

still needed to operate the SOA. Namely, an electrical bias is required to maintain the

device near lasing threshold [39]. For an injection current of 10 mA, a semiconductor

bandgap energy of 1 eV, and a carrier lifetime of 1 ns, the required electrical energy is

10 pJ. This energy must be dissipated as heat, and this dissipation limits the number

density of devices that can be placed within a given area of a single substrate. For

a power consumption of 10 mW per SOA, and assuming a practical heat-sink power

density of 1 W / cm2 [39], each SOA requires a minimum area of 0.01 cm2. This

results in a maximum number density of 100 / cm2. Thus, Fabry–Perot SOAs are

limited to signal-processing applications requiring a small number of devices, and

hence to low functionality [40].

Bistable switching in Fabry–Perot SOAs also exhibits a limited spectral range

[39], [40]. This limited wavelength range has been quantified for devices biased

near 98% of lasing threshold; upward switching below 0.1 mW was found to span

a spectral range of less than 0.02 nm [20]. While some applications can make use

of the narrow spectral response (e.g., wavelength-division demultiplexing [28]), this

sensitivity to operating wavelength generally limits the application of such devices

[17], [40].

1.2.2 Distributed Feedback Amplifiers

The all-optical signal-processing applications discussed in the previous section on

Fabry–Perot amplifiers can also be achieved using other kinds of “resonant-type”
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SOAs. In contrast to the “lumped” feedback occurring at each end of a Fabry–Perot

cavity, feedback can be “distributed” along the SOA by using a built-in diffraction

grating, as shown in Fig. 1.1. The resultingdistributed feedbackSOA exhibits Bragg

resonances, as opposed to Fabry–Perot resonances. Dispersive optical bistability

in nonlinear distributed feedback structures was first predicted in 1979 by Winful,

Marburger, and Garmire for a device utilizing the Kerr nonlinearity [41]. In 1985,

bistability was demonstrated using a DFB SOA, utilizing the strong carrier-induced

nonlinearity of active semiconductors [42].

Figure 1.1: Schematic of a distributed feedback semiconductor optical amplifier. The grating is typi-
cally fabricated outside of the gain region (shaded grey).

From 1986–1987, researchers presented a time-dependent model for bistability

in DFB SOAs, simulated bistable switching (including the switch-on delay), discov-

ered a difference in the shape of the hysteresis curve for bistability at either side of

the photonic bandgap [43], predicted a variety of shapes of the hysteresis curve on re-

flection [17], experimentally demonstrated an upward-switching power of 1�W [43],

and showed a relatively large on–off contrast ratio of 10:1 [44]. Further investigations

demonstrated how a spike during upward switching dominates the output-pulse shape

as the signal wavelength is detuned away from the Bragg resonance [45], and showed

how a non-zero reflectivity at the SOA facets enhances bistable switching at one edge
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of the photonic bandgap [46]. Optical bistability was also observed in studies of res-

onant amplification using uniform [47] and�=4–shifted [48] gratings. In addition,

although largely unexplored, the same issues discussed above for Fabry–Perot de-

vices also apply to DFB SOAs, and the same conclusions can be drawn regarding the

switching speed and repeatability, switching energy, number density, and wavelength

range of operation.

The relatively low number of investigations into the nonlinear response of DFB

SOAs compared with Fabry–Perot SOAs is perhaps because of the availability of

the latter during the mid-1980s. Fabry–Perot devices are easy to fabricate; cavities

are formed simply by cleaving the semiconductor, and the semiconductor material

is grown without stopping to create the feedback structure (i.e., facets). DFB SOAs

require a more complicated fabrication procedure; Bragg gratings are created using

techniques such as interferometric exposure or electron-beam lithography [49], and

the growth of the semiconductor material is typically arrested during grating forma-

tion.

Despite these difficulties in fabrication, DFB SOAs have distinct advantages.

Bragg gratings can be incorporated directly into a larger waveguide structure, al-

lowing integration onto a single substrate with other photonic gates [43]. In addition,

gratings also have more features that can be re-designed in pursuit of improved per-

formance; such features include the grating’s shape (e.g., period and depth [50]) and

composition (e.g., modulation of the refractive index, gain, loss, or any combina-

tion thereof [51]). These changes would come, however, at the probable expense of

increasing the difficulty of fabrication.

These two kinds of resonant-type SOAs also differ in the number of strong res-
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onances occurring within the SOA gain curve; Bragg gratings provide only a few

strong modes, whereas Fabry-Perot cavities generally supports many. (The relatively

small number of modes was the main reason for the development of DFB SOAs, more

commonly used above threshold as DFB lasers.) This inherent spectral filtering prop-

erty of DFB SOAs reduces the background noise, which appears as a DC offset and

lowers the on–off switching ratio [9]. Also, since Fabry–Perot cavities have many

modes, the strongest modes are determined by the gain curve and lie at the gain peak.

The wavelengths of the dominant resonances of DFB SOAs, however, can be fabri-

cated to occur anywhere in the SOA gain spectrum. This is advantageous since the

strength of the carrier-induced nonlinearity varies along the gain curve; DFB SOAs

thus allow a tunable strength of the nonlinearity.

In summary, nonlinear optical processing in resonant-type SOAs has the follow-

ing advantages:

� low optical power and energy

� amplification

� availability

� wavelength compatibility with fiber-optic communications

� integrateability (for DFB SOAs)

While these advantages motivate us to use DFB SOAs for all-optical processing, the

following limitations must be considered:

� wavelength range of operation
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� speed

� number density

Advancing the application of DFB SOAs to fiber-optic communication systems by

addressing these limitations is a major undercurrent of this thesis.

1.3 Overview of Thesis

1.3.1 Principle of All-Optical Processing

The two key ingredients used for nonlinear optical processing in DFB SOAs are

symbolized by the right-hand side of the equation for the Bragg wavelength [52]

�B = 2�n: (1.1)

Here, the Bragg wavelength�B of a first-order grating is proportional to the grating

period� and the refractive indexn. The grating period� symbolizes the existence

of Bragg resonances, a key ingredient that provides resonant optical amplification, as

shown in Fig. 1.2. The refractive indexn is nonlinear, and symbolizesthe potential

for optical signals to shift the spectral location of the Bragg resonances. Both of

these key ingredients are coupled to the SOA gain; changes in gain will change the

strength of a Bragg resonanceandshift its spectral location. Thinking in terms of the

Bragg resonance and its signal-induced spectral shift is insightful, and we will use

these concepts throughout the thesis.

This thesis explores the nonlinear response exhibited by DFB SOAs, and seeks to
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advance their application to optical communication systems and networks. Much of

our work focuses on overcoming the limited wavelength range of operation of such

devices; we attack this issue by investigating new aspects of each key ingredient.

Namely, we vary the Bragg period� along the length of the DFB SOA to increase

the spectral range of the bistable signal. And, we demonstrate how to increaseor

decrease the refractive indexn via auxiliary optical signals; this allows the bistable

state of optical memory to be controlled over a very wide wavelength range.

1.3.2 Outline

Chapter 2 builds the foundation of our theoretical analyses. We derive coupled-mode

equations for the optical signal that interacts with the Bragg grating, and derive a rate

equation for the SOA gain. A small-signal, steady-state solution is also presented; al-

though the optical processing of interest is nonlinear and time-dependent, this simple

solution provides physical insight into nonlinear behavior, and is used later in com-

puting nonlinear solutions. After formulating the small-signal solution as a transfer
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Figure 1.2: Bragg resonance structure of a DFB SOA, centered about the Bragg wavelength (for a
uniform grating without facet reflections).
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matrix, we show how the strength and spectral location of the Bragg resonances de-

pend on gain.

Chapter 3 begins our investigation of optical bistability, a phenomenon in which

an optical signal processes itself. We discuss the physical mechanism of bistability,

and develop a transfer-matrix method to calculate the steady-state bistable behav-

ior. With this model, we account for the intensity distribution along the DFB SOA,

and study the spectral range, spectral uniformity, and shape of the hysteresis curve

on transmission and reflection. The steady-state solutions help to introduce physi-

cal concepts used throughout the thesis, and to quantify the spectral limitations of

bistability.

Chapter 4 explores the effects of nonuniform gratings on optical bistability in

DFB SOAs, with an emphasis on increasing the spectral range of the bistable signal.

We begin by discussing generalizations to the transfer-matrix method that incorpo-

rate grating nonuniformities. We then study how varying the grating pitch� along the

device (i.e., spatial chirp) increases the spectral range of bistability, while simultane-

ously altering the switching powers, spectral uniformity, and shape of the hysteresis

curve.

Chapter 5 begins our time-dependent analysis of optical bistability. We develop

a simple model for the bistable system based on the governing equations presented

in Chapter 2. Predictions from the time-dependent model are compared to those

from the steady-state model of Chapter 3, and the time-dependent hysteresis curve

is shown to warp as the modulation frequency of the input signal is increased. The

model developed here serves as the basis for simulating all-optical processing in the

following chapter.
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Chapter 6 presents an experimental and numerical study of all-optical flip–flop

operation, a processing technique based upon optical bistability. In the first section,

we discuss novel control techniques that use auxiliary optical signals to set and reset

the bistable output state, and we extend the model presented in Chapter 5 to simulate

flip–flop operation. The new control techniques use cross-phase modulation (XPM)

to shift the spectral location of the Bragg resonance relative to the bistable signal,

thereby shifting the hysteresis curve relative to the bistable signal’s input power. In

the second section, we present our experimental system, discuss its operation and

limitations, and demonstrate basic flip–flop operation using the new control tech-

niques. In the third section, we investigate the flip–flop’s performance, addressing is-

sues such as speed, power, polarization, and response to back-to-back set pulses. We

end this chapter with an application of the flip–flop to high-speed optical communi-

cation systems — conversion of high-speed return-to-zero (RZ) signals to low-speed

non-return-to-zero (NRZ) signals. This application overcomes the three limitations

summarized at the end of Section 1.2.2.

Chapter 7 investigates data-wavelength conversion, where an input data-signal

shifts a Bragg resonance onto or off of another signal via XPM. This process may be

assisted by bistable switching, although memory does not occur. We focus our study

on 1310-to-1550 nm conversion, discussing the principle of operation, performance,

and features such as selecting the converted-data polarity and achieving a digital-

like transfer function. Then, we demonstrate wavelength conversion between signals

within the 1550-nm spectral window, and compare our research with other all-optical

techniques.
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Chapter 8 summarizes the main findings and conclusions of the thesis, and dis-

cusses possible avenues for future research.
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Chapter 2

Theoretical Foundation

2.1 Introduction

In this thesis, we study the nonlinear behavior of an optical signal interacting with a

Bragg grating and the carrier density of a DFB SOA. In this chapter, we present equa-

tions that govern this interaction: namely, a rate equation incorporating the effect of

the signal on the carrier density, and coupled-mode equations describing the effect of

the grating on the signal. The latter are derived from first principles from Maxwell’s

equations. We present a simple solution to this set of equations, and use it formulate

a transfer matrix. The transfer matrix is then used to show how the Bragg resonances

depend on the small-signal gain.
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2.2 Coupled-Mode Equations

We begin our analysis of the propagation of an optical signal through a DFB SOA

with Maxwell’s equations. In the MKS system of units, these are [53]

~r� ~E = �@
~B
@t
; (2.1)

~r� ~H = ~J +
@ ~D
@t
; (2.2)

~r � ~D = �; (2.3)

~r � ~B = 0; (2.4)

where ~J is the current density,� is the charge density,~E is the electric field,~H is

the magnetic field,~D is the electric-flux density, and~B is the magnetic-flux den-

sity. The current and charge densities are sources of the electric field, and the flux

densities arise within the SOA in response to the electric and magnetic fields. For

non-magnetic media, such as the SOA, the flux and current densities can be written

in terms of the fields using the following constitutive relations [53]:

~D = �0~E + ~P; (2.5)

~B = �0 ~H; (2.6)

~J = �~E; (2.7)

where�0 and�0 are the vacuum permittivity and permeability, respectively,� is the

conductivity, and~P is the induced electric polarization.

A wave equation governing the propagation of optical fields can be derived as
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follows. Taking the curl of Eq. (2.1) and applying Eq. (2.6) yields

~r� ~r� ~E = ��0 @
@t
(~r� ~H): (2.8)

This can be written entirely in terms of the electric field~E and electric polarization~P
using Eqs. (2.2), (2.5), and (2.7). Restricting our attention to source-free regions of

space, thereby neglecting free charges (� = 0) and free currents (~J = 0), and using

a common vector identity [53], the wave equation becomes

�~r2~E + ~r(~r � ~E) = � 1

c2
@2~E
@t2

� 1

�0c2
@2 ~P
@t2

; (2.9)

wherec is the speed of light in vacuum and satisfiesc2 = 1=(�0�0). We further

simplify the wave equation using Eqs. (2.3) and (2.5), and knowing that the resulting

polarization source term~r � ~P is negligible in most cases of practical interest [55];

the electric field~E thus satisfies the following standard wave equation, driven by the

second time derivative of the induced electric polarization:

~r2~E � 1

c2
@2~E
@t2

=
1

�0c2
@2 ~P
@t2

: (2.10)

We prefer to manipulate the wave equation in the frequency domain. Taking the

Fourier transform of the wave equation (2.10), we obtain

~r2 ~E(x; y; z; !) +
!2

c2
~E(x; y; z; !) = � !2

�0c2
~P (x; y; z; !); (2.11)
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where

~E(x; y; z; !) =

Z 1

�1

~E(x; y; z; t)ei!tdt; (2.12)

~P (x; y; z; !) =

Z 1

�1

~P(x; y; z; t)ei!tdt: (2.13)

The response of the medium to the electric field is governed by

~P (!) = �0�(!) ~E(!); (2.14)

where we assume that the medium is isotropic so that the susceptibility� is scalar

[55].

Using the medium-response equation (2.14), the frequency-domain wave equa-

tion is given by

~r2 ~E(!) +
!2

c2
�(!) ~E(!) = 0; (2.15)

where the complex dielectric function�(!) is given by

�(!) = 1 + �(!): (2.16)

Equation (2.15) is the Helmholtz equation, and is valid for nonlinear media and arbi-

trary electric fields.

For fields passing through a SOA, it is convenient to write the dielectric function

as� = �b+�a, in terms of background�b and active-region�a contributions [55], each

of which can be complex valued. In ourdistributed feedbackSOA, a built-in grating
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runs parallel to, but outside of, the gain region, where it intersects the transverse mode

of the optical field. The grating is quantified by its period�, or similarly by its spatial

frequency�B = �=�, commonly called the Bragg wavenumber. We account for the

grating in the Helmholtz equation by writing the background dielectric function�b as

�b = ��b +��b, where��b is constant in alongz, and the spatially varying portion��b

is represented by the following Fourier series:

��b(x; y; z) =
X
p6=0

cp(x; y) exp(ip
2�z

�
) =

X
p6=0

cp(x; y) exp(ip2�Bz): (2.17)

We consider a modulation in only thereal part of the dielectric function, thus yielding

a so-called “index-coupled” grating.

The optical field that interacts with the Bragg grating is represented by

~E(x; y; z; t) = 2Ref~V(x; y; z; t)g = ~V + ~V�; (2.18)

where Refg represents the real part and~V is the analytic-signal representation of the

electric field [56]. The analytic signal is expressed as

~V(x; y; z; t) = ûF (x; y)U(z; t) exp(�i!0t); (2.19)

U(z; t) = Ef (z; t) exp(i�z) + Eb(z; t) exp(�i�z); (2.20)

whereû is the unit vector along the transverse-electric (TE) orientation of polariza-

tion,F (x; y) is the transverse distribution of the fundamental mode supported by the

waveguide,U(z; t) is the slowly varying longitudinal field distribution,� = n!0=c =

n�0 is the modal wavenumber,n is the modal refractive index, and!0 is the central
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angular frequency of the optical field. In the longitudinal direction, the field scatters

off of the Bragg grating and is therefore conveniently decomposed into a forwardEf
and backwardEb propagating field. The optical field is described in the frequency

domain by applying a Fourier transform:

~E(x; y; z; !) =

Z 1

�1

dt ~E(x; y; z; t)ei!t; (2.21)

=

Z 1

�1

dt ûF (x; y)U(z; t) exp[i(! � !0)t] + c:c:; (2.22)

= ûF (x; y)U(z; !� !0) + ûF �(x; y)U�(z; ! + !0); (2.23)

where

U(z; ! � !0) =

Z 1

�1

dt U(z; t) exp[i(! � !0)t]: (2.24)

We drop the final term of Eq. (2.23) [57]; this term corresponds to~V� whereas the

analytic signal~V alone is sufficient to describe the optical field. From a physical

standpoint, we neglect the final term by assuming that the medium does not respond

at rates on the order of the optical frequency. The electric field in the frequency

domain is then given by

~E(!) = ûF (x; y)[Ef(z; ! � !0) exp(+i�z) + Eb(z; ! � !0) exp(�i�z)]: (2.25)

Inserting the optical-field expression (2.25) into the Helmholtz equation (2.15)

yields equations for the transverse and longitudinal fields. The transverse field
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F (x; y) is governed by

@2F

@x2
+
@2F

@y2
+ [��(x; y)�20 � �2]F = 0: (2.26)

This equation provides the transverse-field profileF as well as the modal refractive

indexn [55], and it is assumed thatF is not affected by the grating perturbation��.

The longitudinal field is governed by

dEf

dz
exp(i�z)� dEb

dz
exp(�i�z) = i�20

2�V

Z Z
dxdy ��jF j2

�[Ef exp(i�z) + Eb exp(�i�z)];
(2.27)

where the right-hand side is normalized byV =
R R

dxdyjF j2, all integrations

are performed over the grating region, and the second-order derivatives have been

dropped sinceEf andEb are assumed to vary slowly. We replace�� by the Fourier

series given by (2.17), and separate the result into two equations in the rotating frames

exp(+i�z) andexp(�i�z):

dEf

dz
= i�Eb exp[�2i(� � �B)z]; (2.28)

�dEb

dz
= i�Ef exp[2i(� � �B)z]; (2.29)

where we have kept only the most closely phase-matched terms. The forward- and

backward-propagating fields are coupled by

� =
�20
2�V

Z Z
dxdy jc1(x; y)j jF j2; (2.30)

where we have note thatc1 andc��1 are equal since the modulation��b is real valued,
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and where we set the phase offset�1 of the coefficientc1 = jc1j exp(i�1) to zero. In

this thesis, we assume that the coupling coefficient� is real-valued, neglecting the

small imaginary part of� [55]. We refer the reader to Ref. [54] for a more general

form of the coupling coefficient that includes the effects of a gain grating.

Having defined the coupling coefficient� and the transverse-field equation (2.26),

we prefer to re-write the coupled-mode equations (2.28) and (2.29) in terms of the

slowly varying field envelopesA andB, defined in the time domain with

U(z; t) = Ef(z; t) exp(i�z) + Eb(z; t) exp(�i�z); (2.31)

= A(z; t) exp(i�Bz) +B(z; t) exp(�i�Bz): (2.32)

The corresponding frequency-domain field envelopes are determined in the same

manner as Eq. (2.24). The frequency-domain, coupled-mode equations in terms of

the field envelopes~A and ~B are

d ~A(! � !0)

dz
= i[� � �B] ~A+ i� ~B; (2.33)

�d
~B(! � !0)

dz
= i[� � �B] ~B + i� ~A: (2.34)

The modal wavenumber� = n�0 contains many contributions particular to active

semiconductor media. In particular, the refractive index in SOAs is dependent on the

carrier densityN . To make this apparent, we expand the modal refractive index

n = nb+na into a background partnb and a contribution from the SOA active region

na. Both the realn0a and imaginaryn00a parts ofna = n0a + in00a depend on the carrier

density. A very important parameter for active semiconductor media is the ratio of
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the change in the real part of the refractive index�n0a to the change in the imaginary

part of the refractive index�n00a [58]:

� =
�na0
�n00a

= �2�0�na
�g

; (2.35)

where we have introduced the power gaing = �2�0n00a. Expanding the gaing =

(dg=dN)[N �N0] and the refractive indexn = n0 + (dn=dN)[N �N(0)] as linear

functions of the carrier densityN , evaluated at transparencyN = N0, the ratio�

becomes

� = �2�0dn=dN
dg=dN

: (2.36)

In our simulations, we assume that� does not depend on the carrier density; this

common approximation greatly simplifies the theoretical analysis of bistability [34],

but possibly hides actual behavior since the carrier density can take on a range of

values between transparency and lasing threshold during bistable switching.

The quantity� is commonly known as the linewidth enhancement factor, and

represents the change in the real part of the refractive index for a given change in the

imaginary part. In any medium, the real and imaginary parts are coupled, and the

strength of this coupling can be calculated using the Kramers-Kronig relations. In

active semiconductors, this coupling is very strong — gain saturation is accompanied

by significant changes in the refractive index, and this is a nuisance for applications

such as semiconductor lasers. However, for our research,� is the nonlinearity that is

the basis for nonlinear processing.
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Changes in the refractive index with carrier density are most often attributed to a

carrier-induced shift of the gain edge, [59], anomalous dispersion, and gain compres-

sion. A change in carrier density also affects the refractive index through free-carrier

absorption [60], but this effect is usually dominated by the gain-edge contribution

[59]. The refractive index also depends on temperature, but we operate at speeds

(> 10 MHz) where sluggish temperature effects average out.

Using the linewidth enhancement factor�, the wavenumber� for DFB SOAs can

be written as

� = �b � i
g

2
(1� i�) + i

�int

2
; (2.37)

where�b = �0nb is the background modal wavenumber, and a loss term�int has

been phenomenologically added to account for loss mechanisms such as free-carrier

absorption and scattering [55]. Before returning to the time domain, we expand the

background wavenumber�b in a Taylor series about!0:

�b(!) = �b +
d�b

d!
(! � !0) +

1

2

d2�b

d!2
(! � !0)

2 + : : : (2.38)

' �b +
1

vg
(! � !0); (2.39)

where each derivative of the Taylor expansion is evaluated at! = !0, vg = d!=d�b

is the group velocity, and high-order terms are neglected since they produce little

change for pulses passing through the small length (� 300 �m) of the SOA [7].

Using Eqs. (2.37) and (2.38), the couple-mode equations in the frequency domain
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are given by

d ~A(! � !0)

dz
= i[�b � �B +

1

vg
(! � !0)� i

g

2
(1� i�) + i

�int

2
] ~A+ i� ~B; (2.40)

�d
~B(! � !0)

dz
= i[�b � �B +

1

vg
(! � !0) � i

g

2
(1 � i�) + i

�int

2
] ~B + i� ~A: (2.41)

Spontaneous emission into the counter-propagating modes is neglected since it is

assumed to be much weaker than the optical signal [34].

Taking the inverse Fourier transformF�1(f) defined by

F�1[f(! � !0)] =
1

2�

Z 1

�1

d(! � !0) f(! � !0) exp[�i(! � !0)t]; (2.42)

the couple-mode equations in the time domain are

@A

@z
+

1

vg

@A

@t
= i�A+ i�B; (2.43)

�@B
@z

+
1

vg

@B

@t
= i�B + i�A; (2.44)

where

� = Æ � i
g

2
(1 � i�) + i

�int

2
: (2.45)

The detuning parameterÆ is given by

Æ = �b � �B =
2�nb

�
� �

�
=

2�nb

�
� 2�n

�B
; (2.46)

where� = 2�c=!0 is the free-space optical wavelength, and�B = 2n� is the Bragg
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wavelength of a first-order grating. In taking the inverse Fourier transform, we rec-

ognize that the gain spectrum is much broader than that of the optical signal; the

latter acts like a DiracÆ function and allows the convolution integral involving the

two quantities to be easily performed. The gain termg in the time domain is thus

evaluated at the optical-signal frequency!0.

The detuningÆ is related to the free-space signal wavelength� such that, for con-

stantn0 and�, smaller values of detuning correspond to longer signal wavelengths.

We have defined the detuning parameterÆ to beindependentof gain. This allows us

to easily isolate the dependence on the small-signal gaingo — i.e., changinggo, while

keepingÆ constant, does not change the wavelength. Many previous studies defined

a detuning parameter that isdependenton the small-signal gaingo (e.g., [10], [17],

[22], [34]); using these formulations to calculate, for example, the bistable hysteresis

curve for different values ofgo, while fixing the value ofÆ, results in a different signal

wavelength� for each hysteresis curve, and yields qualitatively misleading results.

The gaing experienced by the optical modes is related to the carrier densityN by

[55]

g(x; y; z; t) = �gmat = �a[N(x; y; z; t)�N0]; (2.47)

where� is the optical confinement factor and represents the fraction of the transverse

intensity distributionjF (x; y)j2 that falls within the gain-region areaWd, andW

andd are the width and thickness of the gain region, respectively. The material gain

gmat = a(N �N0) is assumed to be linear function of the carrier densityN , with its

slopea = dg=dN (the differential gain) evaluated at transparencyN0. The precise
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wavelength dependence of the gain is suppressed because the gain is assumed to be

flat over the spectral range of interest (� 1 nm); also, we do not expect the wavelength

dependence to significantly alter the optical-processing techniques modeled in this

thesis.

To complete our theoretical foundation, we need to know how the carrier density

responds to an optical signal.

2.3 Carrier-Density Rate Equation

The carrier densityN is the density of electron-hole pairs, and is based on the as-

sumption of charge neutrality between the conduction-band electrons and valence-

band holes [55]. For time scales longer than the intraband relaxation time (� 0.05

ps), the dynamics of the carrier density in both SOAs and semiconductor lasers has

been successfully modeled by a rate equation [55]

�Dr2N +
@N

@t
=

J

ed
� N

�
� a(N �N0)

I

~!
; (2.48)

whereD is the diffusion coefficient, and the right-hand side consists of various mech-

anisms that create or eliminate electron-hole pairs. The first term represents electri-

cal injection of carriers, whereJ is the injected current density ande is the electric

charge. The second term accounts for spontaneous and nonradiative recombination

mechanisms, where� is the carrier recombination lifetime. Although this lifetime is

dependent on the carrier density (through spontaneous emission and Auger recom-

bination) we neglect this dependence to simplify our analysis [61]. The final term
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accounts for stimulated recombination of electron-hole pairs by the optical signal,

where~ is Planck’s constanth divided by2�, andI = h~E � ~Eit is the optical intensity,

whereh�it indicates temporal averaging over many optical periods2�=!.

The carrier rate equation can be simplified considerably since the diffusion length

(� 2�m) is longer than the gain-region thicknessd � 0:15�m and of the same order

as the widthW � 2�m (for an index-guided device). Here, the diffusion length

represents the distance traversed by a conduction-band electron before it recombines

with a hole from the valence band. An average value of carrier density is therefore

used in the transverse dimensions; averaging the rate equation (2.48) over the active-

region areaWd yields

dN

dt
=

J

ed
� N

�
� a

~!
(N �N0)

��

Wd
(jAj2 + jBj2); (2.49)

whereN is now understood to be averaged over the transverse dimensions, and the

optical confinement factor� and the mode cross section� are given by

� =

WZ
0

dZ
0

dxdy jF (x; y)j2=�; (2.50)

� =

1Z
�1

1Z
�1

dxdy jF (x; y)j2: (2.51)

Carrier diffusion, which has been dropped from Eq. (2.49), is also assumed to

smooth out the spatial holes burned by counterpropagating fields (with typical period

� 0:2�m), allowing the interference terms of the intensity to be neglected. The car-
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rier density is assumed to otherwise vary slow enough that the productD�@2N=@z2

is negligible.

Since the carrier density enters the coupled-mode equations through the modal

gaing, it is convenient to formulate a gain rate equation using Eq. (2.49) and (2.47):

�
dg

dt
= g0 �

�
1 + �P

�
g: (2.52)

The quantityg0 = �aN0( �J � 1) is the small-signal value ofg, and �J = J�=edN0

is the current density normalized to its value required to achieve transparency. The

normalized optical power�P is given by

�P =
[jA(z)j2 + jB(z)j2]�

Psat
=
PA + PB

Psat
; (2.53)

wherePA = jAj2� andPB = jBj2� are the optical powers of the individual field

envelopes, andPsat = ~!Wd=(�a�) is the saturation power. The gain rate equation

(2.52) also provides information on phase change experienced by the signal, since the

carrier-density-dependent portion of the wavenumber is given by�N = ��g=2. The

gain rate equation (2.52) along with the coupled-mode equations (2.43) and (2.44)

govern the nonlinear response of DFB SOAs.

2.4 Small-Signal, Steady-State Solution

In this section, we solve the gain rate equation (2.52) and coupled-modes equations

(2.43) and (2.44) for the simple case of small powers (P � Psat) and for input signals

that vary much slower than the inverse of the carrier lifetime� , such that a steady state
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is achieved. In the steady-state, the governing equations become

g = g0=(1 + �P ); (2.54)

dA

dz
= i�A+ i�B; (2.55)

�dB
dz

= i�B + i�A: (2.56)

Furthermore, for small signal powers, the gain equation is simply

g = g0: (2.57)

For uniform gratings (i.e., gratings whereÆ and � do not vary alongz), the

coupled-mode equations (2.55) and (2.56) are ordinary differential equations with

constant coefficients. The general solution is given by

A(z) = A1 exp(iz) +A2 exp(�iz); (2.58)

B(z) = B1 exp(iz) +B2 exp(�iz); (2.59)

where

1 =
p
�2 � �2 = ; 2 = �

p
�2 � �2 = � (2.60)

are the eigenvalues of the coefficient matrix of the coupled-mode equations, and

A1; A2; B1, andB2 are constant coefficients. The following relations between these

coefficients are obtained by substituting the general solutions into the coupled-mode
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equations:

A2 = B2r; (2.61)

B1 = A1r; (2.62)

r = ( ��)=�; (2.63)

wherer can be interpreted as the effective reflectivity of the grating [55].f Note that

the effective reflectivity is the same for each expression (2.61) and (2.62) because the

coupling coefficient is the same for each coupled-mode equation (2.55) and (2.56).

The reflectivity is not the same for cases where different coupling coefficients arise,

such as for complex-coupled DFB devices [54]g. Using the effective reflectivity, the

counterpropagating fields are

A(z) = A1 exp(iz) + rB2 exp(�iz); (2.64)

B(z) = rA1 exp(iz) +B2 exp(�iz); (2.65)

where the remaining coefficientsA1 andB2 are determined by the appropriate bound-

ary conditions.

2.5 Transfer-Matrix Formulation

In this section, we use the small-signal, steady-state solutions (2.64) and (2.65) of the

governing equations to construct a transfer matrix. This matrix transfers the forward-

and backward-propagating fields (A andB) from the input facet (defined asz =



2.6. BRAGG RESONANCES 32

�`=2) to the output facet (z = `=2), i.e.,

�
A(`=2)

B(`=2)

�
=

�
T11 T12

T21 T22

� �
A(�`=2)
B(�`=2)

�
: (2.66)

To solve for theTmn matrix elements, we first evaluate the solutions (2.64) and

(2.65) at the input facet to obtain the following expressions for the coefficients:

A1 =
A(�`=2) � rB(�`=2)
(1 � r2) exp(�i`=2) ; B2 =

B(�`=2)� rA(�`=2)
(1� r2) exp(+i`=2)

: (2.67)

Substituting the expressions forA1 andB2 into Eqs. (2.64) and (2.65) evaluated at

the output facet readily yields the following transfer-matrix elements:

T11 =
1

1 � r2
[exp(i`)� r2 exp(�i`)] (2.68)

T12 = � r

1 � r2
[exp(i`)� exp(�i`)] (2.69)

T21 = +
r

1 � r2
[exp(i`)� exp(�i`)] (2.70)

T22 =
1

1 � r2
[exp(�i`)� r2 exp(i`)]: (2.71)

2.6 Bragg Resonances

Using a transfer matrix, we now study the output power of a low-power signal (such

thatP � Psat) from a uniform-grating DFB SOA. Assuming a single input signal

incident at the left-hand facet defined to be atz = �`=2, the boundary conditions

areA(�`=2) = h andB(`=2) = 0. Using these conditions with the transfer matrix

Eq. (2.66), we obtain the following expressions for the transmittivityTy and reflec-
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Table 2.1: Parameter values used in simulations.

Physical Quantity Symbol Value

Device length L 300�m
Active–region width W 2 �m
Active–region depth d 0.15�m
Differential gain a 6� 10�16 cm2

Transparency carrier density N0 0.4� 1018 cm�3

Internal losses �int 0
Coupling coefficient � 100 cm�1

Linewidth enhancement factor � 5
Carrier lifetime � 0.2 ns
Saturation power Psat 10 mW
Confinement factor � 0.32
Modal refractive index n 3.4
Mode cross section � 10�m2

Signal wavelength � 1.55�m

tivity Ry:

Ty =

����A(`=2)h

����
2

=

���� 1

T22

����
2

; Ry =

����B(�`=2)h

����
2

=

�����T21T22

����
2

; (2.72)

which are described solely in terms of the transfer-matrix elements

The transmittivityTy as a function of normalized detuningÆL for several val-

ues of gain is shown in Fig. 2.1. Other parameter values used in this calculation

and throughout this thesis are given in Table 2.1; as a reference, a spectral width of

ÆL = 1 corresponds to 0.37 nm (about 46 GHz) for a 300-�m-long DFB amplifier

operating near 1.55�m. This figure shows that Bragg resonances occur at either

side of the photonic bandgap, a region of relatively low transmission in the center of

the resonance spectrum. The photonic bandgap is centered at the Bragg wavelength

�B = 2�n, where the corresponding Bragg detuning is given byÆBL = gL�=2.
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The Bragg wavelength, photonic bandgap, and Bragg resonances all shift to higher

values of detuning (smaller values of wavelength) as the gain is increased because of

the associated decrease in refractive index, represented by the linewidth enhancement

factor�. The shift of these features for a change in gain�g are given in terms of the

changes in the Bragg wavelength��B and Bragg detuning�ÆB as

��B = ���B

�

�g�

2
; �ÆBL =

�gL�

2
: (2.73)
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Figure 2.1: Evolution of the small-signal transmittivity spectrum with change in gain.

The resonance structure shifts as the small-signal gaing0 is varied because we

have defined the detuning parameterÆ to be independentof the linewidth enhance-

ment factor� and gaing, as per Eqs. (2.45) and (2.46). Other formulations (e.g.,

[52]) define a detuning parameter thatincludesthe gain-dependence of the refractive;

suppressing� in this way leads to a horizontal axis that is a function of the (phys-

ically uninteresting) wavelength within the material�=n, and the Bragg resonances

do not shift position [52]. The ability to shift the Bragg resonances relative to the
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input-signal wavelength is a key concept for the signal processing considered in this

thesis, and we therefore prefer to make this shifting explicitly apparent in the graphs

we present.

In addition to the spectral shift, the Bragg resonances grow as the gain is in-

creased. The peaks will continue to grow until infinity, where infinite transmittiv-

ity (finite output for zero input) is interpreted as lasing threshold [62]. Beyond the

lasing-threshold value of gain, the peaks decrease; lasing action is not actually pre-

dicted to occur because we have neglected amplified spontaneous emission (ASE)

in our model. Therefore, we must take care to remain below lasing threshold so

that our simulations are physically valid. In our simulations, we typically drive the

small-signal gaing0 to provide a 30-dB peak transmittivity.
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Figure 2.2: Evolution of the small-signal reflectivity spectrum with change in gain. Reflectivity reso-
nances at the stop-band edges reshape from a peak to a dip, and shift to longer signal wavelengths, as
gain is decreased.
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Lasing threshold can also be determined by the reflectivity resonances, which also

reach infinity. As the gain is decreased from lasing threshold, however, the reflectivity

resonances behave quite differently than the transmittivity resonances, as shown in

Fig. 2.2. For large amounts of gain (enough to approach lasing threshold), reflectivity

resonances occur as peaks at both edges of the photonic bandgap, as seen in Fig. 2.2

for goL � 1:2. As the gain is decreased, the reflectivity peaks begin to diminish, and

dips appear at wavelengths slightly farther away from the bandgap. This reshaping

of the reflectivity resonances is apparent in Fig. 2.2 forgoL = 0:6. With decreased

gain, the peaks completely disappear and the dips push downward; forgoL = 0 (the

case of passive filters), the reflectivity resonances are deep dips.

2.7 Conclusion

In this chapter, we presented the theoretical foundation of our research. We derived

a set of equations that govern the counterpropagating optical fields (2.43) and (2.44)

and the SOA gain (2.52). We solved these equations for the steady-state, low-power

regime where gain saturation can be ignored. Using this simple solution, we con-

structed a transfer matrix, which will be used in Chapter 3 to study optical bistability

and in Chapter 4 to study the effects of nonuniform gratings. In the present chap-

ter, we used the transfer matrix to study the small-signal gain dependence of the

Bragg resonances. The small-signal behavior of the Bragg resonances will prove to

be insightful to understand even thenonlinear response of DFB SOAs investigated

in upcoming chapters.

The transmittivity and reflectivity spectrums clearly show two major effects of

gain (or, likewise, the carrier density). First, as the gain is decreased, the refractive

index increases and the photonic bandgap and Bragg resonances shift to longer wave-

lengths (i.e., smaller values of the detuningÆ). This coupling between the gain and

refractive index is represented by the linewidth enhancement factor�, and gives rise
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to the dispersive optical bistability studied throughout this thesis. Second, the gain

also changes the height of the Bragg resonances. On reflection, this has the signifi-

cant effect of inverting the resonance from a peak to a dip at low gain. This inversion

gives rise to a wide variety of shapes exhibited by the hysteresis curve on reflection,

as will be shown in the following chapter.
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Chapter 3

Optical Bistability:
Steady-State Analysis

3.1 Introduction

Optical bistability can be used for all-optical processing applications such as logic

[9], switching [11], optical limiting [17], memory [23], and signal regeneration [26].

A common place to begin the analysis of bistable systems is with the calculation of

the steady-state response [63]. This response provides a benchmark for the time-

dependent response, and its description introduces many concepts used throughout

this thesis. We begin by developing a transfer-matrix method, to take into account

variations in optical power within the DFB SOA and to calculate steady-state bista-

bility. We discuss the physical process of bistability, as well as its spectral range,

spectral uniformity, and shape of hysteresis curves on transmission and reflection.

3.2 Physical Process of Bistability

Optical bistability is characterized by an input-output transfer function that doubles

back on itself, as shown in Fig. 3.1 for the average power within a DFB SOA. We

describe thissteady-statetransfer function as a “hysteresis curve,” even though the

term “hysteresis” implies dependence on the previous temporal state of the system.
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This description will be justified in Chapter 5, where we show agreement between

the steady-state and time-dependent solutions.
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Figure 3.1: Average-internal-power hystereses for two signal wavelengths. The longer signal wave-
length [ÆL = 6:085 via Eq. (2.46)] exhibits higher switching thresholds. Dashed portions of curves
are unstable.

Bistable switching in DFB SOAs occurs via a positive-feedback loop involv-

ing the gain-dependent refractive index, a Bragg resonance, and the internal opti-

cal power. An optical signal enters the amplifier with a wavelength longer than that

of a Bragg resonance. The optical signal saturates the gain and shifts the photonic

bandgap and the associated Bragg resonances to longer wavelengths. If a Bragg res-

onance shifts onto the signal wavelength, the internal optical power increases even

more. As a result, the refractive index continues to increase, and the resonance shifts

even farther. This positive feedback loop for the internal optical power moves the

Bragg resonance fully through the signal wavelength. The resulting jump experi-

enced by the internal power is indicated by the up–arrow in Fig. 3.1.

The reverse process occurs at the down–arrow. If the incident power is lowered so

that the signal wavelength returns to the peak of the Bragg resonance, a subsequent

decrease in incident power allows the gain to partially recover, thereby decreasing

the refractive index. The Bragg resonance, in turn, shifts to shorter wavelengths and
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away from the signal wavelength, decreasing the internal power further. This positive

feedback loop shifts the resonance off of the signal wavelength and the internal power

switches downward. These upward and downward switching processes give rise to

the a S-shaped hysteresis curve, a common shape exhibited by many bistable systems.

3.3 Transfer-Matrix Analysis

Optical bistability occurs as the gain of the SOA is saturated by the optical power

within the device. We calculate the steady-state power distribution along the DFB

SOA via a transfer-matrix method [64]. For this method, an amplifier of lengthL is

treated as a series of smaller sections of length`, and each section is represented by

transfer matrixT of the kind constructed in Section 2.5.

The series of transfer matrices maps an input-field vector atz = �L=2 to the

output-field vector atz = +L=2 in the following manner:

"
A(L

2
)

B(L
2
)

#
= T (gM ) T (gM�1) : : : T (g3) T (g2) T (g1)

"
A(�L

2
)

B(�L
2
)

#
; (3.1)

where we have explicitly written the gain-dependence of each matrix of a series of

M matrices. The first matrixT (g1) transfers the input field vector and generates a

new field vector at a length̀ into the device. Subsequent application of the trans-

fer matricesT (g2)–T (gM) yields an internal-field distribution withM � 1 samples

spaced at a distance`. Equation (2.53) can then be used to obtain the corresponding

internal-power distribution.

The internal power along the device saturates the SOA gain. The gain, however,

is used to calculate transfer-matrix elements, which are used to compute the optical-

power distribution. To account for this nonlinear behavior, we solve for the gain and

power profiles along the device using the following iterative approach:
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1. A first-order approximation of the internal-power distribution is calculated as-

suming no gain saturation, i.e.,g = g0.

2. An approximate value of the power within each subsection is calculated by

simply averaging the power values at each end of the subsection.

3. The gain for each section is recalculated using equation (2.54) and the power

value from step 2.

4. New, power-modified transfer matrices are calculated for the amplifier by using

the saturated gain from step 3 and Eqs. (2.45), (2.60), and (2.63).

5. The internal-power distribution is recalculated using the transfer matrices from

step 4.

6. Steps 2-5 are repeated until the deviation from the previous power distribution

is smaller than the desired error.

We find that 15 iterations (for 8 sections) are typically enough to obtain less than

0.1% deviation in the optical power from one iteration to another.

To calculate the bistable hysteresis curve, the initial field vector used to compute

the internal-power distribution is not taken to be the field vector at the input facet,

since this field leads totwo stable solutions at the output facet. Instead, the power

computation begins with an assumedoutputfield vector and the inverse of each trans-

fer matrix is applied as follows:

�p
Pin exp(i�in)p
Rp exp(i�R)

�
= T �1(g1) T �1(g2) T �1(g3) : : : T �1(gM�1) T �1(gM )

�p
Tp

0

�
;

(3.2)

whereTp is the (chosen) transmitted power,Rp is the (calculated) reflected power,

Pin is the (calculated) input power,�in is the (calculated) input-field phase, and�R is

the (calculated) reflected-field phase. To map out the hysteresis curve, the transmitted



3.4. SPECTRAL RANGE AND UNIFORMITY 42

powerTp is varied from zero to a sufficiently large value to move beyond the region of

bistability. Such a transfer-matrix method had been never been used to study optical

bistability in DFB SOAs, although a similar method was presented for Kerr-nonlinear

devices [72], where an analytic expression for the internal power was used instead of

an average-power approach as in step 2 above.

To determine the number of matricesM required for a sufficient sampling of

the internal power, we monitored the hysteresis curve as a function of increasing

M . Typically, only 8 matrices (M = 8) were required before convergence; for the

hysteresis curves presented in this thesis, we useM = 30. For a 300-�m-long SOA,

each section then has a length` = 10�m.

3.4 Spectral Range and Uniformity

Using the transfer-matrix method, we plot the transmitted power in Fig. 3.2(a) for

g0L = 1:19815 and ÆL = 6:785; upward switching occurs near 24�W, and the

signal experiences an on-state gain of about 15 dB. To examine theentire spectral

range of switching, we plot the input powers required for upward and downward

switching (i.e., the turning points of the hysteresis) as a function ofÆL in Fig. 3.2(b)

[65]. The two spectral regions apparent in the figure, referred to simply as the long-

and short-wavelength sides of the stopband, exhibit a spectral range of about 2 and

2.7 ÆL, respectively. This corresponds to a spectral range of 0.73 nm (91 GHz) and

0.98 nm (123 GHz), respectively, for a 300-�m-long device operating near 1.55�m.

The low-power onset of switching for each of the two spectral regions shown

in Fig. 3.2 occurs at a value ofÆL near a small-signal transmittivity peak shown in

Fig. 2.1 (for the high value ofg0L). The switching powers increase for smaller values

of ÆL, which correspond to larger initial separations between the Bragg resonance and

the signal wavelength; larger powers are required to shift the Bragg resonance to a

spectral location where the positive feedback loop is seeded.
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Figure 3.2: (a) Bistable transmission forÆL = 6:785. (b) Upward- and downward- switching input
powers plotted over the entire spectral range of bistability.

Switching powers in Fig. 3.2(b) range from 1�W to 10 mW. A more important

spectral range is that for which the upward-switching power remains below a level

that is practical for optical communication systems. We choose this power level to

be 0.1 mW. The spectral range of switching below 0.1 mW is only 0.51ÆL, or about

0.19 nm (23 GHz), for switching at both sides of the photonic bandgap.

The switching powers in this low-power spectral range vary by about two or-

ders of magnitude; the greatest change (or, the poorest degree of spectral uniformity)

occurs near the onset of bistability. Accompanying these changes in the switching

powers are changes in other features of the hysteresis curve such as the on-state pow-

ers and on-off switching ratios. To investigate the spectral uniformity of the bistable

hysteresis, we consider a range of 12.5 GHz (0.1 nm), which corresponds to 0.275ÆL.

The long-wavelength end of this spectral range is chosen so that its upward-switching

power is equal to 0.1 mW.

Bistable output behavior over 12.5 GHz on both sides of the stop band is shown

in Fig. 3.3 [66]. A 4.17-GHz separation is chosen between the signal wavelengths of

each hysteresis curve. A greater spectral uniformity in terms of switching powers is

evident for transmission on the short-wavelength side. Each hysteresis curve overlaps

with its adjacent hysteresis curve (although not with the others). Moreover, a single

power level separating on- and off-transmitted powers can be defined over the entire
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Figure 3.3: Bistable output spanning a spectral range of 12.5 GHz (ÆL = 0:275) for optical signals
incident on the long- (left figures) and short- (right figures) wavelength side of the photonic bandgap.
The wavelength spacing between each hysteresis is 4.17 GHz.)

spectral range. Transmission on thelong-wavelength side is less uniform across the

spectral range. The hysteretic turning points of two adjacent curves barely touch, and

a common power level separating on- and off-transmitted powers cannot be defined.

The spectral evolution of the hysteresis curve on reflection is much more dra-

matic, and is included in Fig. 3.3, below the transmission curves for the same wave-

lengths. Although there is greater overlap between switching-threshold powers on the

short-wavelength side, the reflective hysteresis shape does not remain uniform. For

signal wavelengths tuned away from the onset of bistability, the shape of the hystere-

sis curve warps into a loop. As a result, the on–off switching ratio at 0.1 mW is less

than 1.3. This warping behavior on reflection is discussed in detail in the following

section.
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3.5 Reflective Bistability

The hysteresis curve on reflection from DFB SOAs exhibits a variety of shapes [17],

[67]. This variety is intriguing, in part, because each shape potentially supports a dis-

tinct signal-processing application [17]. The shapes are also important to understand

because, whether or not the switching features are utilized in processing applications,

they occur nonetheless and yield an unexpected nonlinear response.
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Figure 3.4: Reflected-power hysteresis shapes under conditions identical to those of Fig. 3.1. The
inset shows a hysteresis for an even longer signal wavelength. All signal wavelengths are on the
short-wavelength side of the stop band. Where the stable branches (solid lines) become unstable, the
reflected power switches to the other stable branch at the same incident power.

The reflected hysteresis curves, corresponding to the same conditions as the

average-internal power curves in Fig.3.1, are shown in Fig. 3.4 [67]. Although the

internal-power curves are are both S-shaped, the reflected-power hystereses take on

different shapes. While the hysteresis curve for the shorter wavelength (ÆL = 6:785)

is S-shaped, the longer wavelength signal exhibits a loop-shaped hysteresis curve. A

third qualitatively different hysteresis shape, for an even longer wavelength (ÆL =

4:685), is given in the inset.



3.5. REFLECTIVE BISTABILITY 46

Each reflective hysteresis shares the same switching threshold powers as its

corresponding average-internal-power hysteresis. The unstable region, which con-

nects these thresholds, can therefore be determined straightforwardly. The switching

thresholds are the same because reflective bistability is supported by thesameposi-

tive feedback loop as the internal hystereses (i.e., one involving theinternalpower).

The switching thresholds increase as the signal is initially tuned farther from the

Bragg resonance because the Bragg resonance must be shifted farther to seed the pos-

itive feedback loop. Thus, by the time bistable switching occurs, more gain saturation

has taken place. This gain saturation significantly affects the reflection resonances,

as discussed in Section 2.6, and will likewise affect the shape of the hysteresis curve.

This dependence on gain for resonant-type SOAs is a feature that does not (necessar-

ily) exist for switching devices based on a passive�(3) nonlinearity.

For signal wavelengths initially tuned close to a cavity resonance, a low inter-

nal power is required to seed optical bistability. The relatively low internal power

during the positive feedback loop allows the gain to remain relatively high under sat-

uration. Thus, the reflectivity resonance is a peak during the positive feedback loop.

Moreover, we find (using the saturated gain profile) that the reflectivity resonance

spectrally overlaps the cavity resonance, which is also shaped like a high peak. Since

the cavity and reflectivity resonances are similar, the reflected power switches in the

same manner, as evident by the S-shaped hysteresis curve of Fig. 3.4. The on–state

of this hysteresis after upward switching exhibits about 13-dB amplification.

In contrast, signal wavelengths initially tuned far from the cavity resonance re-

quire higher optical powers to seed the positive feedback loop. The correspondingly

large internal powers sufficiently saturate the gain that the reflectivity resonance is

a dip during the switching process. As the reflectivity resonance shifts to longer

wavelengths, the reflected signal power drops accordingly. Thus, the reflected power

switches downward even though the average internal power switches upward. This

behavior gives rise to an inverted-S-shaped hysteresis curve, like the one in the inset
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of Fig. 3.4. The on–state typically exhibits no amplification since the gain is strongly

saturated. Notice that the high-incident-power tail of this hysteresis pushes down

beyond the switching thresholds. The signal is simply experiencing the deepening

reflectivity dip.

The remaining hysteresis curve of Fig. 3.4 is shaped like a loop. The top of the

loop is unstable and switching occurs down from both sides [17] from on–states of a

few dB in amplification. The loop-shaped hysteresis curve occurs in a spectral range

between the hystereses shapes described above. For these signal wavelengths, the

internal powers saturate the gain to levels where the cavity resonance is reshaping

from a peak to a dip (seeg0L = 0:6 in Fig. 2.2). The reflectivity peak and dip

straddle the central wavelength of the cavity resonance, with the peak slightly closer

to the stop band.

For reflection from the short-wavelength edge of the stop band, as in Fig. 3.4, the

reflectivity resonance peak occurs at a longer wavelength than the cavity resonance.

Since the bistable signal is initially tuned to the long-wavelength side of the internal-

power Bragg resonance, the reflectivity peak may completely pass through the signal

wavelength, resulting in an increase and then decrease in the reflected power. This

kind of a mismatch between the internal and output resonances was shown to gives

rise to loop-shaped hystereses in other nonlinear media as well [68], [69]. For DFB

SOAs, downward switching on the high-incident-power side of the hysteresis is facil-

itated by the reflectivity resonance dip. As the stop band shifts to longer wavelengths,

this dip shifts into the optical signal. Moreover, gain saturation during the positive

feedback loop will push the dip to lower values of reflectivity while quenching the

resonance peak.

An interesting feature of the loop-shaped hysteresis curve is that its shape is qual-

itatively different for reflection at the two edges of the stop band. On thelong-

wavelength edge, the loop occurs predominantlyunder the stable-power branches.

The bottom portion of the loop is unstable and upward switching occurs at both sides,
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Figure 3.5: Bistable behavior of the reflected power for three signal wavelengths on thelong-
wavelength edge of the photonic bandgap. The middle curve is a new hysteresis shape — a loop
that occurs below the stable branches.

as shown in Fig. 3.5; a loop shape of this kind on the long-wavelength side of the stop

band was not found in previous studies. Here, we have left out the full spectral evolu-

tion of the hysteresis curve to focus on the loop atÆL = �2:675. During the transition

from one hysteresis shape to another, upward and downward switching may occur, in

general, on either side of loop-shaped hystereses.

The origin of such a loop may be understood as follows. For reflection from the

long-wavelength edge of the stop band, the reflectivity resonance peak and dip strad-

dle the central wavelength of the cavity resonance with thedip at the longer wave-

length. Therefore, as the photonic bandgap shifts to longer wavelengths, the bistable

signal is affected first by the reflectivity dip and then the peak. Consequently, the

reflected signal decreases and then increases, giving rise to the particular shape of

the hysteresis loop. In our calculations for Fig. 3.4, we find that even though the

bottom of the reflectivity dip is not reached, the reshaping of the reflectivity reso-
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nance is sufficient to initially pull the reflected power down. The resulting on–off

switching ratios are small. Moreover, since the summit of the reflectivity peak is not

encountered, large amplification is not realized.

3.6 Conclusion

In this chapter, we discussed the steady-state, bistable response of DFB SOAs. A

transfer-matrix method, which incorporates the optical power distributed along the

amplifier, was presented to analyze such behavior. We began by calculating the entire

spectral range of bistability for typical parameter values, and found that it spanned

about 1 nm on either side of the photonic bandgap; the wavelength range of bistabil-

ity was limited because this type of bistability is a resonant phenomenon. Over this

range, the shape of the hysteresis curves, in terms of its switching threshold powers

and output powers, varied significantly. The most dramatic change occurred on re-

flection, where the familiar S–shaped hysteresis curve was warped into a loop-shaped

or inverted S-shaped curve for different wavelengths.

The wide variety of shapes exhibited by the reflected-power hysteresis curve oc-

curred because the change in refractive index, which gives rise to bistable switching,

was accompanied by gain saturation. The decrease in gain, in turn, transformed the

reflectivity resonances from peaks to dips, thereby changing the reflected power. The

shapes of the hysteresis curve were dependent on wavelength because signal wave-

lengths that were initially further detuned from the Bragg resonance required more

power to seed bistability, and thus incurred greater gain saturation.

For applications to fiber-optical communications, we closely examined bistable

switching for input powers below 0.1 mW. We found the spectral range of low-power

switching to be only 23 GHz for switching at either side of the photonic bandgap.

Moreover, this low-power region exhibits poor spectral uniformity. We studied the

variation of the bistable hysteresis curve over a 12.5-GHz spectral range on reflec-
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tion and transmission, for signal wavelengths on both sides of the photonic bandgap.

Even in the case of greatest spectral uniformity (transmission on the short-wavelength

side), the switching thresholds cease to overlap for two hystereses detuned by about

8 GHz. This wavelength sensitivity may limit the performance of optical memory,

for example, where the bistable signal must be tuned between the switching thresh-

olds. In Chapter 4, we seek to increase the spectral range and improve the spectral

uniformity of the hysteresis by varying the grating period along the built-in grating.
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Chapter 4

Nonuniform Gratings

4.1 Introduction

Bistability in DFB SOAs and other resonant-type SOAs exhibits a narrow wavelength

range of operation [39]. In the previous section, we quantified this by examining the

switching thresholds; switching below 0.1 mW was shown to occur over a 23-GHz

spectral range at either side of the photonic bandgap. We also found that the bistable

hysteresis changed significantly over a 12.5-GHz spectral range. In this chapter, we

seek to increase the spectral range of low-power switching and to improve the spectral

uniformity.

The narrow spectral range in DFB SOAs occurs because bistability is based on

a Bragg resonance. We seek to broaden the spectral range by varying the Bragg

wavelength along the length of the device, i.e., by continuously changing the grating

period. This grating nonuniformity is commonly referred to as spatial chirp, since

the spatial frequency of the grating�B = �=� varies along the device. The effect of

spatial chirp has been studied previously in systems exhibiting dispersive bistability

based on the Kerr nonlinearity [70]– [73]; however, these projects focused on such

topics as the reduction of switching-threshold powers and the development of a new

method of analysis, rather than the improvement in spectral range.

We begin this chapter by discussing a general formalism to incorporate spatial
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chirp and other grating nonuniformities into the transfer-matrix method. To illustrate

the flexibility of this method, we study the small-signal and bistable response of a

phase-shifted DFB SOA, both with and without spatial chirp. We then examine the

effect of spatial chirp on the wavelength range and spectral uniformity of bistability.

This investigation leads us to uncover a host of notable effects, including dramatic

changes in switching powers and in the shape of the hysteresis curve.

4.2 Transfer-Matrix Analysis

For Bragg-grating devices, one way to tailor the output response is to introduce

nonuniformities into the periodic structure [50], [62], [72], [74]– [77]. Typical

nonuniformities include variation in the grating period (spatial chirp), grating depth

(taper), and abrupt phase shifts of the grating corrugation. To simulate the effects of

these nonuniformities on the output spectra of DFB devices with moderate grating

depth, it is common to use a transfer-matrix method based on a pair of coupled-

mode equations [62], [72], [75]– [77]. In this section, we extend our transfer-matrix

method, developed in Chapter 3 for the study of optical bistability, to incorporate

grating nonuniformities.

4.2.1 Grating Nonuniformities

To incorporate grating-phase shifts, a matrix designed to shift the phase of the optical

field is inserted between two transfer matrices corresponding to uniform subsections

on each side of the phase shift [76]. The phase-shifting matrix� is given by

� =

�
 o

0  �

�
; (4.1)

where = exp(i�) contains the phase shift� experienced by the optical field, and

� represents the complex conjugate. As an example, we consider a�=4-shifted DFB
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SOA. The matrix series of this device can be written as

"
A(L

2
)

B(L
2
)

#
= T � T

"
A(�L

2
)

B(�L

2
)

#
; (4.2)

whereT is a transfer matrix representing an amplifier segment of length` = L=2, L

is the total length of the DFB SOA, and� = �=2 is the phase shift experienced by

the optical field.

The nonuniformity we focus on in the latter half of this chapter is spatial chirp; a

DFB SOA with a linearly chirped grating is depicted in Fig. 4.1. The P–direction is

defined to be the direction for which an incident optical field sees anincreasein the

grating’s spatial frequency�B = �=� (i.e., the Bragg wavenumber). Likewise, an

optical field incident in the N–direction sees, by definition, a decrease in the spatial

frequency of the grating. (“P” and “N” indicate positive and negative chirp, respec-

tively, in our notation.) The P– or N–direction is specified in computations by the

sign of the chirp parameterC, introduced by using

�B(z) = ��B + C
(z � L=2)

L2
; (4.3)

where��B is the average Bragg wavenumber. A positive (negative) value ofC corre-

sponds to the P–direction (N–direction), and the magnitude ofC represents the total

change in�B(z)L along the device. For example, a value ofjCj = 10 corresponds to

a total variation in�B of about 0.24% for a 300-�m-long device.

For small variations in the period of the grating, the coupled-mode equations

(2.55) and (2.56) remain unchanged except that the the detuning parameterÆ = �b �
�B now becomesz dependent. (A similar argument can be made for tapering the

coupling coefficient�.) The linear spatial chirp considered above is written as

Æ(z) = �Æ � C
(z � L=2)

L2
; (4.4)
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N-direction

       (a)

P-direction

Figure 4.1: Schematic of a DFB SOA with a linearly chirped-grating, indicating the P–direction (C >

0) and N–direction (C < 0).

where�Æ is the average detuning and the magnitude ofC represents the total change

in Æ(z)L along the device.

To incorporate spatial chirp into the transfer-matrix method, the continuous

change in the detuning parameterÆ is approximated by a step-like distribution;Æ

is constant for each transfer matrix (as required!), but its value is incremented in a

step-like manner from one matrix to the next. A series ofM transfer matrices is

written in the following manner [compare with Eq. (3.1)]:

"
A(L

2
)

B(L
2
)

#
= T (ÆM ; gM) : : : T (Æ2; g2) T (Æ1; g1)

"
A(�L

2
)

B(�L

2
)

#
: (4.5)

Since we seek to model a continuously varying grating, we discard the phase mis-

match between sections of constant length that occurs between for such a step-like

distribution ofÆ.

The accuracy of this step-like approximation is improved by increasing the num-

ber of matricesM while decreasing the length of each subsection`. We find that the

output spectrum of a continuously chirped structure withjCj < 20 converges for as

few as 8 subsections. Unless otherwise noted, we we have used 30 sections in our

calculations; considering a 300-�m-long device, each section represents 10�m.
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4.2.2 Small-Signal Amplification

Before considering a DFB SOA, it is instructive to discuss results for a non-

semiconductor amplifier for which� = 0. The transmission spectrum of a�=4-

shifted DFB non-semiconductor amplifier is shown in Fig. 4.2(a). The transmission

peak centered atÆ = 0, caused by the abrupt phase shift in the grating, benefits the

most from the distributed feedback; asg0L is increased (by increasing the pump cur-

rent), the central transmission peak grows significantly more than any other spectral

region. In the figure, we use values ofg0L that yield peak transmittivities of 0, 10,

20, and 30 dB (g0L = 0, 0.4360, 0.5854, and 0.6339, respectively).
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Figure 4.2: Small-signal transmittivityof a�=4-shifted DFB SOA, showing the effect of�. The small-
signal gaing0 is varied to give a peak transmittivityof 0, 10, 20, and 30 dB; the inset shows the change
in this peak value as a function ofg0L.

The effect of the linewidth enhancement factor� on the transmission spectrum is
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to produce a shift proportional to the change in gain, and is given by Eq. (2.73). This

shift is apparent in Fig. 4.2(b), where� = 5. The shift between transmission peaks

decreases for higher values of gain because less increase ing0L is needed for a 10-dB

increase in the transmittivity [see inset of Fig. 4.2(b)]. The capability of tuning the

transmission peak via direct variation ofg0L (i.e., pump current) enriches the device

applications of semiconductor amplifiers. For example, this tunability has been used

as the basis of a tunable filter with resonant optical amplification [47].

As an example of the effect of linear spatial chirp on the transmission spectra of a

DFB SOA, we add this nonuniformity to the�=4-shifted amplifier considered above.

For the unchirped case, the wavelength corresponding to the Bragg wave number

experiences the greatest feedback and exhibits the most amplifier gain. Feedback

for this wavelength, though, is reduced when chirp is introduced because the Bragg

wavelength is varied throughout the device. As a result of lower feedback, higher

values of the small-signal gaing0L are required to realize peak transmission values of

10, 20, and 30 dB. This effect can be seen in Fig. 4.3, where we show the wavelength

dependence of the amplifier transmittivity for a linearly chirped,�=4-shifted DFB

SOA with C = 20, whereg0L = 1.4200, 2.1912, and 2.4914, respectively. Since

higher gain is required, the transmission spectrum is consequently shifted to higher

values ofÆ compared to the caseC = 0 [see Fig. 4.2(b)]. The transmittivity peaks

also widen, also resulting from the decrease in feedback to the center of the peak.

When comparing Fig. 4.3 and Fig. 4.2(b), note that thewavelengthscorresponding

to the values ofÆ are determined by Eq. (2.46); the wavelength of any peak from

Fig. 4.3 can be made to coincide with the wavelength of any peak from Fig. 4.2(b) by

considering, for example, devices of two different grating periods�.

The example of a�=4-shifted DFB SOA with and without spatial chirp also illus-

trates that grating nonuniformities can alter the lasing threshold. In particular, the 30-

dB transmittivity peak for the chirped-grating case occurred atg0L ' 2:5; this value

of the small-signal gain is over twice that needed tolasethe unchirped device. From



4.2. TRANSFER-MATRIX ANALYSIS 57

30

20

10

0
T

ra
ns

m
itt

iv
ity

 (
dB

)

121086420-2

α = 5
C = 20

40

20

0

G
 (

d
B

)

2.01.00.0
goL

δL

Figure 4.3: Small-signal transmittivity of a�=4-shifted DFB SOA with spatial chirp. The small-signal
gaing0 is varied to give a peak transmittivity of 0, 10, 20, and 30 dB; the inset shows the change in
this peak value as a function ofg0L for the chirped and unchirped cases.

a computational perspective,anyvalue ofg0L can be used in calculations, but only

one that lies below lasing threshold is physically valid, since we have ignored ASE

in our model. Thus, care must be taken during the study and design of nonuniform-

grating DFB SOAs to keep track of the lasing threshold, an issue that does not exist

for passive Kerr-nonlinear devices. When comparing the bistable characteristics of

devices with different grating uniformity, we set the normalized small-signal gain

g0L to deliver a small-signal transmittivity of 30 dB, as a general rule.

4.2.3 Nonlinear Response

To study the nonlinear response of the DFB SOA, we calculate the internal-power

distribution, as discussed in Section 3.3. As an example of how the internal power

can vary throughout a nonuniform-grating device, we show the internal power for a

�=4-shifted DFB SOA with and without spatial chirp in Fig. 4.4. In each case we,

have plotted the distribution for three values ofÆ. The center value of the normalized

detuningÆcL is chosen to match the transmittivity peak (ÆcL = 1.58 and 6.2 for the
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uniform and chirped gratings, respectively); the quantity�ÆL = (Æ � Æc)L is the

mismatch from the center value of the detuning.
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Figure 4.4: Internal power of a�=4-shifted DFB SOA for three values ofÆ, (a) without and (b) with
spatial chirp.

For the uniform-grating case, the signal at�ÆL = 0 is strongly localized within

the device at the location of the phase shift. Detuning away from this wavelength

results in the reduction of the power peak within the device, as shown in Fig. 4.4(a).

The power within the amplifier is further distorted by the incorporation of linear spa-

tial chirp. ForC = 20, the phase-shift-induced peak at the center of the amplifier is

almost completely flattened, and the power near each amplifier facet is higher than at

the center. In addition, the power distribution is asymmetric about�ÆL = 0. As seen

in 4.4(b), the short-wavelength side recovers a prominent peak in the center, whereas
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the long-wavelength side obtains its lowest value at the center of the amplifier and

exhibits higher power near each amplifier facet.

We now turn to comparing the bistable response for chirped and unchirped�=4-

shifted DFB SOAs. Starting at a value ofÆL near the onset of bistability (ÆL = ÆL0,

decreasingÆL will push the switching threshold to larger powers as discussed in

Chapter 3. This is evident in Fig. 4.5(a), where the value ofg0L is chosen to yield

an unsaturated peak transmission value of 30 dB, andÆL is decreased fromÆL0 = 1.5

until the switch-on input power reaches an upper limit of about 1% of the saturation

powerPsat; a detuning range of approximately 0.3ÆL exists for this region of low-

threshold bistable switching.
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Figure 4.5: Spectral evolution of the bistable hysteresis curve for a�=4-shifted DFB SOA, (a) without
and (b) with spatial chirp.� = ÆL0

� ÆL.

The addition of positive linear spatial chirp to the grating of a�=4 phase-shifted
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DFB SOA increases the range of wavelengths that support low-threshold bistable

switching, for an amplifier driven to provide the same unsaturated peak amplifier

gain of 30 dB. This is seen in Fig. 4.5(b), where we show the bistable hysteresis

curve forC = 20. As in Fig. 4.5(a), the highest value of theÆL (ÆL0 = 6.0) is chosen

to be near the onset of bistability andÆL is decreased until the switch-on input power

reaches 1% of the saturation power. The range ofÆL values is now 0.9, three times

wider than that of the non-chirped case.

Since the transmittivity spectrum of a DFB SOA shifts with the direct variation

of gain (see Fig. 4.2), it is possible to tune the bistable hysteresis curve for a fixed

wavelength. To illustrate this, we first consider a�=4-shifted amplifier without spatial

chirp, and choose the value ofÆL that is 0.3ÆL less than the value for which bistabil-

ity begins. Fig. 4.6(a) shows the hysteresis curve of this amplifier for four values of

gain, beginning from the value ofg0L that yields an unsaturated transmission peak of

30 dB. As seen in the figure, gain tuning allows the switching powers to be selected.

Using the additional degree of freedom provided by gain-tuning, we can compare

the bistability characteristics with and without spatial chirp by maintaining a fixed

value ofÆL and varyingg0L (in contrast to Fig. 4.5, where the opposite was per-

formed). Using the value ofÆL that is 0.3 less than the value for which bistability

begins, the switch-on input power is much lower for the caseC = 20 than for the

non-chirped device, if each device is driven to provide a 30 dB unsaturated transmis-

sion peak (compare the solid lines of Fig. 4.5). The switch-on input powers of the two

devices can be set equal by varying the gain of each amplifier. As shown in Fig. 4.6,

approximately equal switch-on powers exist for the two devices at input powers just

higher than 0.2% of the saturation power.
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Figure 4.6: Gain tuning of the hysteresis curve for a�=4-shifted DFB SOA, (a) without and (b) with
spatial chirp.�g0L = g0L � g0L30dB.

4.3 Chirped-Grating DFB SOAs

4.3.1 Spectral Range

The spectral range of bistable switching and the spectral uniformity of the hysteresis

shape were found to be limited for the uniform grating studied in Section 3. As

seen above for phase-shifted devices, spatial chirp can increase the spectral range of

switching; we will investigate improvements to the spectral range and uniformity of

a non-phase-shifted DFB SOA in this section.

Since the Bragg wavenumber varies along the length of a chirped-grating device,

the feedback within the structure is significantly altered. An increase in the amount

of linear chirp weakens the feedback such that the lasing threshold increases [75].

Likewise, the amount of gain required to maintain a transmittivity peak that provides
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30 dB of small-signal amplification also increases. ForjCj = 0, 5, 10, the required

values ofg0L are 1.198, 1.508, and 2.206, respectively, and are used in Fig. 4.7 to plot

the small-signal transmittivity spectra. The shift of the photonic bandgap to higher

values of normalized detuningÆL accompanying an increase ing0L results from

definingÆL to be independent of the carrier density [see Eq. (2.46)], as explained

in Section 2.6. While comparing the bistable response, all amplifiers are driven to

provide 30-dB small-signal amplification.
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Figure 4.7: Small-signal transmittivity spectra for chirped-grating DFB SOAs, withjCj = 0; 5; 10.

The effect of spatial chirp on the entire spectral range for switching at either side

of the photonic bandgap is shown in Fig. 4.8 [65]. The switching powers are given

in terms of the normalized power�P (left axis) and for a specific value ofPsat = 10

mW (right axis). Linear spatial chirp tends to increase the spectral range of bistable

switching for signals incident in either the P-direction or N-direction. The largest per-

cent increase in the spectral range occurs at the long-wavelength side of the photonic

bandgap for signals traveling in the N-direction. ForC = �10, a 92% increase results

in a spectral width ofÆL = 3:97. The broadest total spectral range in Fig. 4.8, how-

ever, is exhibited by switching at the short-wavelength side of the photonic bandgap

for C = �10, and is 5.1ÆL, or 1.86 nm (232 GHz). The blue shift of the low-power

onset of switching follows the shift of the photonic bandgap with increasing gain, as

shown in Fig. 4.7.
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Figure 4.8: Spectral range of bistable switching for optical signals incident in the (a) P–direction and
(b) N–direction of a chirped-grating DFB SOA. The long-wavelength side of (b) forC = �10 exhibits
the lowest overall switching power and the broadest spectral range of low-power switching.

Although signals incident on the short-wavelength side of the photonic bandgap

with C = �10 exhibit the broadest total spectral range, switching powers tend to

increase, as compared to the unchirped case. This is consistent with the effect of

spatial chirp in passive Kerr-nonlinear devices for switching at the center of the pho-

tonic bandgap [70]. Most notably, the low-power onset of bistability increases with

spatial chirp. Considering switching powers less than 0.1 mW, the spectral range is

only 0.36ÆL, or 0.13 nm (16 GHz). UsingPsat = 10 mW, the 0.1-mW power level

corresponds to 0.1�P and is indicated by the dotted lines in Fig. 4.8.

For optical signals on the short-wavelength side of the photonic bandgap and

traveling in theP–direction, switching powers tend todecreasewith spatial chirp.

This is also consistent with studies in passive Kerr-nonlinear devices for switching

at the center of the photonic bandgap. In particular, the onset of switching gradually
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decreases with increasing spatial chirp and is about 0.1�W for C = 10. Since

the onset of bistability has dropped, the spectral range of low-power switching has

increased; the low-power spectral range is twice as wide as for the unchirped grating.

For switching at thelong-wavelength side of the photonic bandgap, optical signals

incident in both directions see a decrease in the onset of switching with an increase

in spatial chirp. Most notably, forC = �10, the switching power at the onset of

bistability drops below the very low level of 10 nW — two orders of magnitude

lower than its value forC = 0. Consequently, this case exhibits the widest spectral

range of low-power switching; the spectral range is 1.37ÆL (0.5 nm, or 62 GHz), an

increase of 2.7 times from the unchirped case.

4.3.2 Spectral Uniformity

We can infer the spectral uniformity of the bistable hysteresis curve from the

switching-threshold curves in Fig. 4.8. For low-power switching near 0.1 mW, the

horizontal separation between curves is greatest on the long-wavelength side of the

photonic bandgap for the casejCj = 10. A wide horizontal separation corresponds

to a greater overlap of bistable hysteresis at different values ofÆL. Moreover, this

side also exhibits large vertical separation between the switching-power curves; the

correspondingly wide hystereses are useful for optical memory because it accommo-

dates a flexible power level of the holding beam. Because of these advantages, we

will focus on the long-wavelength side of the photonic bandgap.

For optical signals traveling in the N–direction, bistability exhibits high unifor-

mity over a spectral range of 12.5 GHz [66]. As seen in Fig. 4.9, there is a region

of input powers that is common to all hysteresis curves. Thus, a signal with an input

power falling within this region can have a wavelength anywhere within this spec-

tral range and still function as a holding beam for optical memory. In particular, the

switch-off powers exhibit only a small spectral dependence.
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Figure 4.9: Bistable output over a 12.5-GHz (ÆL = 0.275) spectral range forC = �10 (N–direction).
Spectral uniformity is improved over the unchirped case shown in Fig. 3.3.

For the N-direction, we are also able to define a common power level separating

on- and off-output powers for both transmission and reflection. Moreover, reflective

bistability exhibits a large degree of uniformity in the output power of the on-state.

We expect that this is beneficial for switching, since all spectral components of a

pulse would experience similar output powers.

This improvement in the spectral uniformity of the hysteresis curve is partially a

result of the decreased switching power at the onset of bistability. Since the onset of

bistability is pushed below 10 nW, the operating powers near 0.1 mW are far from

the region where the hysteresis curve changes dramatically. For comparison, bistable

hysteresis curves near the onset of bistability are shown in Fig. 4.10. Here, the sub-

microwatt switching powers and greater-than-30-dB on-state gains are intriguing, but

the spectral uniformity is so poor that the curves (separated by only 4.17 GHz) barely

touch.

For optical signals traveling in the P–direction, the hysteresis curves overlap, but

only over a small input-power region, as seen in Fig. 4.11. An interesting feature

of optical bistability in this direction is that reflection exhibits loop-shaped behavior

over the entire 12.5-GHz spectral range. The prevalence of the loop-shaped hystere-
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Figure 4.10: Bistable hysteresis curves near the onset of bistability forC = �10, exhibiting sub-�W
switching thresholds, high gain (> 30 dB), but poor spectral uniformity.

ses is common for signals traveling in the P–direction on the long-wavelength side of

the photonic bandgap, and will be discussed in detail in the following section.
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Figure 4.11: Bistable output over a 12.5-GHz spectral range for the P–direction (C = 10).

4.3.3 Reflective Bistability

Spatial chirp has a major effect on reflective bistability in DFB SOAs because it

changes the saturation behavior of the reflectivity resonances [67]. To illustrate this

change, it is instructive to examine the small-signal regime. For optical signals inci-

dent in either the P–direction or the N–direction, reflections from the two edges of

the photonic bandgap exhibit remarkably different behavior, as seen by the reflectiv-

ity spectra shown in Fig. 4.12.
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Figure 4.12: Small-signal reflectivity spectra for several values of the small-signal gaing0L for the
(a) P–direction and (b) N–direction of a linearly chirped DFB SOA withjCj = 5. Note how a deep
reflectivity dip can be realized near one edge of the photonic bandgap for a relatively high value of
gain (gL = 1:1).

Reflectivity resonances exhibit peaks in spite of a reduction in gain for short-

wavelength signals incident in the P–direction [Fig. 4.12(a)] and for long-wavelength

signals incident in the N–direction [Fig. 4.12(b)]. According to Yamada [75], each

of these signals has a wavelength that matches the Bragg wavelength away from the

input facet, and therefore travels deep into the amplifier before being reflected; the

increased gain-length product results in the persistent reflectivity peak.

For these two enhanced-reflection cases, we find that the reflectivity resonances



4.3. CHIRPED-GRATING DFB SOAS 68

remain spectrally overlapped with the resonances formed by the average internal

power. As a result, the reflected-power behavior mimics that of the internal power,

and only S-shaped hystereses occur [67]. Fig. 4.13 shows the spectral evolution of

reflective bistability at the long-wavelength edge of the photonic bandgap for optical

signals incident in the N-direction. The inverted-S- and loop-shaped hystereses do

not appear.
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Figure 4.13: Spectral evolution of the reflected-power hysteresis for optical signals incident in the
N-direction near the long-wavelength-edge of the photonic bandgap. Parameters are the same as
in Fig. 4.12, except thatg0L = 1:5081. The inverted-S- and loop-shaped hystereses do not occur
(compare with Fig. 3.5).

In contrast, anincreasein spectral range for inverted-S- and loop-shaped hystere-

ses occurs for an optical signal with a wavelength that matches the Bragg wavelength

near theinput facet of the DFB SOA. This condition is satisfied for long-wavelength

signals incident in the P–direction [Fig. 4.12(a)] and for short-wavelength signals in-

cident in the N–direction [Fig. 4.12(b)]. Here, the reflectivity resonance peak readily

diminishes with gain saturation. Moreover, we find that the reflectivity resonance dip
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is the most prominent for anon-zerovalue of gain. In Fig. 4.12, large reflectivity

dips occur forgoL = 1:1. Increasing the amount of spatial chirp tends to increase

the value of gain for which the dip is most prominent. Gain saturation via the optical

signal now has an even larger effect on the reflected-power hystereses.

A consequence of the readily inverted resonance peak is that loop-shaped hystere-

sis curves occur at smaller incident powers. Fig. 4.14(a) shows a loop-shaped hys-

teresis for an optical signal on the short-wavelength edge of the photonic bandgap,

incident in the N–direction of a chirped-grating DFB SOA. The hysteresis is similar

in shape to that of Fig. 3.4, but the switching powers are one order of magnitude

smaller, at 20-�W for Psat = 10 mW. The loop-shaped hysteresis curves not only

occur for smaller incident powers, but also exist over a wider spectral range than for

the unchirped case.

As discussed in Section 3.5, the high-incident-power tail of the reflected-power

hysteresis pushes down for signal wavelengths on the short-wavelength side of the

photonic bandgap. For the chirped-grating case, a deep reflectivity dip can affect

the optical signal during the bistable switching process, allowing the bottom of the

hysteresis tail to approach zero reflected power. An example is given in Fig. 4.14(b),

for a longer optical wavelength than in Fig. 4.14(a). Downward switching occurs

from an on-state of about 4-dB amplification with an on–off switching ratio of about

30.

For thelong-wavelength side of the photonic bandgap, a deep reflectivity dip also

affects the optical signal during bistable switching. This causes the hysteresis loop

to push down toward zero for the loop- and inverted-S-shaped hysteresis curves, as

shown in Fig. 4.15 for signals incident in the P–direction. The on–off switching ra-

tios at the low-incident-power side are greater than 30 for the outer hysteresis curves,

which span a spectral range ofÆL = 0.6. This corresponds to a spectral width of

about 27 GHz for a 300-�m-long device operating near 1.55�m. Within this spectral

region, the reflective hysteresis obtains an on–off switching ratio in excess of105, as
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Figure 4.14: Reflected-power hysteresis curve for optical signals incident in the N–direction with
wavelengths on the short-wavelength side of the photonic bandgap. The switching thresholds for the
loop-shaped hysteresis in (a) are an order of magnitude smaller than those of Fig. 3.4(b). The on–off
switching ratio exceeds 30 for the high-incident-power side of the hysteresis curve in (b).

exhibited by the middle hysteresis of Fig. 4.15. In spite of these excellent switch-

ing ratios, amplification has been lost since the peaked-reflectivity resonance is not

encountered by the optical signal.

4.3.4 Large Amounts of Chirp

For large amounts of spatial chirp, resonances away from the photonic bandgap tend

to become stronger. This is apparent in Fig. 4.7; forjCj = 10, the outer resonances

provide about 20-dB amplification. One consequence is that strong outer resonances

can give rise to bistable switching in thesamespectral region as a neighboring res-

onance [65]. This behavior is seen in Fig. 4.8 for the caseC = �10 in the spectral
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Figure 4.15: Reflected-power hysteresis curves for signals incident in the P–direction with wave-
lengths on the long-wavelength edge of the photonic bandgap. The on–off switching ratio exceeds105

for the low-incident-power side of the middle hysteresis.

region from 8.1 to 8.67ÆL. Here, optical signals experience two hystereses in their

transmitted power, as shown in Fig. 4.16 forÆL = 8.4. This behavior has interest-

ing applications as a three-level optical memory, or optical switch. We expect that

a prudent choice of device parameters (e.g., spatial chirpC, coupling coefficient�)

will bring the switching powers of both bistable regions closer, for practical device

operation.

For large amounts of linear spatial chirp, resonances away from the photonic

bandgap can become strong enough that they exhibit the lowest lasing threshold [75].

This behavior is shown in Fig. 4.17 forjCj = 15 for a value ofg0L = 2:74, equivalent

to 98% of the lasing threshold. Under such conditions, the inner resonances are

unable to provide 30-dB amplification. Hence, the outer resonances should be used

for high-gain optical switching. As stated above, from a computational perspective,

any value of g0L can be used in calculations, but only one that lies below lasing
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Figure 4.16: Double bistability occurring for a large chirp value ofC = �10.

threshold is physically valid for our model. Thus, care must be taken during the

study and design of chirped-grating DFB SOAs to track the lasing threshold.
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Figure 4.17: Transmission through a DFB SOA withjCj = 15 driven at 98% of its lasing threshold,
exhibiting strong secondary resonances.

4.4 Conclusion

In this chapter, we investigated the effects of grating nonuniformities on the bistable

performance of DFB SOAs. Our analysis extended the transfer-matrix method dis-
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cussed in Chapter 3 to account for grating nonuniformities such as phase shifts, spa-

tial chirp, and amplitude taper. In particular, we found that spatial chirp can increase

both the spectral range of low-power switching and the spectral uniformity. To find

this improvement, we considered switching on both sides of the photonic bandgap,

and in both directions along the linearly chirped device; we predicted that the largest

improvement occurs for reflected signals incident along the N–direction (the direction

of increasing grating period), on the long-wavelength side of the photonic bandgap.

This conclusion is based on reasonable values of the device parameters, and on con-

sidering switching powers below 0.1 mW.

A total linear variation of about 0.24% (jCj = 10) increased the spectral range of

switching by 2.7 times to a range of 1.37ÆL. For a 300-�m-long device operating

near 1.55�m, this spectral range is 0.5 nm (62 GHz), as opposed to 0.19 nm (23

GHz) for an unchirped device. Furthermore, over a spectral range of 12.5 GHz,

the bistable hysteresis exhibited a small variation in the output powers of the upper

branch of the hysteresis curve, a clear separation of upper and lower output-power

branches, and a region of common input powers. Taking the application of optical

memory as an example, the common input-power region allows flexible alignment of

the holding beam, which must fall between the switching thresholds of the hysteresis

curve. Moreover, the clear separation of upper and lower output-power branches

of the hysteresis curve allows the on-state and off-state to be well defined over the

12.5-GHz spectral range.

Spatial chirp also had a dramatic effect on the shape of the hysteresis curve on

reflection. The inverted-S and loop shapes discussed in Chapter 3 can either be elimi-

natedor enhanced, depending on the direction of incidence of the signal and depend-

ing on which side of the photonic bandgap the signal falls. In particular, for signals

travelling in the P–direction on the long-wavelength side of the photonic bandgap,

the reflectivity resonance pushed toward zero reflectivity during the bistable switch-

ing process. For a chirp parameter ofjCj = 5, this resulted in an on–off switching
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ratio of at least 30 over a range of 27 GHz, with the maximum switching ratio ex-

ceeding 105:1.
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Chapter 5

Optical Bistability:
Time-Dependent Analysis

5.1 Introduction

The steady-state model for bistability in DFB SOAs developed in Chapters 3 and 4

is useful for studying many aspects of bistability, such as the spectral range, spectral

uniformity, shape of hysteresis curves, and dependence on grating nonuniformities.

We now shift our focus to the temporal behavior of optical bistability. In this chapter,

we develop a simple model of the bistable system that serves as the basis for simulat-

ing all-optical processing in Chapter 6. We also compare results with the steady-state

model, and discuss the change in the shape of the hysteresis curve resulting from fast

input-power modulation.

5.2 Time-Dependent Model

The time-dependent behavior of dispersive bistability in DFB SOAs can be studied

with the coupled-mode equations (2.43) and (2.44) for the bistable signal and the

gain rate equation (2.52) that embodies the SOA carrier dynamics. This system of

nonlinear, coupled, partial differential equations can be greatly simplified, while re-

taining insightful solutions, by applying some approximations common to the study
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of optical bistability; namely, the mean-field approximation [10], [78], the uniform-

gain approximation [43], and the adiabatic elimination of the optical signal [36], [43].

A model using these approximations has been previously presented for DFB SOAs

[43], and used to study pulses that undergo bistable switching. In this section, we

apply these approximations to our form of the governing equations given in Chapter

2.

The gain rate equation (2.52) can be simplified by assuming that theaverage

value of the optical power is sufficient to calculate the saturated gain [12], [43]. This

is a sensible approximation for a uniform-grating DFB SOA because the summed

intensity of the coupled modes can result in a nearly uniform saturated-gain distribu-

tion [43]. (Such an approximation was avoided in the steady-state model since it was

used to study nonuniform gratings.) Using the mean power, and assuming a uniform

steady-state gaing0, the gaing itself no longer varies along the amplifier. An equa-

tion for the uniform gain can be derived by averaging the rate equation (2.52) over

the length of the amplifierL:

�
dhgi
dt

= g0 �
�
1 +

hPAi + hPBi
Psat

�
hgi; (5.1)

where the angled brackets indicate longitudinal averaging. For the final term, we have

factored the average of the gain–power products into the average of their arguments;

such a factoring scheme (of the field and medium response) has been referred to as

the mean-field approximation [78].

The powersPA andPB [defined in Eq. (2.53)] found in Eq. (5.1) are obtained from

the coupled-mode equations (2.43) and (2.44); analytic solutions to these equations

are possible if we apply some common assumptions. Under the approximation that

the average power is sufficient to calculate the gain (as discussed above), the gain

becomes uniform along the amplifier, and thus we may use its average valuehgi in

the coupled mode equations [12], [43].
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To further simplify the coupled-mode equations, we assume that the field en-

velopesA andB adjust instantaneously to changes in the SOA gain [36], [43]. The

optical fields therefore attain their steady state quickly, allowing the time derivatives

to drop in Eqs. (2.43) and (2.44). The bistable system dynamics are hence determined

solely by the gain rate equation (5.1). This adiabatic approximation is valid when the

unobstructed signal-transit time (L=vg � 0.003 ns) through the amplifier is much

shorter than the carrier lifetime (� � 0:2 – 1 ns), and shorter than the rise and fall of

the input-field envelopeh(t).

Under the adiabatic and uniform-gain approximations, the coupled-mode equa-

tions (2.43) and (2.44) become ordinary differential equations (of independent vari-

ablez) with constant coefficients. The general solutions for the counterpropagating

fields, as given by Eqs. (2.64) and (2.65), are

A(z) = A1 exp(iz) + rB2 exp(�iz); (5.2)

B(z) = rA1 exp(iz) +B2 exp(�iz); (5.3)

where

r = ( ��)=�; (5.4)

 =
p
�2 � �2; (5.5)

� = Æ � i
hgi
2
(1 � i�) + i

�int

2
: (5.6)

Applying the boundary conditions of an input-field envelopeh(t) at one facet, i.e.,

A(z = �L=2; t) = h(t) andB(z = L=2; t) = 0, and assuming that anti-reflection
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(AR) coatings nullify the facet reflections, the counterpropagating field envelopes are

A = h
 cos(�) + i�sin(�)

 cos(L) � i�sin(L)
; (5.7)

B = h
i� sin(�)

 cos(L) � i�sin(L)
; (5.8)

where� = z � L=2.

Using the field envelopes (5.7) and (5.8), the optical powersPA andPB are

PA = P0� [cosh(2i�)�1 � sinh(2i�)�2 + cos(2r�)�3 � sin(2r�)�4] ; (5.9)

PB = P0�j�j2 [cosh(2i�) � cos(2r�)] ; (5.10)

whereP0(t) = jh(t)j2� is the input power, = r + ii, and

�1 = � +���; (5.11)

�2 = �� + ��; (5.12)

�3 = � ����; (5.13)

�4 = i(�� � ��); (5.14)

� = [cosh(2iL)�1 + sinh(2iL)�2 + cos(2rL)�3 + sin(2rL)�4]
�1:(5.15)

To obtain the average power within the SOA, the solutions (5.9) and (5.10) are

integrated over the device lengthL to yield:

hPAi = P0�

�
sinh(2iL)�1 + [cosh(2iL) � 1]�2

2iL
+

sin(2rL)�3 + [1� cos(2rL)]�4

2rL

�
;

hPBi = P0�j�j2
�
sinh(2iL)

2iL
� sin(2rL)

2rL

�
:

Substituting these expressions for the average powers into the gain rate equation (5.1)

adiabatically eliminates the internal optical powers; the resulting ordinary differential
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equation has only a single dependent variable,hgi, and is relatively simple to solve

numerically. For the simulations shown here, we solve the equation using a variable-

order technique and limit the estimated numerical error to 0.1% for each integration

step. Once the average gainhgi is calculated for all time, the solution vector can be

used to obtain the bistable output power.

Analytic expressions for the bistable transmitted powerT (t) = PA(z = L=2; t)

and reflected powerR(t) = PB(z = �L=2; t) can be found using Eqs. (5.9) and

(5.10), respectively:

T = P0�2(
2
r + 2i ); (5.16)

R = P0�j�j2[cosh(2iL) � cos(2rL)]: (5.17)

An example using the transmitted-power expression (5.16) is shown in Fig. 5.1.

To trace out the hysteresis, we used a sinusoidal input powerP0(t) = p[1 �
cos(2�t=Tm)]; wherep = 0:6 mW is the input amplitude andTm = 106� is the

modulation period. A slow period was chosen to simulate steady-state behavior; the

correspondingly large integration step size�t = 100� skips over transient behavior

at the switching thresholds, which is addressed in the following section.

By plotting the input–output transfer function (i.e.,P0 vs. T ), as shown in

Fig. 5.1(a), explicit time dependence naturally drops. The dynamic hysteresis, un-

like the steady-state case, can be decomposed into its time-dependent components,

as shown in Fig. 5.1(b). Hysteresis is apparent in the decomposed input and output

pulses — the switch off power is different from the switch on power because the

system is affected by its past state. When we use the term “hysteresis” for the steady-

state solutions calculated in Chapters 3 and 4, we have in mind the behavior produced

by the time-dependent model.
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Figure 5.1: (a) Bistable hysteresis curve on transmission using the time-dependent model. (b) Input
and transmitted powers plotted as a function of time.

5.3 Hysteresis

Using a long modulation period ofTm = 106� , we compare solutions from the time-

dependent and steady-state models for reflective bistability on the short-wavelength

side of the photonic bandgap in Fig. 5.2. The switching powers for the time-

dependent case are higher — the whole hysteresis curve is shifted toward higher

powers. The upward-switching thresholds are about 16% greater for the two small-

est values of the normalized detuningÆL, whereas the downward-switching thresh-

olds are nearly 50% greater. This increase may be an error resulting from using the
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average-power distribution to calculate the saturated gain. Such an approximation

was found to result in larger switching-threshold powers (by 15 %) in bistable Fabry-

Perot SOAs [13].
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Figure 5.2: Comparison of reflective hystereses from steady-state (dashed lines) and time-dependent
models.

Although the switching thresholds generated by each model are different, the

switching behavior of each hysteresis curve is qualitatively the same; the time-

dependent model faithfully produces even the loop-shaped and inverted-S-shaped

hysteresis curves. We therefore expect the simple dynamic model to provide qualita-

tively accurate solutions in general.

To create a hysteresis curve using the time-dependent model, an input-power,

time-dependent waveform is first used as an initial condition to calculate an output-

power waveform. The output solution representsactualpower levels achieved by the
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signal. Thus, upon creating the input–output transfer function, the unstable branch,

which is apparent in the steady-state solution, does not occur.

The switching thresholds of the hysteresis curve begin to vary as the modula-

tion periodTm is decreased, as shown in Fig. 5.3 forTm=� = 106; 104; 102; 100, and

10�2. As the modulation period is decreased, the power required for upward switch-

ing increases. Even atTm=� = 104, the switching threshold is 5% greater than for

Tm=� = 106; for Tm=� = 100, the upward switching power has increased by over

2000%. As the modulation period is decreased, the downward-switching threshold

shifts to lower powers and the hard switching edge smooths off to a gradual slope.

Eventually (atTm=� ' 10�1) the downward-switching transition is so smooth that

threshold powers are difficult to define.

For modulation periods ofTm=� = 104; 102, and100, spiking occurs during up-

ward switching. For these cases, the time step�t used in numerical calculations

(defined as�t=Tm = 10�4) is equal or less than� . Spiking behavior of this sort

is common in simulations of dispersive bistability in resonant-type SOAs [23], [36],

[43], and occurs as the optical signal passes through the peak of the Bragg resonance

[43], [45]. The peak of the spike is enhanced in simulations as an artifact from the

adiabatic elimination of the bistable signal from the system dynamics [23].

For short modulation periods beginning at0:4� , spiking does not occur, and the

hysteresis curve is shaped like an oblong loop. As the period is decreased further,

the loop closes down, and eventually becomes a line, as seen forTm=� = 10�2 in

Fig. 5.3. This closing down behavior at short modulation periods was first noted by

Westlake et al. [37] for bistability in Fabry–Perot SOAs, where the hysteresis closed

down atTm ' 2� .

The closing down of the bistable curve suggests that the hysteretic response of the

DFB SOA cannot be used for optical memory at repetition rates faster than the inverse

of the carrier lifetime� [37], [36]. However, the slow repetition rate of memory does
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Figure 5.3: Dependence of the hysteresis curve on the modulation periodTm = 10x, where the
integers near the peaks are the values ofx.

notprevent such devices from finding applications in high-speed communications, as

shown in the following chapter.

5.4 Conclusion

In this chapter, we developed a time-dependent model of the bistable DFB SOA sys-

tem. We arrived at a simple model by adiabatic elimination the optical signal in the

governing equations, and by assuming that the average power in the SOA is sufficient

to determine the saturated gain. We found that this model yields higher switching-

threshold powers than those obtained from the steady-state model (which did not use

an average power), but that the shapes of the hysteresis curves qualitatively agree for

long signal-modulation periods. For modulation periods approaching the carrier life-

time � , the hysteresis shape changed dramatically, and new features such as spiking

and closing down of the hysteresis curve became prominent. Despite these features,

the hysteretic nature of optical bistability in DFB SOAsisuseful for high-speed mem-

ory applications, as shown in the following chapter.
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Chapter 6

All-Optical Flip–Flop

6.1 Introduction

All-optical techniques for processing lightwave-communication signals have ad-

vanced considerably in recent years. Intensive research has produced practical all-

optical devices for tasks such as data-wavelength conversion [6], regeneration [79],

and demultiplexing [80]. In an analogy to electronics, these devices exhibitcombi-

national logic [81] — i.e., the output is determined by the existing state of the input

signals. Using the example of data-wavelength conversion, the output power at the

converted wavelength changes in response to the input data of the original wave-

length; as the input signal subsides, the converted power returns to its initial state,

thus replicating the data.

Digital signal processing in electronic systems makes use of combinational and

sequentiallogic [81]. The output signal from devices exhibiting sequential logic is

determined by the existing state of input signalsand the state of past input signals

— it exhibits memory. The basic building block of sequential processing in electri-

cal systems is called a flip–flop [81], which exhibits bistability and is controlled by

auxiliary signals.

In an attempt to bring the advantages of sequential processing to the optical layer

(i.e., for optical signals, without electronic conversion), optical bistability has been
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Figure 6.1: All-optical flip–flop. Optical output is controlled by optical input signals.

investigated as a means of realizing an all-optical flip–flop [23], [30], [82], [83]. The

basic idea of an all-optical flip–flop is represented in Fig. 6.1; a bistable, latchable

output power is controlled by optical signals. Early work on optical bistability was

motivated, in part, by the possibility of optical computing, in which arrays of optical

flip–flops would be used for processing. However, recall that the number density

of SOA devices is limited by heat dissipation (as discussed in Section 1.2), thereby

making SOA-based large-scale processing inferior to electronic processing. Here,

we bypass this limitation for optical processing by investigating applications to fiber-

optic communications in which even a single flip–flop is useful.

All-optical flip–flop operation has been demonstrated using Fabry–Perot SOAs

by Ogasawara et al. [23] and by Inoue [30]. Set and reset were performed in their

experiments by either by varying the holding-beam input power (set: [23], [30]; reset:

using a ‘negative’ optical pulse [23]), or by modulating the holding beam via a closely

tuned (0.008 nm) auxiliary signal (reset: [30]). Thus, these control techniques have a

very limited wavelength range.

In this chapter, we present new optical-control techniques to set and reset a

resonant-type SOA-based optical flip–flop using control signals that exhibit a very

wide wavelength range of operation. We begin by discussing a commonly referenced

control technique based on varying the holding-beam input power [23]. Then, we dis-
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cuss the physical mechanism of our control technique (that doesnot rely on changing

the holding-beam input power) and simulate its operation. All-optical flip–flop op-

eration is achieved using the experimental system described in the following section.

We then investigate different aspects of flip–flop performance, such as polarization

and power requirements, to gauge the practicality for lightwave systems. We close

the chapter by considering an application of such a device — data-format conversion

from high-speed RZ signals to low-speed NRZ signals.

6.2 Principle of Operation

6.2.1 Control using Holding Beam

The two output states of an optical flip–flop based on optical bistability in a resonant-

type SOA are simply where the signal’s input powerP0 intersects the two branches

of the hysteresis curve, as shown in Fig. 6.2 atP0 = PH . The output power of the

signal can be set and reset betweenPon andPo� by varyingP0 through the upward

and downward switching thresholds, respectively [23]; we discuss and simulate this

process to introduce key concepts and to facilitate comparison with our new control

techniques.

The input powerP0 is initially located between the switching thresholds, likePH

in Fig. 6.2. Optical set can be performed by increasing the input power beyond the

upward switching threshold [23], [30], and can be understood as follows. An increase

in optical power within the SOA stimulates recombination of electron-hole pairs (i.e.

gain saturation), which increases the refractive index; the signal thereby increases its

own wavenumber and optical phase. This self-phase modulation (SPM) shifts the

photonic bandgap and Bragg resonances to longer wavelengths. As a Bragg reso-

nance moves onto the signal wavelength, the internal optical power increases even

more. Bistable upward switching occurs when a positive feedback loop (between the
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Figure 6.2: Flip–flop output states. Two stable transmission states,Pon andPo� , occur for a single
input powerPH .

internal optical power, nonlinear refractive index, and Bragg resonance) causes the

Bragg resonance to shift through the signal wavelength, providing resonant ampli-

fication for the signal. Set operation is shown in Fig. 6.3, where we have used the

time-dependent model developed in Chapter 5. This input power is given by

P0 = PH [1 + 0:5f(t� t1)� 0:5f(t� t2)]; (6.1)

where the perturbationf(t� tx) to the average input powerPH is given by

f(t� tx) = expf�[(t� tx)=Wf ]
2Mg; (6.2)

and the parameter values are given in Table 6.1.

The signal’s output power remains at a high levelPon (corresponding to the upper
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Figure 6.3: Flip–flop operation based on the holding beam. (a) The holding-beam input powerP0 is
varied beyond the switching thresholds to (b) set and reset the bistable transmissionT .

hysteresis branch) even after its input power returns to the initial statePH , as shown

in Fig. 6.3. Although the bistable signal provides the same input power, the larger

output is achieved because the new Bragg-resonance location provides resonant am-

plification. The relatively larger optical power within the SOA, in turn, maintains the

amount of carrier-density depletion required to hold the Bragg resonance in place.

The latching occurs on the short-wavelength slope of the Bragg resonance, which

(unlike the long-wavelength slope) is stable if perturbed; for example, a momentary

increase in the input power will increase the refractive index and shift the resonance
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Table 6.1: Parameter values for flip–flop control via holding beam.

Quantity Symbol Value

Mean input power PH 0.02 mW
Carrier lifetime � 0.2 ns
Set pulse center t1 23 ns
Reset pulse center t2 63 ns
Integration step size �t 2 ps

away from the holding-beam wavelength, resulting in a reduction of power and mov-

ing the resonance back to its original location.

The flip–flop is reset by decreasing the input power of the holding beam beyond

the downward switching threshold of the hysteresis curve. The resulting decrease

in the internal optical power allows the carrier density to recover, therebydecreas-

ing the refractive index. SPM shifts the Bragg resonance to shorter wavelengths and

back toward the holding-beam wavelength. As the resonance peak passes the signal

wavelength, a positive feedback loop (acting in the opposite manner as for upward

switching) shifts the Bragg resonance to even shorter wavelengths and lowers the out-

put power toPo�. In terms of the input powerP0, reset is achieved by the application

of a ‘negative’ optical pulse [23], as shown in Fig. 6.3.

Using the input and output powers of Fig. 6.3 to assemble a nonlinear transfer

function, we find the interesting hysteresis-curve shape shown in Fig. 6.4 (solid lines).

The largest features of Fig. 6.4 correspond to the relatively narrow spikes of Fig. 6.3.

Likewise, the long time interval of the ‘on’ state in Fig. 6.3 is condensed to a point

on the hysteresis curve of Fig. 6.4; the time aspect of the input and output fields is

lost in the bistable hysteresis curve.

Moreover, the new hysteresis curve does not closely resemble the ‘ordinary’ hys-

teresis curve of Fig. 6.2, calculated using a slowly varying sinusoidal signal, and

shown with dotted lines in Fig. 6.4. Although the actual shape of the hysteresis curve
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Figure 6.4: Transfer functions for the flip–flop operation shown in Fig. 6.3 (solid lines) and the slowly
modulated hysteresis curve of Fig. 6.2 (dotted lines).

depends on the modulation rate and peak power of input signal, the locations cor-

responding to ‘on’ and ‘off’ states are the same for both curves shown in Fig. 6.4.

Thus, the initial figure 6.2 is justified, since its purpose was to show the existence of

two stable states corresponding to a single input powerPH ; long modulation period

Tm was selected to produces a familiar-looking shape.

6.2.2 Control using Auxiliary Signals

For the flip–flop operation described in the previous section, the holding beam pro-

vides the power used to latch the flip–flopand initiates set and reset via SPM. We

seek to relegate the control functionality to auxiliary optical signals. Separating hold-

ing and control functionality is advantageous because the holding-beam source can

then be optimized solely for wavelength and power stability. Furthermore, set and

reset can then be performed directly by signals from an optical network. Such a sys-

tem is depicted in Fig. 6.1, where the box labelled “Flip–Flop” contains the bistable

system comprised of the holding beam and DFB SOA. Ideally, set and reset can be

performed over a wide wavelength range; hence, control signals can come from a va-
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riety of wavelength channels in modern-day wavelength division multiplexed (WDM)

systems, where the channel spacing is� 0.8 nm.

The general principle we use to relegate control to auxiliary signals is to re-

place the holding-beam self-phase modulation (SPM) discussed in Section 6.2.2

with auxiliary-signalcross-phase modulation (XPM). The set signal, like the hold-

ing beam, falls within the SOA gain spectrum and hence stimulates recombination

of electron-hole pairs. Recombination causes gain saturation and an increase in the

refractive index evenat the holding-beam wavelength. Thus, the set signal modu-

lates the wavenumber and phase of the holding beam; this kind of XPM has been

used in other geometries and applications, including data-wavelength conversion in

SOA-integrated Mach-Zehnder interferometers [89], as well as clock recovery and

clock division in nonlinear optical loop mirrors [61].

For our application, the increase in refractive index pushes the photonic bandgap

and Bragg resonances to longer wavelengths. Upward switching occurs when the

Bragg resonance has been shifted at least enough to seed the positive feedback loop

for upward bistable switching. In terms of the hysteresis curve, using XPM to shift

the Bragg resonance toward the holding-beam wavelength corresponds to pushing the

switching thresholds to lower powers. Switching occurs once the upward-switching

threshold has been brought to the holding-beam input powerPH , as depicted in

Fig. 6.5.

After the set pulse passes through the SOA, the hysteresis curve returns to its

initial shape, but now the output power falls on the higher branch atPon, as depicted

in Fig. 6.5. The post-switching location of the Bragg resonance provides resonant

amplification of the holding beam, resulting in a larger output power and sufficient

internal power to lock the resonance in place, as described in Section 6.2.1.

The flip–flop is reset by pushing the hysteresis curve to higher powers, allowing

the downward-switching threshold to reach the holding-beam input power, as de-

picted in Fig. 6.6. The hysteresis curve can be shifted in this way by signals that are
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Figure 6.5: XPM-based set. (a) The transmitted power (indicated by the circle) is initially low for a
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branch.

absorbedby the SOA, giving their energy to electrons that are then excited into the

semiconductor conduction band. This gain pumping is accompanied by adecrease

in the refractive index and optical phase at the holding-beam wavelength. As the

refractive index decreases, the Bragg resonance shifts to shorter wavelengths; reset

occurs when the Bragg resonance shifts enough to cause the positive feedback loop

that results in downward bistable switching.

XPM-based reset is qualitatively different from the SPM-based reset in that the

former increases the carrier density directly by the application of optical power (i.e.,
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Figure 6.6: XPM-based reset. (a) High initial transmitted power (indicated by the circle). (b) XPM
(���) caused by a reset signal pushes the hysteresis curve to larger powers, and the transmitted power
drops to the lower hysteresis branch. (c) After the reset pulse passes, the hysteresis curve relaxes to
initial shape, and transmission remains at the lower power.

a ‘positive’ optical pulse). For SPM-based reset, on the other hand, the carrier den-

sity increases through the natural recovery of the SOA gain as the internal power of

the holding beam is reduced. This internal power can be reduced either by using a

negative optical pulse (as shown in Fig. 6.3) [23], or by interfering the holding beam

with a closely tuned auxiliary signal [30]. The interfering-signal technique shifts the

bistable switching thresholds to higher powers while the holding-beam input power

is constant and can be achieved at relatively low reset-beam powers, but requires a

close matching between the holding and reset wavelengths of about 0.008 nm. The
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XPM-based reset technique, on the other hand, can be achieved over a wide wave-

length range (> 160 nm), but requires higher powers (> 0.7 mW) [85], as will be

described in Section 6.4.

Our goal in modeling the XPM set–reset techniques is to show hysteresis-curve

shifting and ultimately flip–flop operation by incorporating the control signals in a

simple, phenomenological manner. The set~ES and reset~ER fields pass through the

DFB SOA without interacting with the index grating, and can be expressed as

~ES(x; y; z; t) = Ref�̂F (x; y)S(z; t) exp(i�Sz) exp(�i!St)g; (6.3)

~ER(x; y; z; t) = Ref�̂F (x; y)R(z; t) exp(i�Rz) exp(�i!Rt)g: (6.4)

The polarization vector̂� and the transverse fieldF (x; y) are assumed to be the same

as those of the holding beam,S andR are the slowly varying field envelopes, and

�S and�R are the wavenumbers. The set-signal optical frequency!S falls within the

SOA gain curve, and the reset-signal frequency!R falls outside of the gain curve, on

the higher-frequency side.

The control signals affect the bistable output power of the holding beam by chang-

ing the SOA carrier density; we account for these signals by expanding the rate equa-

tion (2.48) as follows

�Dr2N +
@N

@t
=

J

ed
� N

�
� a(N �N0)

I

~!
� a(N �N0)

IS

~!S
+ �

IR

~!R
: (6.5)

The first three terms on the right hand side are found in the rate equation (2.48) of

Section 2.3. The penultimate term accounts for stimulated recombination of electron-

hole pairs by the set signal having an intensityIS. The final term accounts for the

reset signal, having an intensityIR, and� characterizes its absorption by the valence-

band electrons.

The set-signal term within the rate equation (6.5) is functionally similar to the
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holding-beam term, both of which deplete the carrier density. In general, the amount

of gain experienced by these signals will depend on their detuning from the SOA

gain peak, the spectral location of which shifts with changes in the carrier density.

We ignore these gain-curve dependent effects because we do not expect them to sig-

nificantly alter the flip–flop behavior.

Interference terms produced by the set signal were also dropped. Nonlinear fre-

quency mixing is not appreciable from the sub-milliwatt input powers used in ex-

periments. In addition, we have avoided a close detuning (0.008 nm) between the

set signal and holding beam in our experiments which can reset the flip–flop (as dis-

cussed in Section 6.2.1). Spatial interference was neglected because carrier diffusion

is assumed to smooth out the longitudinal spatial holes.

To account for carrier generation by the reset signal, we consider the SOA to

be an ideal four-level system. The reset-signal photons are absorbed by electrons

occupying the 1st level (bottom of the valence band). These electrons jump to the

fourth level (top of the conduction band), where they quickly relax (< 1 ps) to the

3rd level (bottom of conduction band) and become part of the carrier densityN .

Thus, the absorbed photon flux�I=(~!R) in Eq. (6.5) represents a transfer of energy

from the reset signal to the carrier density. To simplify our study, we assume that

this energy-transfer process has perfect efficiency, and we ignore the depletion of

the ground-state electrons (i.e.,� is constant). The increase in gain due to the reset-

signal term in the gain rate equation resemblesJ=ed, which accounts for the electrical

injection of carriers.

We simplify the carrier-density rate equation (6.5) in the same manner as dis-

cussed in Chapter 5 for Eq. (2.48). Averaging over the transverse dimensions of the

active region introduces the optical confinement factor� and the mode cross section

�; since the transverse-mode profileF (x; y) is assumed to be the same for the hold-

ing beam and the control fields, the confinement factor� and mode cross section�

are also identical. We also assume that the average optical power is sufficient to cal-
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culate the carrier density, and invoke the mean-field approximation. Using the gain

expression (2.47), the resulting gain rate equation is

�
dhgi
dt

= g0 + �
hPRi
PRsat

�
�
1 +

hPAi + hPBi
Psat

+
hPSi
PSsat

�
hgi; (6.6)

wherePS = jSj2�, PR = jRj2�, � = ��m, PSsat = ~!SWd=(�a�), andPRsat =

~!RWd=(�a�).

The control-signal powersPS andPR can be obtained from the following propa-

gation equations

@PS

@z
+

1

vS

@PS

@t
= gPS ; (6.7)

@PR

@z
+

1

vR

@PR

@t
= ��PR; (6.8)

wherevS andvR are the group velocities for the set and reset signals, respectively. As

in Chapter 5, we assume that the SOA responds to the average of the signal powers,

which allows the modal gaing to be replaced by its average valuehgi. This is a more

severe approximation for the control signals than for the holding beam because the

former do not scatter off of the grating and therefore have an exponential variation

in z. Nonetheless, eliminating thez dependence of such travelling-wave signals is a

common simplification for the study of nonlinear phenomena in SOAs [61], and is

especially suitable for a qualitative analysis and for a small gain–length product.

The propagation equations (6.7) and (6.8) can be further simplified by assuming

that the control signals respond instantaneously to changes in the carrier density. As

discussed for the holding signal, this adiabatic approximation is valid when the transit

time (L=vx � 0.003 ns) through the amplifier is much shorter than the carrier lifetime

(� � 0:2–1 ns), and shorter than the rise and fall of the input-field envelopes. Under
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these approximations, the control-signal equations become

dPS

dz
= hgiPS ; (6.9)

dPR

dz
= ��PR: (6.10)

Applying the boundary conditionsPS(z = �L=2; t) = PS0(t) and PR(z =

�L=2; t) = PR0(t), the solutions to Eqs. (6.9) and (6.10) give the control-signal

distributions along the amplifier:

PS = PS0 exp

�
g(z +

L

2
)

�
; (6.11)

PR = PR0 exp

�
��(z + L

2
)

�
: (6.12)

Integrating Eqs. (6.11) and (6.12) over the length of the amplifier, we obtain

hPS i = PS0
exp(gL)� 1

gL
; (6.13)

hPRi = PR0
1� exp(��L)

�L
: (6.14)

A short control pulse (e.g.,� 8 ps) can abruptly change the carrier density on

a scale much smaller than� (e.g., a few ps [61]), thus invalidating the adiabatic

elimination of the optical signals over this time interval. After such an abrupt change,

however, the carrier density recovers at a rate governed by the carrier lifetime� ,

the time scale used for the adiabatic approximation, and our model is valid. The

validity of the adiabatic approximation can also be threatened by aslowlyvarying set

signal as well as the continuous-wave (CW) holding beam itself. By operating these

signals at high powers, the carrier density responds to an effective carrier lifetime

�eff = �=(1 + PI=Psat) [61], which can approach the signal transit time (� 3ps).
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The internal powerPI in our simulations, however, does not exceed the saturation

power, so our model remains valid for the cases considered here.

The control signals interact with the carrier-density energy spectrum atwell-

localized energies, namely~!S and ~!R. However, localized changes in carrier

density at these energies are quickly distributed throughout the energy spectrum by

intraband scattering in less than 1 ps. For longer time scales, the change in the SOA

gain-curve spectrum, for a given change in the carrier density�N , is therefore inde-

pendent of the control signal’s optical frequency; i.e., the gain spectrumg(!) is ho-

mogeneously broadened. The accompanying change in the refractive index�n(!0)

at the holding-beam frequency!0 is given by a Kramers-Kronig relation:

�n(!0) = �2c

�

1Z
z=0

d

�g(
)


2 � !20
; (6.15)

where
 is the running-frequency variable, the integral is performed in accordance

with the its principle value, and�g is negative for a change due to gain saturation.

Since the change in the SOA gain-curve spectrum�g, is independent of the control

signal’s optical frequency (for a given change in the carrier density�N ), the change

in the refractive index�n(!0) is also independent of the control signal’s frequency.

Since the linewidth enhancement factor� is proportional to the ratio of these changes,

it is also independent of the control-signal frequency. Thus, acommonvalue of� is

used in the coupled-mode equations to transfer changes in gain (due toanysignal) to

changes in the refractive index at the holding-beam frequency.

Our model is now complete. The control-signal powers (5.16) and (5.16) are used

within the modified gain rate equation (6.6). Once the gain is calculated for all time,

the solution vector is used to find the holding-beam output powers using Eqs. (5.16)

and (5.17) derived in Section 5.2.

We used this model to show how the hysteresis curve shifts in Fig. 6.5 and 6.6 un-

der the application of CW set and reset signals, respectively [84]. The initial and final
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Table 6.2: Parameter values for flip–flop control via control signals.

Set saturation power PSsat 10 mW
Reset saturation power PRsat 11.8 mW
Reset absorption �L 2.3
Set-pulse gaussian order N 4
Reset-pulse gaussian order M 4
Set Peak Power Si 0.1 mW
Reset peak power Ri 1.02 mW
Set time center tS 23 ns
Reset time center tR 63 ns
Set Width WS 1 ns
Reset Width WR 1 ns

hystereses [parts (a) and (c)] are identical to the hysteresis curve of Fig. 6.2, and do

not include control signals. The same parameter values are used in Fig. 6.5(b), except

for a CW set signal withPS0 = 84�W. For Fig. 6.6(b), this set signal was replaced

by a reset signal having a peak power ofPR0 = 1:2 mW; other parameter values

are given in Tables 6.1 and 6.2. We used a large integration step size�t = 100�

which skips over the transient behavior at the switching thresholds. Such behavior

is not central to our discussions regarding the stable output states [Fig. 6.2, 6.5, 6.6,

6.16(b)], but is included in the context of flip–flop operation (Fig. 6.3, 6.7, 6.17).

The model correctly simulates all-optical flip–flop operation; namely, the set sig-

nal switches the holding beam to a higher output-power state, which is maintained

for a duration longer than the set-pulse width, and the holding beam power returns to

its lower state upon the application of the reset pulse. As an example, we use input

control pulses of the form

PS0(t) = Si exp
n
� [(t� tS)=WS ]

2M
o
; (6.16)

PR0(t) = Ri exp
n
� [(t� tR)=WR]

2N
o
; (6.17)
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whereSi andRi are the input amplitudes,tS andtR define the center of the pulses,

WS andWR are proportional to the pulse widths, andM andN are the orders of

the super-gaussian pulses. All-optical flip–flop operation is shown in Fig. 6.7, where

the control signals are defined by parameter values given in Tables 6.1 and 6.2. In

addition,P0 = 0:02 mW; the holding-beam input is constant for flip–flop simulations

and therefore the adiabatic-approximation condition thath(t) vary slowly is always

satisfied.
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Figure 6.7: Flip-flop operation via auxiliary optical signals. (a) Set and reset signals control the (b)
bistable transmissionT by varying the hysteresis curve according to Fig. 6.5 and Fig. 6.6.
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6.3 Experimental Demonstration

6.3.1 Experimental System

All-optical flip–flop operation was investigated using the experimental system shown

in Fig. 6.8 [85]. The system is conceptually divided into three sections; control-signal

generation, optical flip–flop, and detection.
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Figure 6.8: Experimental system for all-optical flip–flop demonstration.

Optical Flip–Flop

The optical flip–flop is enclosed by the hashed box in Fig. 6.8; its main ingredients

are a DFB SOA, tapered fibers for optical coupling, a holding laser, and a fiber cou-

pler. As a DFB SOA, we used a commercial DFB laser driven below lasing threshold;

the device used for all experiments whose results are reported in this thesis is charac-

terized in Appendix A. To control its temperature, the SOA chip was mounted to an

aluminum heat sink using the process described in Appendix B. The heat sink was

fastened to a brass block, which was itself connected to a thermo-electric cooler. The
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heat sink also provided the electrical contact for the N-side of the SOA; the P-side

received current through a contact probe placed on top of the SOA. The DFB SOA

was mounted to allow access to both input and transmission facets by tapered fibers.

The CW holding beam originated from an external-cavity tunable-diode laser,

having a wavelength range of 1499 nm to 1581 nm, a 0.001-nm fine adjustment,

and a maximum output power of� 6 mW. Since the holding-beam wavelength must

be located at the long-wavelength side of the dominant DFB Bragg resonance, this

tunable laser was ideal for accommodating the Bragg resonance of any DFB laser

used in the course of experiments. In front of the holding laser, a 55-dB isolator

prevented back reflections. The polarization controller was used to align the holding-

beam polarization to the transverse-electric (TE) mode of the SOA gain region, and

gave us the flexibility to explore the polarization dependence of flip–flop operation.

The holding beam was sent into the DFB SOA through one branch of a 3-dB PM

fiber coupler. The other branch accepted the optical control signals.

Control Signals

Set signal originated from an external-cavity tunable-diode laser having a nominal

wavelength range of 1520 to 1570 nm, a fine adjustment of 0.01 nm, and a maximum

power of� 0.5 mW. We used this laser to provide the set signals, as opposed to

the holding beam, because of its inferior fine adjustment of 0.01 nm. The laser was

protected by an isolator, and its polarization was controlled for optimum coupling into

a 5-GHz LiNbO3 modulator. The 8-dB insertion loss from the modulator resulted in

a transmitted power of less than 100�W. An erbium-doped fiber amplifier (EDFA)

was used to boost and compensate for the loss from the modulator and the 3% port of

a fiber coupler which combined the set and reset pulse trains. In front of this coupler,

a filter removed much of the ASE noise from the EDFA, and a polarization controller

was used for flexible alignment.

The reset wavelength in our experiments fell outside the SOA gain spectrum, to
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the short-wavelength side. We found that lasers with a central wavelength near 1310

nm (for data generation in 1310-nm fiber-optic communication systems) or near 1480

nm (for EDFA pumping) were both capable of performing reset. The spectra from

these lasers with respect to the SOA gain curve are shown in Fig. 6.9.
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Figure 6.9: Spectra of two separate reset lasers compared to SOA gain curve.

Reset data was generated by direct modulation. We did not use the LiNbO3 mod-

ulator because we did not have an optical amplifier to counteract its 8-dB insertion

loss. To obtain modulated data with high-contrast ratios, the laser was biased near

lasing threshold. To maintain as much reset-signal power as possible, the signals

were passed through the dominant port of the 97/3 PM fiber coupler.

Control data was generated by a 3.5-GHz pulse-pattern generator. To clearly

observe latching of the holding beam during the interval between the set and reset

pulses, it was important to make this interval long relative to the set- and reset-pulse

widths. Hence, a simple square-pulse train (with a 50% duty cycle) could not be

used to clearly observe memory. The 32-bit programmable pattern capability of the

pulse-pattern generator was very helpful for generating a signal train with a low duty

cycle; for example, a ‘1’ bit followed by 31 zeros provided a 1.6% duty cycle in

return-to-zero (RZ) format.
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We generated both the set and reset pulse trains simultaneously from thesame

pulse-pattern generator. One option for generating two electrical pulse trains was to

simply use a junction to separate the output along two different cables; this technique,

however reduced the output voltage to each laser and was sensitive to electrical feed-

back, promoting the generation of extraneous pulses. A separate source of pulses

was available from the inverted output portOUTPUT. However, if the output port

(OUTPUT) is set for a 1.6% duty cycle (as in the example above), the inverted output

port (OUTPUT) has an unfortunate 98.4% duty cycle! We overcame this problem

by feeding the inverted electrical signal from theOUTPUT port into a LiNbO3 mod-

ulatorbiased on the negative slopeof its transfer function. In this configuration, the

modulator transferred the inverse of the electric signal onto the optical signal — an

electrical signal having a 98.4% duty cycle created an optical signal having a 1.6%

duty cycle. In this way, we created two low-duty-cycle pulse trains using a sin-

gle pulse generator generator. During experiments, using two separate output ports

(OUTPUT andOUTPUT) was also useful since each could be turned on and off in-

dependently of the other, allowing each signal to be individually tested in the optical

system.

The set and reset pulses, although created by the same data generator, separated

in time by traversing different path lengths before being combined by the 97/3 fiber

coupler. Since the set and reset pulse trains travelled different paths before the fiber

coupler, their relative mismatch could be tuned by changing the repetition rate of

the pulse generator. This technique allowed us, for example, to adjust the interval

between the set and reset pulses and observe unambiguous latching of the bistable

signal.

While the maximum output voltage from the pulse-pattern generator (3.3 V) ben-

eficially created strong pulses from the directly modulated reset laser, it surpassed the

voltage limit of the LiNbO3 modulator. An electronic limiter was used to reduce the

input voltage into the modulator voltage to below 2 V.
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Detection

The control signals passed through the 3-dB fiber coupler within the hashed box of

Fig. 6.8 on route to the DFB SOA. This coupler served the dual purpose of bringing

both the control and holding signals into the DFB SOA, and of creating a reference

input-pulse train for monitoring during experiments. Reference set and reset signals,

as well as the flip–flop output signals, were measured with detectors having band-

widths exceeding 20 GHz, and either a digital-sampling oscilloscope, or a 500-MHz

real-time oscilloscope. An isolator was used before each detector to protect the sys-

tem from back reflections.

The real-time and digital-sampling oscilloscopes had minimum grid spacings of

1 and 2 mV, respectively. This difference seems innocuous, but was significant for

some of the signals in our experiments. For a detector conversion gain of 10 mV

/ mW, a single oscilloscope grid requires 100 and 200�W of signal power, respec-

tively. In our experiments, we used set signals as low as 22�W, which were therefore

difficult to observe using the digital-sampling oscilloscope.

To clearly observe the flip–flop output, which was� 100�W, we used an am-

plifier. Electronic amplifiers, however, were not appropriate because their low-

frequency cut–off frequency warped the flat holding-beam signal that we tried to

observe. Hence, we used an EDFA, as shown in Fig. 6.8. A tunable filter was placed

after the to remove the wideband EDFA amplified spontaneous emission (ASE) and

to block the amplified set pulses. The measured holding-beam powers given below

were scaled to give the powers within the fiber before the EDFA. Input powers were

measured in the reference arm and scaled to give the powers within the fiber before

the DFB SOA.
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6.3.2 Set–Reset Operation

Control signals for a typical experiment are shown in Fig. 6.10(a). The 1567-nm

set signals had a peak power of 22�W, and a pulse energy of 330 fJ. Reset was

performed using 1306-nm signals with a peak power of 2.4 mW and a pulse energy

of 36 pJ. The DFB SOA was biased at 97% of lasing threshold.
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Figure 6.10: All-optical flip–flop operation. (a)1567-nm set and 1306-nm reset signals controlling (b)
the output power of the 1547-nm holding beam.

Control signals toggle the holding beam shown in Fig. 6.10(b) with a 6.2-dB

contrast between 25- and 105-�W output states. Since its input power was 65�W, the

holding beam experiences a small fiber-to-fiber on-state gain. Note that the memory

occurs at the holding-beam wavelength of 1547 nm, which is different than the set

wavelength of 1567 nm.

The on state shown in Fig. 6.10(b) is maintained for 0.824�s. This demonstration

of a long, static set is important because it shows unambiguous latching of the flip–

flop. A longer duration can be selected by using a pulse-pattern generator with a

larger bit-pattern memory, or a slower pulse-repetition rate. The experimental data

agrees qualitatively with simulations — gain-saturating and gain-pumping pulses set

and reset the bistable output state of the DFB SOA, respectively. This agreement

validates our understanding of the physical processes.
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6.4 Performance

In this section, we investigate the performance of the flip–flop under a variety of

operating conditions. In particular, we are interested in learning if the flip–flop is

suitable for WDM fiber-optical communications systems.

6.4.1 Wavelength Range and Power

For use in WDM systems, the flip–flop should be able to be controlled by a wide range

of signal wavelengths. Although this was not possible with previous techniques,

the XPM optical-control techniques allow flip–flop operation over a wide range of

wavelengths. Using the external-cavity tunable diode-laser, we achieved set operation

from 1533 to 1568 nm, as depicted in Fig. 6.11. The short-wavelength bound of this

range is where the set signal looses its ability to saturate the gain. The upper bound

was imposed by the poor amplification of the EDFA (in control-signal portion of

Fig. 6.8) at long wavelengths. Since 1568 nm is near the peak of the SOA gain

spectrum, we expect the set range to extend at least 20 nm to longer wavelengths

[86]. This large (> 50 nm) wavelength range is ideal for WDM lightwave systems;

signals from a wide range of communication channels can serve to set the optical

flip–flop.

The set-signal wavelength range extends on both sides of the Bragg resonance;

flip–flop operation for 1537-nm set signals having a pulse power of 0.9 mW (and

energy of 18 pJ) is shown in Fig. 6.12(a) [reset pulses are the same as for Fig. 6.10].

Thus, the XPM-setting technique works for signals that interact with the carrier-

density distribution at loweror higher energies than the holding beam. Although

1567-nm set signals could be as low as 22�W (probably resulting from the high am-

plification at that wavelength), the minimum allowable optical power at 1537 nm was

85�W. These powers are low enough to expect that optical signals directly from the

communication system can set the flip–flop without pre-amplification.
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Figure 6.11: Broad spectral range of set signals. Demonstrated spectral range of set pulses compared
to the ASE spectrum of the DFB SOA.

The broad wavelength range demonstrated for the set signal was eclipsed by that

of the reset signal. We reset the holding-beam power shown in Fig. 6.12(b) using

an EDFA-pump laser at 1466 nm (with pulse widths of 15-ns, and energies of 1.98

and 0.77 pJ for the reset and set signals, respectively). We expect that reset occurs

over the intermediate 160-nm spectral range between 1306 and 1466 nm, and extends

down to much shorter wavelengths; any optical frequency that excites electrons to the

conduction band can potentially reset the flip–flop. Most importantly, we expect that

all signals within the 1310-nm communication band can perform the reset function.

This allows communication between the two well-developed systems centered near

1550 and 1310 nm. 1306-nm reset-signal powers were typically required to be above

0.7 mW.

Flip–flop operation occurred over a holding-signal wavelength range of only

0.004 nm in our experiments (for constant signal powers). Physically, this limited
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Figure 6.12: Flip–flop operation using (b) 1537-nm set and 1306-nm reset signals, and (c) 1567-nm
set and 1466-nm reset signals.

wavelength range is a trade off for using a resonant-based device, which beneficially

provides a high change in output power (6 dB) for small input powers (< 100�W).

However, by using XPM-control techniques, we have sheltered this limitation from

the global optical system, and confined it to within the box labeled “Flip–Flop” in

Fig. 6.1. Thus, from a systems point of view, the flip–flop has a very wide wave-

length range of operation.

6.4.2 Direction and Polarization

Since the role of the control signals is to change the carrier density, they are not

required to enter the SOA in a co-propagating direction with the holding beam; XPM

was observed for control pulses entering either SOA facet. We expect that control

signals can even enter from an off-axis direction [83]. Transparency regarding the

incident direction allows flexibility in designing the control-signal input system, as

well as in specifying the exiting direction of the amplified set signals.
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We also investigated dependence on the polarization. In modern-day fiber-optic

systems, the polarization of signals is not preserved during propagation. Thus, the

flip–flop should be transparent to the control-signals’ polarization. Optical reset was

found to be transparent to the polarization of the 1306- and 1466-nm signals. How-

ever, flip–flop operation was dependent on the polarization of the set pulses. The

polarization dependence for gain-saturating pulses is well known, and can be sig-

nificantly reduced by using techniques such as growing the gain-region depth to the

same scale as its width [88], or by using strained growth of the quantum wells. The

polarization of the holding beam was also crucial for flip–flop operation; this is not a

disadvantage since the holding laser can be located near the DFB SOA.

6.4.3 Set-Pulse Power

Since small powers (< 0.1 mW) are sufficient to set the flip–flop, data signals from an

optical network can easily exceed the minimum required set power. In this section,

we explore how the shape of the holding-beam output power is affected by a varied

set-pulse power.

Although flip–flop operation still occurs between two flat output statesPon and

Po�, an intermediate statePx can appear during the duration of the set signal. Using

rectangular set pulses (width� 4 ns), this intermediate state takes the form of a flat

ledge, as seen in Fig. 6.13(a) for a set power of 0.28 mW, and a holding-beam input

power of 0.04 mW. We analyze the set-pulse ledge by first noting that the flat level of

the ledge indicates that the system has achieved a steady state during the application

of the set pulse. Thus, we can study this ledge behavior by simulating the bistable

hysteresis curve under the influence of a CW set signal, as was used in Fig. 6.5 and

6.6 during the discussion on set and reset operation.

Using simulations, we find that a relatively large set-signal power (PS0 = 0:28

mW) pushes the upward-switching threshold well beyond the holding-beam input
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Figure 6.13: Set-pulse ledge. (a) Ledge featurePx can occur during application of set pulse. (b)
Severe hysteresis-curve shift is origin of ledge. (c) Ledge heightPx � Po� decreases with set power.

powerPH , as seen in Fig. 6.13(b), where we have overlapped the bistable hysteresis

with and without the set signal. (All other parameter values are listed in Tables 6.1

and 6.2.) The higher branch of the hysteresis curve drops accordingly, and therefore

the output power switches fromPo� to Px. The intermediate statePx is significantly

lower than the final statePon, which is obtained after the set pulse passes through the

device.

The large difference between the upper branches of each hysteresis curve arises

from both dispersive and gain-related effects; greater XPM pushes the Bragg reso-
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nance away from the holding-beam wavelength, and larger gain saturation diminishes

the strength of the Bragg resonance. These effects grow as the set-pulse power is in-

creased. Therefore, the height of the ledge above the lower statePx�Po� diminishes

as the set power is increases, as measured and shown in Fig. 6.13(c).

For a small range of set-pulse powers, the ledge heightPx � Po� , and the ledge

is not visible. The ledge also goes unnoticed for low set powers, wherePx � Pon

since the flip–flop is set without too much variation in the hysteresis-branch height.

Otherwise, set-pulse ledges will occur. Such ledges significantly warp the flip–flop

output if their temporal widths are on the same order as the interval between set and

reset signals. Relatively short set signals, however, do not significantly distort the

holding-beam output shape.

6.4.4 Relative Strength of Control Signals

In experiments and simulations, we found that the required set-signal power was

much smaller than that of the reset signal. The theoretical model presented here

provides insight into the relative strength of these processes. The phase change��

experienced by the holding beam as the gain changes by an amount�g, is given by

the change in wavenumber,�� = ��gL�=2. Using the steady-state solution to

the gain rate equation (6.6), and isolating the effects of the optical signals, the phase

change is given by

�� =
�

D�

�
g0L

2

hPAi+ hPBi
Psat

+
g0L

2

hPS i
PSsat

� �L

2

hPRi
PRsat

�
; (6.18)

D� = 1 +
hPAi+ hPBi

Psat
+
hPSi
PSsat

: (6.19)

The three terms in the bracketed expression of Eq. (6.18) represent (from left to right)

holding-beam SPM, set-signal XPM��SXPM, and reset-signal XPM��RXPM. For

the parameter values used throughout this thesis (� = 5; g0L � 1:2; and�L = 2:3),
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the prefactors�g0L=2 � � and��L=2 � 2�. Thus, the strength of each signal power

(within the SOA) relative to its saturation power determines the number of� phase

shifts experienced by the holding beam.

For the case of small optical powers (relative to the saturation powers), the quan-

tity D� � 1. The expression for set-signal XPM can be estimated by using the

average-power equation (6.13) with the small-signal limitg = g0 andPSsat = 10

mW:

��SXPM � 0:18�PS0; (6.20)

��RXPM � �0:06�PR0; (6.21)

where the input powers are given in mW. The phase change for the reset signal

��RXPM was obtained using (6.13) for the average power andPRsat = 11:8 mW.

To obtain the same amount of phase shift, Eqs. (6.20) and (6.21) reveal that the

reset signal must provide more power than the set signal. In addition to a smaller

saturation power, the set signals are amplified by the medium, as opposed to the

absorbed reset signal. Moreover, the effect of the holding-beam power on the XPM

phase changes (i.e.D� > 1) makes it even more difficult for the reset XPM; whereas

the set signal sees a relatively small internal holding-beam power, the reset signal

sees a resonant-amplified holding beam, further reducing��RXPM.

6.4.5 Speed

The set and reset times of the flip–flop signal shown in Fig. 6.10 are 16 ns and 24 ns,

respectively, where we used 15-ns control signals and a real-time oscilloscope with a

8-ns resolution. Using a digital-sampling oscilloscope, the fastest rise and fall times

were measured to be 300 ps and 700 ps, respectively, using 360 ps and 800 ps set and

reset pulses, respectively.

Our experimental investigation into the maximum repetition rate of the all-optical
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flip–flop was limited by the low modulation bandwidth of the directly modulated

reset laser (about 1 GHz). For a pulse-generator rate of 3.44 GHz, we achieved flip–

flop operation using pulse widths of 360 ps and 800 ps for the set and reset signals,

respectively, as shown in Fig. 6.14. Because of the wide reset pulses, clear flip–flop

operation required a ‘10000000’ data pattern, which resulted in a set-to-set period of

only 2.4 ns.

The physical limit to the repeatability rate of SOA devices is the inverse of the

carrier recombination lifetime� . We were hopeful that our optical-control techniques

allow repetition rates faster than this limit because neither control process relies on

the natural recovery of the SOA; set and reset signals effect a decrease and increase in

the carrier density, respectively. We have investigated high-speed flip–flop operation

with our numerical model, but have only achieved a set-to-set period of 90%� . At

high speeds, the reset signal’s effect on the carrier density must exactly balance the

set signal’s effect — this balance is difficult to achieve. Such high-speed operation

is therefore probably impractical for actual fiber-optic networks because it would

require an input-power control scheme for each signal.

Although the repeatability rate seems to be ultimately limited by the carrier life-
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time, the all-optical flip–flopcan be controlled by pulses shorter than this character-

istic time. As reported above, we performed set in our experiments using a 300-ps

pulse. Using simulations, flip–flop operation was achieved with pulses a fraction of

the carrier lifetime. For example, using a set signal having a 0.1-� rising edge and

a 0.22-� width, we predicted that the flip–flop turns on within 0.5� , as shown in

Fig. 6.15. Also shown, using a reset signal having a 0.6-� rising edge and a 2-�

width, we predicted that the flip–flop turns off within 0.9� . As shown in Chapter

5, the hysteresis curve closes down for input signals modulated sinusoidally at rates

approaching the carrier lifetime. This does not mean, as we have shown in Fig. 6.15,

that bistable memory does not work for signals with pulse widths less than� . We

discuss the utility of using short pulses in Section 6.5.
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6.4.6 Back-to-Back ‘Set’ Signals

Since set signals are envisioned to be taken directly from the optical system, there

may be situations where multiple set signals enter the flip–flop before reset occurs.

(All such ‘set’ signals are referred to here as set signals, although only the first one

sees the flip–flop in its off state.) The stability and response of the flip–flop output

power to back-to-back signals is therefore important to consider.

A pulse sequence of two set signals followed by a reset signal was used in exper-

iments, as shown in Fig. 6.16(a), where the holding-beam power wasPH = 0:068

mW; the response of the flip–flop is shown in Fig. 6.16(b). The first and last pulses

of this sequence perform set and reset, as expected. A ledge was produced for a set

power of 0.59 mW, as described above.

While the holding beam is in the high-output statePon, the second set signal enters

the SOA. The flip–flop output power is reduced for the duration of the set signal, but

returns toPon after the signal dissipates. The notch in the output power can also be

understood from the hystereses in Fig. 6.13(b) used to describe the set-pulse ledges.

Unlike for the case of the ledges, however, the holding-beam output power begins

in the high statePon. The second set signal pushes the hysteresis curve to smaller

switching powers, and the output power drops accordingly toPx. However, since

the switching thresholds do not cross the holding-beam input power, the final output

state does not change; after the set pulse dissipates, the hysteresis curve returns to the

original shape and the holding-beam returns to an output power ofPon.

Using our numerical model, we simulate the flip–flop response to back-to-back

set pulses. Both set-pulse ledges and notches are obtained, as shown in Fig. 6.17,

where the parameter values are the same as for Fig. 6.7, exceptSi = 0:6 mW,Ri =

2:2 mW,WS = 0:8 ns,WR = 0:6 ns, andtR = 66 ns. The second set signal is defined

bySi = 0:6 mW,WS = 0:8 ns, andts = 42 ns. Set and reset switching exhibit spikes,

as seen for numerical data shown in Fig. 6.7. The enhancement of the switching
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spikes in numerical simulations occurs as an artifact from the adiabatic elimination of

the bistable signal from the system dynamics [23]. In addition, suppression of spikes

in experimental measurements can result from the slow response of the detection

scheme [36]; our 500 MHz oscilloscope may have diminished the measured spikes.

If the output power from the flip–flop is coupled into an optical network, fiber dis-

persion is expected to fill in the notches caused by set pulses that are short compared

to the on-state duration. In this case, the notches will not persist.

These experiments on the response to multiple ‘set’ pulses also give information

on the stability of the flip–flop. The second ‘set’ pulse, with peak power� 0:6 mW
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and pulse width� 4 ns, did not cause the holding-beam output power to become

unstable and return to the the lower levelPo�.

6.5 Applications

The all-optical flip–flop has many features that make it suitable for WDM fiber-optic

networks, including a wide wavelength range of control signals, reasonable opti-

cal powers, polarization independence of reset and set (expected) signals, and trans-

parency to signal phase. These featuresallow the flip–flop to be used in a fiber-optic

network, but do wewantto use it? That is, is there an application for it? Applications
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would have to accommodate a set-to-set repeatability rate below 10 GHz and a low

number density of flip–flops.

The memory capability of the flip–flop allows a short signal to be stretched in

time, thereby increasing its energy. For example, the 15-ns set pulses shown in

Fig 6.10 activate the memory, which is held for 824 ns; i.e., the 330 fJ input pulse was

converted to a 84 pJ pulse. This new pulse has steep sides and a flat top. Moreover,

simulations show that a short pulse having a width of 0.22� can trigger the flip–flop

(Fig. 6.15). This capability may be useful for converting short pulses from a high-

speed trunk line to long, higher-energy pulses for a low-speed, local-access systems

comprised of low-cost, low-speed detectors.

Another application may be found in futuristic fiber-optic communication sys-

tems that use return-to-zero (RZ) format to transfer data over high-capacity fiber sys-

tems. Such a format would allow, for example, time-division multiplexing of signals,

and the use of solitons. While trunk lines may require such high capacities, local net-

works might still retain the non-return-to-zero (NRZ) format and a lower data rate.

Thus, a means converting high-speed RZ signals to low-speed NRZ signals would be

desired.

To achieve RZ-to-NRZ conversion with our flip–flop, the RZ signals from the

optical network are sent directly into the flip–flop and have wavelengths that set the

device. The reset signals are a generated locally (like a local optical clock), and enter

the SOA as a steady stream of pulses. Set and reset pulse trains are timed to overlap

each other, as shown in Fig. 6.18(a); the set-signal data pattern is ‘11001110,’ and the

reset-signal pattern is simply ‘11111111.’

The key to operation lies in the relative strength of the set and reset signals. As

observed in experiments (Section 6.4.1) and discussed in Section 6.4.4, set occurs at

smaller powers than reset. Therefore, if both signals enter the SOA at the same time

and are of the same order of magnitude, the set signals will override the reset signals.

This reset-signal override produces an effective reset pulse train of ‘00110001.’ The
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flip–flop output takes the form of NRZ data, as shown in Fig. 6.18(b). The notches

caused by consecutive set pulses are discussed in Section 6.4.6, and do not signif-

icantly affect the output since the RZ pulses are much narrower than the NRZ bit

length. The long bit length of local access systems accommodates the slow repeata-

bility rate of the DFB SOA. Applications like these make this all-optical flip–flop

appealing to fiber-optical communication systems.

6.6 Conclusion

We have demonstrated how to control the bistable output power from a resonant-

type SOA via auxiliary optical signals. Instead of varying the holding-beam input
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power, we vary the bistable hysteresis curve itself using auxiliary control signals that

shift the photonic bandgap and Bragg resonances. Separating holding and control

functionality is advantageous because the holding-beam laser can then be optimized

solely for wavelength and power stability. Furthermore, set and reset can then be

performed by signals directly from an optical network.

Control signals were found to operate at submilliwatt powers over wide wave-

length ranges (> 35-nm set range and> 160-nm reset range) that intersect impor-

tant communication bands centered near 1550 and 1310 nm. Hence, control signals

can come from a variety of wavelength channels in modern-day wavelength division

multiplexed (WDM) systems, where the channel spacing is� 0.8 nm. Control is

transparent to the direction and phase of the optical signals, as well as to the po-

larization of the reset signal. We expect that the set-signal polarization dependence

can be eliminated. Experiments were performed using a commercially available,

telecommunications diode laser driven below lasing threshold. Thus, the flip–flop’s

technology is already available.

The flip–flop is a building block for all-optical sequential processing, and we gave

two examples of possible applications to high-speed fiber-optic communications. The

flip–flop can convert high-speed RZ data to low-speed NRZ data. This application

overcomes all of the limitations of optical bistability in resonant-type SOAs summa-

rized in Section 1.2.2. Not only is the wavelength range of control signals long, but

the application of conversion permits slow repetition rates. Moreover, only a small

number of components are required — only the DFB SOA and holding laser are used.

Another application is to use the digital-memory capability of the flip–flop to stretch

a data pulse in time, thereby transforming it into a long pulse with more energy.

We also presented a simple time-dependent model which incorporates the bistable

system and control signals, and gives qualitatively accurate results, which even pre-

dict such features as notches caused by back-to-back set signals and ledges caused

by strong set-pulse powers. To arrive at a simple mathematical model, we invoked
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approximations that are common to studies of optical bistability and nonlinear SOA

dynamics. We expect the present model to be useful for further investigations into

the response of the flip–flop, as well as for applications to optical systems.
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Chapter 7

Data-Wavelength Conversion

7.1 Introduction

The capacity of fiber-optic communication systems can be increased by using

wavelength-division multiplexing (WDM), in which signals of different wavelengths

are transmitted simultaneously over a single fiber. WDM systems have already been

commercially deployed in point-to-point transport links and are beginning to be used

in multi-point networks [4]. Such systems also have the flexibility of routing signals

based on their wavelength. This allows even a single channel to be dropped from a

background of signalswithoutelectronic conversion [4].

In dealing with multi-wavelength optical networks, the capability of transferring

data from one wavelength to another (called “wavelength conversion” in the litera-

ture) is important for many reasons. For example, a signal entering a fiber having

many wavelength channels can be converted to a pre-specified wavelength to avoid

channel contentions [4]. Moreover, a signal exiting from a high-capacity fiber having

many wavelength channels and entering a low-capacity subsystem can be converted

to a pre-specified wavelength for the subsystem; this would allow the mass production

of many subsystems with the same wavelength specifications [90]. Data-wavelength

conversion can also be used with wavelength routers to control the flow of signals

through a network.
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Currently, the most successful wavelength-conversion technique is based on elec-

tronic processing [4]; an optical signal is detected, and the resulting electrical signal

drives an external modulator for a laser at a different wavelength. This technique

beneficially regenerates the signal with a good extinction ratio and low noise, and

the converted wavelength can be one of the wide variety of wavelengths produced

by semiconductor lasers. However, the conversion speed is currently limited by the

detector and modulator to� 10 Gb/s, and achieving substantially faster speeds is

expected to be expensive.

In anticipation of the speed limitations of opto-electronic wavelength conversion,

there has been intensive research into all-optical techniques [86], [89]– [94]. In this

chapter, we demonstrate wavelength conversion using a DFB SOA. We focus on

1310-to-1550 nm wavelength conversion, which would bring flexibility to a high-

bandwidth fiber-optic network usingboth low-loss spectral windows located near

1310 and 1550 nm. We discuss our experimental system, demonstrate 1306-to-1547

nm and 1466-to-1547 nm wavelength conversion, and explore the conversion depen-

dence on such aspects as wavelength, polarization, and data rate. Then, we demon-

strate wavelength conversion between signals within the 1550-nm spectral window,

and compare our research with other all-optical techniques.

7.2 Experimental System

We achieved wavelength conversion using the experimental system is depicted in

Fig. 7.1. The 1310-nm data was generated using a directly modulated Fabry–Perot

laser biased slightly above threshold. A polarization-maintaining 3-dB coupler, de-

signed for 1550-nm light, passed about 80% of the 1310-nm data signal toward the

DFB SOA. We used a tunable laser to provide the continuous-wave (CW) probe,

which interacted with the Bragg resonance located at the long-wavelength edge of

the DFB stop band. Optical signals were coupled in and out of the DFB SOA via ta-
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pered fibers; coupling was assisted by an anti-reflection (AR) coating (optimized for

1550-nm light) applied to the input facet of the SOA. An erbium-doped fiber ampli-

fier (EDFA) boosted the converted signal, and a tunable filter reduced the amplified

spontaneous emission (ASE). Converted signals were measured using a 25-GHz de-

tector and a digital-sampling oscilloscope with a 20-GHz sampling head. Input pow-

ers were measured at the input fiber before the DFB SOA. Converted-signal powers

were scaled by the output-branch gain to give power values within the fiber, before

the EDFA.
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Figure 7.1: Experimental system. Transmission of a CW, 1.5-�m probe beam through a DFB SOA is
modulated by a data signal at a different wavelength.

7.3 1306-to-1547 nm Conversion

We achieved 1306-to-1547 nm data-wavelength conversion in a DFB SOA by tuning

a CW probe signal near the Bragg resonance at 1547 nm [95]. The 1306-nm data

signals are absorbed by the SOA, thereby creating charge carriers within the device’s

active region. As a result, the gain and refractive index experienced by the probe sig-

nal are increased and decreased, respectively. Most notably, the strength and location

of the Bragg resonance with respect to the probe signal is changed, and this process

maps the data from the input signal to the transmitted probe signal.
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7.3.1 Polarity Selection

Two types of wavelength-converted signals are shown in Fig. 7.2, where the DFB

SOA was biased at 96% of the lasing threshold. Polarity-preserved data transfer oc-

curs for most probe wavelengths tuned on the short-wavelength side of the Bragg

resonance [e.g., at 1547.707 nm as shown in Fig. 7.2]. The probe experiences a tran-

sient increase in its transmission because the pump-induced decrease in refractive

index shifts the Bragg resonance into the probe wavelength. Transmission is also

increased by the accompanying increase in gain which strengthens the Bragg reso-

nance. We have avoided, though, pump levels that strengthen the Bragg resonance so

much that a measurable signal is generated even without a probe beam [94].
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Figure 7.2: Wavelength conversion from a 1306-nm, 622 Mb/s, ‘10110100’ NRZ input signal. Polarity
of converted signal depends on probe wavelength.

The converted-data polarity can be changed by tuning the probe-wavelength on

the long-wavelength side of the the Bragg resonance; as shown in Fig. 7.2 at 1547.749
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nm, polarity-inverted conversion occurs. In this case, the pump-induced decrease

in refractive index moves the Bragg resonanceaway from the probe wavelength,

decreasing the output power. The transition between polarity-preserved and polarity-

inverted wavelength conversion is shown in Fig. 7.3, where the contrast ratio is the

ratio of the 1547-nm output power with the application of a 1466-nm signal relative

to the output power without it.
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Figure 7.3: Polarity inversion of converted data. A negative contrast ratio (in dB) indicates polarity-
inverted conversion.

7.3.2 Wavelength Range of Data Signals

Wavelength conversion will occur, in principle, for any wavelength that increases the

carrier density. In addition to the 1306-nm signals shown above, we expect that the

same device can convert data from all wavelengths in the 1310-nm communication

window. We have also demonstrated wavelength conversion using a EDFA-pump

laser at 1466 nm, establishing a 160-nm range of input-data wavelengths. The long-

wavelength limit of this spectral range is determined by the SOA gain curve, and can

be adjusted by the semiconductor composition.

Conversion is shown in Fig. 7.4 for 1466-nm input data and for both kinds of

polarity, where the DFB SOA was biased at 98% threshold, and the probe power was
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75�W. The home-made 1466-nm laser mount had a modulation bandwidth below the

low-frequency cut–off frequency (33 MHz) of the pulse-pattern generator used for the

1306-nm laser. Data signals were therefore generated by biasing the 1466-nm laser

below threshold and applying a sinusoidal current from a function generator. This

technique limited the data stream to a pulse train of 1’s shaped like bullets, as shown

at the top of Fig. 7.4. In the inverted-polarity case, an asymmetry is apparent between

the two edges of the converted signal: downward switching occurs at a higher data-

input power than upward switching. This behavior is indicative of hysteresis.
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Figure 7.4: Wavelength conversion from a 1466-nm, 1 Mb/s, ‘11’ RZ input signal. Polarity of con-
verted signal depends on the probe wavelength.
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7.3.3 Linear and Nonlinear Transfer Functions

The positive-feedback loop leading to optical bistability produces a qualitative differ-

ence between the transfer functions of the two polarity types of wavelength conver-

sion, as shown in Fig. 7.5 for 1306-nm data. For polarity-preserved signals, the on–

off ratio grows almost linearly with the peak input power. [On–off ratios (for all data)

are measured using an alternating ‘10’ RZ data pattern.] However, polarity-inverted

signals exhibit a nonlinear, digital-like transfer function. The decreased probe power

within the device allows the carrier density to recover, reducing the refractive index

and shifting the Bragg resonance further away from the probe wavelength. The rela-

tively flat high- and low-contrast regions are advantageous because they can perform

signal reshaping, thereby decreasing the bit-error rate. At 155.5 Mb/s, an on–off ratio

of about 4 extends over an input-power dynamic range of 2 mW, for a device driven at

98% lasing threshold [Fig. 7.5(b)]. We expect this range to extend to higher powers.

7.3.4 Data and Probe Signals

Relatively high 1310-nm-signal powers (> 1 mW) were required to pump the SOA,

but this power level can be reduced by optimizing the coupling efficiency (e.g., using

a 1310-nm-optimized AR coating). Many advantages occur, however,becausethe

role of the input signal is to pump the SOA. We found extinction of the 1310-nm

signal during the conversion process. Therefore, a post-conversion optical filter is

not required to remove the injected data signal. Data transfer was also found to be

transparent to the polarization state of the 1310-nm light. Furthermore, data transfer

occurred for input signals propagating in the same or opposite direction with respect

to the probe signal.

Using a probe power of 3.9�W, it was common to realize> 15-dB fiber-to-fiber

conversion gain at the signal peaks (18 dB for Fig. 7.2). The on–off ratio was max-

imized by aligning the probe polarization with the transverse-electric (TE) mode of
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Figure 7.5: Transfer function of wavelength-converted signals. Polarity-preserved signals exhibit
a near-linear increase in on–off ratio, while polarity-inverted signals exhibit a digital-like transfer
function.

the SOA. We measured the wavelength range of the probe to be 0.068 and 0.02 nm

for polarity-preserved and polarity-inverted signals, respectively. Since these spectral

ranges are small, data can only be transferred to a single WDM communication chan-

nel. A fixed output-wavelength converter is useful; for example, fixed-wavelength

devices avoid channel contentions between signals merging onto a single fiber [4].

Precise alignment of the probe wavelength and DFB resonance can be achieved

by integrating both devices onto the same chip, using an electron beam to write each

grating. Alignment can also be performed by tuning the Bragg resonance via the
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injection current. Using polarity-preserved data, for example, a decrease of 0.38

mA (2% of threshold) accommodated a probe-wavelength increase of about 0.03 nm.

Similar on–off ratios were maintained at the same data rate (155 Mb/s) and even at

622 Mb/s, as shown in Fig. 7.5(c).

7.3.5 Dependence on Data Rate

As the data rate approaches the carrier lifetime (�1 ns), the on–off ratio is expected

to decrease. For polarity-preserved conversion, however, the high optical intensity

effectively reduces this lifetime through stimulated emission. Polarity-inverted data,

with lower intensity, is compromised even at 622 Mb/s, as shown in Fig. 7.5(d) at

98% threshold (similar performance at 96%). At faster rates of 900 and 1250 Mb/s,

the on–off ratio dropped to 2.3 and 1.7, respectively. Using a ‘10110100’ data se-

quence, serious pattern effects were observed above 1 Gb/s resulting, in part, from

the modulation bandwidth of the 1310-nm diode laser. Pattern effects began near 700

Mb/s, and became large at 900 Mb/s for NRZ data, as shown in Fig. 7.6 (98% lasing

threshold), but remained small for RZ input and converted data.
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Figure 7.6: Patterning effects at 900 Mb/s for RZ and NRZ signals with a ‘10110100’ data sequence.
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7.4 Conversion within the 1550-nm Spectral Window

Although we have focused on wavelength conversion from a shorter wavelength

(1306 or 1466 nm) to the communication spectral window centered near 1550 nm,

conversion between two signals within the 1550-nm window can also be performed

with the DFB SOA. All-optical data conversion between signals of wavelength sepa-

ration less than 50 nm has been intensively investigated since the early 1990’s (e.g.,

[89], [90]), and has advanced considerably; indeed, all-optical wavelength conversion

has recently been demonstrated at 100 Gb/s using a fully integrated and packaged de-

vice [6].

Within a DFB SOA, a Bragg resonance can be shifted on and off the probe wave-

length (polarity-preserved conversion), or off and on the probe wavelength (polarity-

inverted conversion), by using gain-saturating signals. These data signals saturate the

gain andincreasethe refractive index experienced by the probe signal, shifting the

resonance in the opposite direction as the gain-pumping 1306- and 1466-nm signals

described above. We did not study conversion within the 1550-nm window in detail,

and present here only its basic demonstration. Polarity-inverted wavelength conver-

sion at 1.25 Gb/s is shown in Fig.7.7 for NRZ signals, a 3-�W probe signal, and a

DFB SOA driven at 90% lasing threshold. (This high data rate was achieved using

an external LiNO3 modulator, inserted after the data laser in Fig. 7.1.)

7.5 Comparison with Related Research

7.5.1 1310-to-1550 nm Wavelength Converters

The performance of our 1310-to-1550 nm conversion technique is on par with other

demonstrations [91]– [94]. For example, the measured on–off ratios (OORs) are sim-

ilar: a nonlinear optical loop-mirror technique [93] provided a value of 6 (‘10011100’

RZ at 76 Mb/s); a split-contact device [94] provided 2 [pseudo-random binary-
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sequence (PRBS) at 155 Mb/s), and below 2 (‘10’ RZ at 700 Mb/s); a difference-

frequency technique [92] and the XPM technique of Ref. [91] were not reported with

OOR values, but the later implied poor performance by mentioning methods of im-

provement. For our converter, we measured OORs of 4, 2.3, and 1.7, at 155.5, 900,

and 1250 Mb/s, respectively, using ‘10’ RZ data.

A unique feature found in our all-optical conversion experiments is the inherent,

digital-like transfer function shown in Fig. 7.5. Digital transfer functions are benefi-

cial because they produce output pulses of equal peak power, regardless of the input

power, as long as it surpasses the threshold region. Moreover, the flat tail of the

transfer function is useful for suppressing noise. Conversely, wavelength converters

based on interferometric techniques, for example, have an inherently periodic transfer

function and typically exhibit a poor dynamic range of the input data power.

Our 1310-to-1550 nm conversion technique is similar to another method that used

a split-contact, Fabry–Perot SOA [94]. In such a device, a section in front of the SOA

was biased as an absorber for 1550-nm and 1310-nm light. 1310-nm signals entered

the absorbing region and moved charge carriers to the conduction band, thereby in-

creasing the gain experienced by the 1550-nm probe signal. We expect that the re-

sulting change in the refractive index was the basis of their data conversion. Both
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kinds of data polarity were reported; although a digital-like transfer function was not

reported, we expect that one can be achieved.

7.5.2 Interferometric-based Wavelength Converters

Many wavelength-conversion techniques make use Mach-Zehnder Interferometers

(MZIs) [6]– [91]. The role of the interferometer is to interfere the probe signal with

itself, creating phase conditions of high and low output power. The data signals en-

tering the interferometer change the phase experienced by the probe signal via XPM,

thereby changing its output power. Our configuration of wavelength conversion can

be thought of as substituting the MZI with a diffraction grating — the key is a device

that produces interference of the probe signal. Any resonant-type SOA will work; in-

deed, in 1987, wavelength conversion was demonstrated within the 1550-nm spectral

window using Fabry–Perot SOAs [24]– [26]. Resonant-type SOAs are compact, but

cannot make use of the carrier-lifetime-defying tricks implemented in MZI devices,

such as placing an SOA in each branch of the interferometer [79].

To achieve 1310-to-1550 nm wavelength conversion, we use signals thatgenerate

charge carriers and decrease the refractive index. Other wavelength converters based

on XPM operate via the the reverse process: carrier-depletingsignals that increase

the refractive index [86], [89], [91]. We expect that these converters can also be used

“in reverse” with carrier-generating signals to allow 1310-to-1550 nm wavelength

conversion.

7.5.3 All-Optical Flip–Flop

Wavelength conversion demonstrated in this chapter is closely related to the all-

optical flip–flop operation discussed in Chapter 6. Indeed, cross-phase modulation

(XPM) processes via carrier-depleting signals (for 1550-nm-window conversion) and

carrier-generating signals (for 1310-to-1550 nm conversion) were used in tandem as
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set and reset signals, respectively (see Section 6.2.2 for a discussion). The flip–flop

behavior can be thought of as a kind of data-wavelength conversionwith memory—

the input data is not replicated at the new wavelength, but rather, stored as a new

output state.

Memory occurs if the probe beam (i.e., holding beam) is initially tuned within the

hysteresis, as shown in Fig. 6.2. Setting the probe beam at the low-input-power side

of the hysteresis allows XPM wavelength conversion using carrier-depleting signals

(1550-nm-window conversion), and setting the probe beam at the high-input-power

side allows XPM wavelength conversion using carrier-generating signals (1310-to-

1550 nm conversion); the transfer function of both cases will be nonlinear, assisted

by the positive feedback loop that leads to bistable switching. Without hysteresis,

memory cannot occur, but data-wavelength conversion can still be achieved; exam-

ples are given in Fig. 7.2 (middle plot), and Fig. 7.5 (a) and (c).

7.6 Conclusion

Using a DFB SOA, we transferred data to a 1547-nm signal (which is in the vicinity

of the Bragg wavelength) from initial data signals at 1306 nm, 1466 nm, and 1560 nm.

Initial data signals at 1560 nm were converted using a gain-saturating XPM technique

that has been used in other geometries (e.g., MZI [89]). Conversion from the shorter

wavelengths of 1306 and 1466 nm, however, was performed using a gain-pumping

XPM technique in which the data signals decreased the refractive index.

The polarity of the converted signal can be selected by the relative location of

the probe wavelength with respect to the Bragg wavelength. For polarity-inverted,

1306-to-1547 nm conversion, we measured a digital-like transfer function and an

on–off ratio of 4 at 155.5 Mb/s. Conversion from short wavelengths (1306 and 1466

nm) was also found to be transparent to the input-data polarization. The converted

on–off ratio reduced to values of 1.7 and 2.5 at 1.25 Gb/s, for input data at 1306
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and 1560 nm, respectively (where the 1306-nm data was limited, in part, by the

modulation bandwidth of the data laser). The speed of the conversion process is

ultimately limited by the carrier lifetime. Unless a way is developed to improve or

bypass this limitation, it is unlikely that the techniques demonstrated in this chapter

will outperform opto-electronic data-wavelength conversion.

Although the speed of this conversion process is currently limited by the car-

rier lifetime, our research has demonstrated two general principles: 1) XPM-based

wavelength conversion using carriergenerationcan be implemented in gain-biased

SOAs, and 2) bistable systems can give rise to a data-wavelength conversion process

that exhibits a digital-like transfer function. Both principles are applicable to other

data-wavelength conversion schemes. XPM via carrier-generating signals can be ap-

plied to any SOA wavelength converter currently based on XPM via carrier-depleting

signals (e.g., [89]), and would significantly increase their wavelength range of opera-

tion. Carrier-generating signals may also be effective in nonlinear materials governed

by the free-carrier plasma interaction [96]. In addition, the highly beneficial digital

transfer function can be sought out in other systems that exhibit bistability for the

application of data-wavelength conversion.
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Chapter 8

Concluding Remarks

8.1 Overview

This thesis explored the nonlinear response of DFB SOAs, and advanced their ap-

plicability to fiber-optic communication networks. In this chapter, we summarize

four research areas: the spectral range of optical bistability, the shape of the bistable

hysteresis curve, all-optical flip–flop operation, and data-wavelength conversion. In

each section, we review our major findings, and suggest ideas for future research. We

close this chapter with a summary of major contributions.

8.2 Spectral Range of Bistability

As discussed in Section 1.2, the bistable response of typical DFB SOAs exhibits

a limited wavelength range. In Chapter 3, we quantified this range by calculating

the switching-threshold powers of bistability. We found that switching below 0.1

mW occurs over only a wavelength range of 0.19 nm, and is accompanied by a poor

spectral uniformity exhibited by the bistable hysteresis curves. In Chapter 4, we

improved the spectral range of bistability by introducing spatial chirp into the Bragg

grating. We showed that a linear variation in the grating period of 0.24% nearly

triples the spectral range of low-power switching. Spatial chirp breaks the directional
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symmetry through the DFB SOA, and we investigated both directions of propagation

for signal wavelengths on both sides of the photonic bandgap; the aforementioned

improvement in spectral range occurs for optical signals tuned to the long-wavelength

side of the stop band and sent into the device in the direction of increasing grating

period. For such signals, the spectral uniformity of the bistable hysteresis curve is

also improved; a common input power can be selected that falls within the hysteresis

curve of signal wavelengths spanning 0.1 nm, and the high and low output powers

are well defined over this range.

Demonstration of these improvements to the spectral range and uniformity awaits

future research. A promising technique for fabricating continuously chirped gratings

using electron-beam lithography has been developed recently [97]. This technique

has been used to fabricate complex-coupled DFB SOAs with and without linear spa-

tial chirp. Preliminary experiments on bistable switching in these devices revealed

that switching in the chirped-grating amplifier exhibits a wider spectral range, lower

switching-threshold powers, and smaller contrast ratios [97]; all of these effects agree

with our simulations for switching on the short-wavelength side of the stop band for

signals sent into the device in the direction of decreasing grating period. Further

testing is needed to explore both directions of propagation for signal wavelengths on

both sides of the photonic bandgap, and to study the spectral uniformity of switching.

8.3 Shape of Bistable Hysteresis Curves

In Chapter 3, we discussed the variety of shapes that occur for the hysteresis curve

on reflection. We explained this variety in terms of the reflectivity Bragg resonances.

These resonances were shown in Chapter 2 to invert from high-amplification peaks

to zero-reflection dips as the small-signal gaing0 was decreased from near lasing

threshold. The reflectivity resonances also invert in this manner when the gain is

decreased via stimulated emission (i.e., gain saturation). As the initial detuning of
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the optical signal from the Bragg resonances is increased, larger optical powers are

required to seed bistability, resulting in higher amounts of gain saturation. Therefore,

as the detuning is increased, the hysteresis curve deforms from its typical S–shape,

to a loop shape, and finally to an inverted S–shape. Our simulations show that the

intermediate loop shape is qualitatively different at the two edges of the photonic

bandgap.

The family of possible shapes exhibited by the hysteresis curve can be suppressed

in devices with spatially chirped gratings, yieldingonly the familiar S–shape. This

suppression occurs for the case highlighted in the previous section as having a large

spectral range and good spectral uniformity (i.e., the case where optical signals are

tuned to the long-wavelength side of the stop band and sent into the device in the

direction of increasing grating period). For other propagation conditions, the loop-

shaped and inverted-S-shaped hystereses can be enhanced. We predicted that spatial

chirp can be used to push the reflectivity resonance down to a low state of reflection,

yielding contrast ratio exceeding 105:1. However, this very high contrast ratio oc-

curs only for upward switching, and is accompanied by low amplification, a narrow

spectral range, and a small contrast ratio for downward switching.

The large switching contrast provided by the reflectivity dip is nonetheless in-

triguing. Ideally, the optical signal experiences the low-reflectivity dipand a high-

reflectivity peak during the switching process, resulting in high-gain, high-contrast

switching. Such behavior may be achieved through optimizing device parameters

such as the coupling strength and the chirp profile, as well as considering reflectivity

resonances away from the photonic bandgap.

8.4 All-Optical Flip–Flop

In Chapter 6, we demonstrated all-optical flip–flop operation of a bistable DFB SOA

using techniques that control the bistable output state via auxiliary optical signals. We
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demonstrated optical ‘set’ using signal wavelengths between 1533 and 1568 nm, hav-

ing powers as low as 22�W. Optical ‘reset’ was performed with signals at 1306 and

1466 nm, having minimum powers below 1 mW. These control techniquesgreatly

extendthe wavelength range of flip–flop operation; previous techniques were based

on changing the input power of the bistable signal itself, or based on interfering the

bistable signal with a reset signal detuned by 0.008 nm. We expect the wavelength

range of set and reset signals of the new techniques to exceed 50 nm and 200 nm,

respectively. Moreover, the spectral ranges of the set and reset signals conveniently

overlap the communication bands centered near 1550 and 1310 nm, respectively.

Thus, signals from a wide range of channels in WDM optical networks can serve to

set and reset the flip–flop.

Optical set and reset signals increase and decrease the refractive index, respec-

tively, via complementary cross-phase modulation (XPM) techniques. The set sig-

nals fall within the SOA gain spectrum, and deplete the carrier density through stim-

ulated emission. This leads to an increase in refractive index at the holding-beam

wavelength, as embodied by the linewidth enhancement factor�. The wavelength of

the reset signal, however, is outside of the SOA gain curve, on the short-wavelength

side; the reset signal is absorbed by the SOA, thereby generating charge carriers and

decreasing the refractive index.

XPM shifts the position of the Bragg resonance relative to the bistable signal,

which has the effect of shifting the bistable hysteresis curve, to either higher or lower

input powers. Set and reset occur when the upward and downward switching thresh-

olds, respectively, are shifted through the (constant) input power of the bistable sig-

nal. This control over the bistable hysteresis is noteworthy, in part, because reset

can be performed with ‘positive’ optical pulses. The rarity of positive-pulse reset

techniques in bistable systems exhibiting a S-shaped hysteresis curve has lead some

researchers to denounce them as “impossible” [98]. Although positive-pulse reset

techniques have indeed been demonstrated before (e.g., using a thermal nonlinearity
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in a passive semiconductor [99]), our technique works over a wide wavelength range

and our nonlinear device (the DFB SOA) has the general advantages detailed at the

end of Section 1.2.2. The flexible control of the nonlinear response of SOA-based

bistable devices encourages further exploration; we expect the same control tech-

niques to apply to other resonant-type SOAs and to other bistable systems based on

SOAs.

The DFB SOA can be re-engineered for better performance in future experiments.

The devices in our experiments were fabricated for use as directly modulated com-

munication lasers, and were therefore engineered to have a small nonlinearity (small

�) to prevent linewidth enhancement — they were multi-quantum well devices, and

their Bragg wavelength was fabricated on the short-wavelength side of the gain peak.

However, since the optical processing studied here is based on�, it may be benefi-

cial to engineer a large value of� by fabricating the dominant Bragg resonance on

the long-wavelength side of the gain peak [100], and by using abulk semiconductor

active region. A larger� would allow the same change in the refractive index for a

smaller change in gain; this would allow the Bragg resonance to remain relatively un-

saturated and hence yield a higher on-state amplification and a larger on–off contrast

ratio. Ideally, a ratio of 15 dB can be achieved, which is more appropriate for light-

wave systems than the6–8 dB measured in our experiments. Devices with higher

�, however, would also exhibit a lower differential gaindg=dN , thereby requiring

a stronger injection current to achieve the same gain; this would limit the maximum

number density of DFB SOAs even further, but may not be a problem for applications

requiring only a couple of devices.

The all-optical flip–flop is a building block to enable digital signal-processing

functions that require memory. As an example, we simulated data-format conver-

sion from high-speed RZ signals to low-speed NRZ signals. The high-speed signals

can come from a wide range of WDM channels, and can have pulse widths shorter

than the SOA carrier lifetime. The generated NRZ signals occur at the wavelength of
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the bistable signal, and have long pulse widths commensurate with low-speed, local-

access networks and the SOA carrier lifetime. Moreover, the conversion os imple-

mented with only a DFB SOA and a holding-beam laser, so the heat-dissipation prob-

lem associated with a large number of closely packed devices is not an issue. Thus,

this application overcomes each of the limitations of optical bistability in resonant-

type SOAs that were summarized in Section 1.2.2.

Future research can explore signal-processing applications such as retiming,

packet-header buffering, and temporal demultiplexing. Since set and reset signals lie

in well-separated spectral bands, the all-optical flip–flop is essentially a 3-terminal

device; investigations into operations analogous to those performed by electronic

transistors should be rewarding. Moreover, using the integrateability of semiconduc-

tor technology, photonic circuits can be created which use the sequential processing

capability of the all-optical flip–flop together with combinational photonic gates for

advanced all-optical processing.

8.5 Data-Wavelength Conversion

In Chapter 7, we demonstrated the transfer of data to a 1547-nm signal (which is in

the vicinity of the Bragg wavelength) from initial data signals at 1306 nm, 1466 nm,

and 1560 nm. Data at 1560 nm was converted using a gain-saturating XPM technique

that has been used in other SOA-based wavelength converters (e.g., MZI [89]). Con-

version from the shorter wavelengths of 1306 and 1466 nm, however, was performed

using a gain-pumpingXPM technique in which the data signals decreased the refrac-

tive index. We demonstrated how the data-signal polarity can be selected by tuning

the probe wavelength to different regions of the Bragg resonance. For 1306-to-1547

nm conversion, polarity-inverted signals exhibited a digital-like transfer function with

on–off ratios of 4 and 2.4, at 155.5 and 622 Mb/s, respectively.

For future experiments on wavelength conversion, the bit-error rate (BER) of the
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input signal and the converted signal should be measured under a variety of operating

conditions. Using pseudo-random binary-sequence (PRBS) data for BER testing and

for measuring the on–off ratios would also be helpful, since it simulates actual com-

munication data. These measurements were beyond the capability of our equipment,

but are important for thorough characterization and assessment.

Data-wavelength conversion was limited in speed by the inverse of the carrier

lifetime to� 1 Gb/s. Since this rate does not surpass that achievable by electronic

processing, DFB SOAs are unlikely to be implemented for wavelength conversion

in their current state. Future research should focus on overcoming this speed limita-

tion. One technique for effectively reducing the carrier lifetime uses a strong gain-

saturating signal to sweep away charge carriers [101]; this technique has produced

an effective� of 10 ps. To maintain the same amount of gain, however, the SOA

is driven with a stronger electrical bias and therefore generates more heat [36]. It

may be possible to apply this technique to wavelength conversion in DFB SOAs for

high-speed operation above 10 Gb/s.

Although the speed of this conversion process is currently limited by the carrier

lifetime, our research has demonstrated two general principles: 1) XPM-based wave-

length conversion using carriergenerationcan be implemented in gain-biased SOAs,

and 2) bistable systems can give rise to a data-wavelength conversion process that

exhibits a digital-like transfer function. Both principles are applicable to other data-

wavelength conversion schemes. XPM via carrier-generating signals can be applied

to any SOA wavelength converter currently based on XPM via carrier-depleting sig-

nals (e.g., [89]), and would significantly increase their wavelength range of operation.

In addition, the highly beneficial digital transfer function can be sought out in other

systems that exhibit bistability for the application of data-wavelength conversion.
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8.6 Summary of Contributions

This thesis explored the nonlinear response and signal-processing capabilities of DFB

SOAs. As evident in the preceding sections, much of our work centered on overcom-

ing the limited wavelength range of operation exhibited by signal processing in such

devices. Here, we summarize our contributions to overcoming this limitation, explor-

ing new applications, and understanding the nonlinear response:

� Conceived and demonstrated all-optical flip–flop operation using ‘positive’

control signals that exhibit a very wide wavelength range of operation.

� Conceived and simulated data-format conversion from high-speed RZ to low-

speed NRZ formats; this sequential-processing application overcomes all three

major limitations of DFB SOAs for signal processing.

� Predicted an increase in the spectral range and spectral uniformity of optical

bistability using chirped-grating DFB SOAs.

� Predicted a new shape of the hysteresis curve on reflection from DFB SOAs.

For chirped-grating DFB SOAs, this shape exhibits ultra-high contrast ratios.

� Demonstrated data-wavelength conversion using signals thatpump the SOA

gain; this technique allows 1310-to-1550 nm conversion and is applicable to

other SOA-based conversion schemes.

� Demonstrated an inherent, digital-like transfer function for data-wavelength

conversion.

� First demonstration of all-optical flip–flop operation and data-wavelength con-

version using a DFB SOA.
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These contributions deepen the understanding of the nonlinear response and signal-

processing capabilities of DFB SOAs, and significantly advance their application to

fiber-optic communication networks.
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Appendix A

DFB SOA used in Experiments

The DFB SOA used for the experimental results reported in this thesis was fabri-

cated to be used as a DFB diode laser in communication systems. We operated this

commercial device as a resonant-type SOA by biasing it below lasing threshold (15

mA at 20 C). Its ASE spectrum is shown in Fig. A.1. The Bragg wavelength (� 1547

nm) was fabricated on the short-wavelength side of the SOA gain peak (� 1567 nm),

which yields a relatively small value of the linewidth enhancement factor� (use-

ful for directly modulated communication lasers). The dominant Bragg resonance is

located near the center of the photonic bandgap, as shown in the inset; its location

within the photonic bandgap is determined by the grating phase at the facets of the

SOA. One facet was covered with a high-reflectivity (HR) coating, and the other with

an anti-reflection (AR) coating.
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Figure A.1: ASE spectrum of the DFB SOA used in experiments.
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Appendix B

Mounting Procedure

DFB SOAs were mounted onto a heatsink covered with a layer of tin, which

bonds to the SOA chips and provides electrical contact. This process was performed

with a wire-bonding machine, which is typically used to bond thin contact wires onto

semiconductor lasers and amplifiers. We use the system only for its heat-generating

capability, and use its wire-bonding probe to push the SOA chip into the tin. DFB

SOAs were mounted to heatsink using the following method.

1. Adjust Dai Bonder stage so that the wire-bonding needle can raise above the

heat sink.

2. Get heat sinks, which are kept in a vacuum box to avoid oxidation.

(a) To open box: open side valve, then open lid

(b) To seal box:

i. open gas tank, counter clockwise

ii. adjust pressure to give an output reading of 1

iii. adjust gauge to raise ball to top of red line

iv. open both box valves
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v. wait about 3 minutes and then close in reverse order

3. Make sure heatsink fits into base correctly by considering:

� width of heatsink

� height of fixing hole

� flatness of heatsink top

4. Place heat sink in Dai Bonder. This requires an extra, dummy heatsink for a

tight fit.

5. Place laser chip on heatsink. When grabbing the laser chip:

� the non-waveguide sides of the chip have purple coloring, visible without

a microscope

� use the sharp tweezers

6. N-side down.

� p-side identification

– distinct shape of gold-colored contact

– laser stripe is visible; If the lighting angle is poor, use the point of the

bonder as a mirror

– smooth and shiny surface

� n-side identification

– rectangular shape of gold-colored contact
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– no laser stripe

– gold region is relatively rough and dull

� flip chip by using tape and tweezers

7. Position laser chip on heatsink.

� position face of laserperpendicularto heat-sink edge (most important)

� position in middle of heatsink

– for fiber alignment

– so there is room for lenses to get close to the laser chip

� position the laser close to one edge

� use the probe to move the chip into place

– adjust height of probe

– move slowly

8. Mount.

� adjust height of probe so that it can fall half way down the laser chip, to

avoid cracking the laser chip when applying pressure

� turn on heat switch (make sure LINE is off)

� turn heat dial past 400 C

� at about 300 C (determined by the tin), press the chip into the tin using

the point of the wire bonder; chips have popped off of the heatsink before,

so press well
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� hold until about 360 C, or until an imprint is formed in the tin

� turn the heat dial back to 0 C (further increase in temp only increases the

amount of oxidation on the heatsink)

� use hair dryer (set to COLD) to cool device below 100 C before removing

9. Record.

� write code number on heatsink, or on heatsink holder

� write position of chip on heatsink in record book, as well as the beginning

and ending temperatures of the mounting process

10. Let heatsink cool down one day before using in experiments.
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