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Abstract

We study the design of fiber-optic transport systems and the behavior of fiber am-

plifiers/lasers with the aim of achieving higher capacities with larger amplifier spacing.

Solitons are natural candidates for transmitting short pulses for high-capacity fiber-

optic networks because of its innate ability to use two of fiber’s main defects, fiber

dispersion and fiber nonlinearity to balance each other. In order for solitons to retain its

dynamic nature, amplifiers must be placed periodically to restore powers to compensate

for fiber loss. Variational analysis is used to study the long-term stability of a periodical-

amplifier system. A new regime of operation is identified which allows the use of a

much longer amplifier spacing.

If optical fibers are the blood vessels of an optical communication system, then

the optical amplifier based on erbium-doped fiber is the heart. Optical communication

systems can avoid the use of costly electrical regenerators to maintain system perfor-

mance by being able to optically amplify the weakened signals. The length of amplifier

spacing is largely determined by the gain excursion experienced by the solitons. We

propose, model, and demonstrate a distributed erbium-doped fiber amplifier which can
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drastically reduce the amount of gain excursion experienced by the solitons, therefore

allowing a much longer amplifier spacing and superior stability.

Dispersion management techniques have become extremely valuable tools in the

design of fiber-optic communication systems. We have studied in depth the advan-

tage of different amplification schemes (lumped and distributed) for various dispersion

compensation techniques. We measure the system performance through the Q factor to

evaluate the added advantage of effective noise figure and smaller gain excursion.

An erbium-doped fiber laser has been constructed and characterized in an effort

to develop a test bed to study transmission systems. The presence of mode-partition

noise in an erbium-doped fiber laser was experimentally demonstrated. A numerical

model has been developed using the Langevin rate equations and its predictions are in

qualitative agreement with experimental data.
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Chapter 1

Introduction

1.1 Motivation

The era of the information revolution is upon us. The internet has brought the world

closer together. Although voice traffic continues to grow at merely 3 to 5% per year,

the increase in data traffic will continue to expand global networks at an estimated rate

of 10 to 25 times over the next few years [1]. This demand for high-bit-rate commu-

nication systems has heralded fiber-optical lightwave systems as the savior, primarily

because of the extremely broad bandwidth associated with an optical carrier. This is

because the frequency of an optical carrier (∼ 100 THz) is five orders of magnitude

greater than the frequency of a microwave carrier (∼ 1 GHz) [2] and since the modula-

tion bandwidth is usually limited to a small fraction of the carrier frequency in digital

systems, this translates to roughly 100,000 times more capacity for a fiber optic com-

munication system. Despite this tremendous increase in system capacity, it barely able

to keep up with today’s demand.

Optical fibers are considered by many as God-sent for optical communications be-

cause of their many wonderful features: wave-guiding, low loss, and small nonlinear-

ity. However, as a system grows in capacity, its complexity also grows. Even though a
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modern optical fiber suffers only a fraction of decibals (dB) per kilometer (km) of loss,

system lengths of hundreds and thousands of kilometers will accumulate enough losses

to demand the need of amplifiers. The introduction of erbium-doped fiber amplifiers

(EDFAs) [3] in the early 1990s made it possible to support systems with capacity of

tens and hundreds of gigabits per second (Gb/s) with an amplifier spacing of 50-100

km. Amplifiers need to be placed more frequently as system capacity increases when

solitons are used since the dispersion length scales quadratically with soliton width.

Thus, the demand on increasing capacity is causing the amplifier spacing to become

shorter, which can drive the cost so high that the solution will become impractical. The

placement of amplifier modules is therefore crucial in the design of high-capacity fiber

optic systems.

Furthermore, the performance of these high-capacity systems are often limited by

the lumped nature of the amplifiers. An alternative approach using distributed amplifi-

cation has become an exciting new avenue to explore. Distributed amplification using

stimulated Raman scattering (SRS) has already helped to produce terabits per second

system capacity (Tb/s) as well as longer transmissions distances without regeneration

[4–7]. In addition, the recent development of high power fiber/semiconductor pump

lasers will make distributed amplification an even more attractive option for future sys-

tems. The synthesis of distributed amplification into existing system architecture with

current technologies such as dispersion management and wavelength-division multi-

plexing (WDM) will bring forth the next generation of ultra-high-capacity fiber optic

communication systems.

This thesis explores the placement and design of optical amplifiers in constant-

dispersion systems as well as in dispersion management systems, and seeks to optimize
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the existing technology and to advance future technologies in the design of ultra-high-

capacity fiber-optic systems. A history of the evolution of optical communication is

presented next.

1.2 Historical Overview

Solitons have a rich history that dates all the way back to the early 1800s even though

fiber-optic communication systems have been in existence for less than 25 years. These

temporally separated entities are on course to collide and create the next generation of

ultra-high-capacity communication systems.

1.2.1 Fiber-Optic Communication Systems

The development of lasers in the 1960s and low loss fibers in the early 1970s made

possible the first fiber-optic communication system in 1978. These systems were able to

transmit signals at 100 Mb/s using multimode fibers operating near 0.85µm. Although

the repeater spacing was less than 10 km, it was sufficiently large than the repeater

spacing of the heritage coaxial system. This feature made fiber optic communication

system an attractive alternative for the future — thus the first generation of fiber-optic

systems was born [2].

The desire to reduce the number of regeneration units by increasing the repeater

spacing of the first generation systems quickly lead to the second generation system in

the early 1980s. The second generation system allowed for increased repeater spacing

by operating the system at the lower loss regime near 1.3µm. Additional improvements

were also made in optical fiber technology by the introduction of the single-mode fiber;
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this soon propelled the system capacity to Gb/s with repeater spacings in excess of 50

km. The system operation wavelength was further moved to 1.55µm to take advantage

of the lowest fiber loss for the third generation system introduced in the late 1980s.

The increased propagation distance allowed by lower fiber loss and the larger fiber

dispersion at 1.55µm introduced fiber dispersion as the next obstacle to tackle. The

dispersion problem was eventually solved by using dispersion-shifted fibers and single

longitudinal mode lasers to reduce the spreading of the transmitted pulse. Such systems

can operate in excess of 10 Gb/s with repeater spacings as large as 100 km [2].

The early generations of fiber-optic systems relied on repeaters to compensate fiber

loss through electrical amplification. These regeneration stations consisted of decoders

to transform the information from an optical domain to an electrical domain, electronic

amplifiers to reboost the signal, and transmitters to re-transform the information from

the electrical domain back to the optical signal. This process was an expensive ne-

cessity. The development of EDFAs during the 1990s provided a breakthrough which

allowed pulses to be optically amplified thus reducing the need of so many regener-

ation stations. This dramatically reduced the cost while provided a very dynamic and

transparent solution. Optical amplifiers have paved the way to another ground-breaking

technology — WDM. The WDM technique offered the ability to scale the system ca-

pacity via the same fiber by simply adding data channels using slightly different wave-

lengths [2]. The fourth generation systems boasted capacity of upwards of terabits per

second (Tb/s) — yet, the demand is still increasing.
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Figure 1.1: Capacity growth of fiber-optic communication systems.

1.2.2 Optical Solitons

Solitary water waves were first discovered by Scott Russell in 1834 and remained a

mathematical curiosity for over 100 years. It was not until 1965 before the word “soli-

ton” was coined by Zabusky and Kruskal [8]. The inverse-scattering method was used

to solve the nonlinear Schrödinger equation in 1971 [9], but the concept of fiber solitons

was not conceived until 1973 [10]. Then, it quickly became obvious that optical solitons

would be extremely useful as information-carrying bits in a fiber-optic communication

system.

The first experimental observation of solitons is attributed to Mollenauer et al. in

1980 [11]. The short optical pulses were generated by a color-center laser operating

near 1.55µm [12–14]. Ironically, without the availability of EDFAs, the first long-haul

soliton transmission experiment was realized using Raman gain to compensate for fiber
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losses [15]. Since then, tremendous strides have been made in soliton-communication

systems by incorporating innovative technologies such as EDFAs, dispersion manage-

ment, WDM, in-line filters, etc. [2]. Field trials of soliton communication systems first

appeared in 1998 by Pirelli [16] and now, companies such as Algety Telecom has been

formed explicitly to exploit soliton’s advantages [1].

The semiconductor industry follows Moore’s law to describe the rate of the growth

of the processor speed. Moore’s law states that in general, the speed of the process-

ing chips doubles its system capacity every eight months. The capacity of public net-

work traffic has been however, exceeding this rate and doubling about every six months

[17]. While fiber loss has been addressed by the development of optical amplifiers (e.g.

EDFA, Raman), the problem with fiber dispersion and fiber nonlinearity still remained.

The next generation of fiber-optic communication system is focused on solving these is-

sues. We believe that optical solitons are the ultimate solution, since they can effectively

use the fiber nonlinearity to balance the accumulated dispersion. In order to maintain

the soliton stability over large amplifier spacings and long distances, distributed ampli-

fication must be incorporated to minimize system perturbations. The purpose of this

thesis is to contribute to the development of the next generation of high-capacity fiber-

optic communication systems by studying how to design soliton systems with different

dispersion management and amplification techniques.
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1.3 Thesis Overview

1.3.1 Principle of Fiber-Optic Communication Systems

The simplest model of a lightwave system consists of a transmitter, a transmission

medium such as an optical fiber, and a detector (see Figure 1.2). Information to be

transmitted is digitized into 1’s or 0’s (also referred to as bits) and optical pulses rep-

resenting this information is then send using a laser and a modulator. Semiconductor

lasers are capable of emitting sufficient powers (∼ 10 mW) and have a relatively high

coupling efficiency (∼50% into single mode fiber) [2]. Consequently, semiconductor

lasers are the sources of choice for long-haul communication systems.

Feb. 13, 1998 ZML: Thesis Proposal

2.1 Single Channel Lightwave Communication Systems

• Transmitter - Laser Rate Equations
• Fiber-Optic Communication Channel - NSE
• Receiver - Responsitivity, Bit Error Rate (BER)

Data Laser Fiber Receiver

Figure 1.2: Basic elements of a fiber-optic communication system

There are currently two formats for encoding optical bit streams, nonreturn-to-zero

(NRZ) and return-to-zero (RZ) (see Figure 1.3). An optical pulse representing RZ

encoding is shorter than NRZ pulse, and its amplitude returns to zero before the bit

duration is over. For a NRZ pulse, the amplitude of a “1” does not return to zero during

the bit duration; therefore, two successive 1s are merged into a pulse that is twice as

long. Currently, the NRZ format is predominately used because of its intrinsically

smaller signal bandwidth; however, for systems based on soliton principles, the RZ

format must be used [2].
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0 1 0 01 1 0

Data

NRZ

RZ

Figure 1.3: Optical bit stream using NRZ and RZ formats

The optical bit stream is transported through optical fibers from one location to an-

other. The capacity of a fiber-optic communication system is designated by the number

of bits it can send per second, or alternatively, by the inverse of the bit slot. Thus,

a system transmitting 100-ps pulses using NRZ or 25-ps pulses using RZ (with pulse

separation equal to four times the pulse width) will carry a single channel capacity of

10 Gb/s.

The receiver’s role is to convert the optical signal received from the optical fiber

back to the original electrical signal. Modern systems use the direct-detection scheme,

which typically consists of a semiconductor detector, a clock-recovery circuit, and

a decision-making circuit to identify bits as 1 or 0. The performance of fiber-optic
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communication systems is characterized by the number of errors made per second as

counted by its receiver circuit, or the bit-error rate (BER). Typically, a system is spec-

ified as having error-free transmission when it has BER of less than10−9 [2]. With

novel coding algorithms, systems can gain several dB in performance using forward

error correction (FEC).

1.3.2 Outline

Chapter 2 provides the foundation of the theoretical and numerical analysis. We derive

the nonlinear Schrödinger equation from Maxwell’s equations and introduce the basic

fiber properties and how they affect the pulse propagation. We will also present numer-

ical and approximate analytical (variational analysis) techniques to solve the nonlinear

Schr̈odinger equation . These will provide tools to simulate systems as well as to opti-

mize parameters in system design.

Chapter 3 begins our investigation of designing soliton communication systems by

examining the periodicity of constant-dispersion systems through variational analysis.

We introduce the concept of a guiding-center soliton (GCS) and the limitations it im-

poses on the amplifier spacing of the system. We are then able to exploit the analytical

results to use the chirp of soliton pulses to extend the amplifier spacing beyond the

guiding-center soliton regime. We show through numerical simulations the effective-

ness of the variational results and validate the technique as a valuable tool in exploring

and optimizing the complex parameter space of a soliton communication systems.

Chapter 4 provides the foundation of implementing distributed amplification in

fiber-optic communication systems. We first introduce the governing equations for

distributed-EDFA as well as Raman amplification, and then provide some approxi-
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mated analytical solutions to illustrate some basic principles such as pump depletion

and gain saturation. These equations are solved numerically and the solution is then

incorporated into the nonlinear Schrödinger equation to evaluate the effectiveness of

distributed amplification.

Chapter 5 introduces the technique of dispersion management for combating the

fiber dispersion problem. A two-step dispersion map as well as the novel dense dis-

persion map are introduced along with variational-analysis results in calculating the

optimal launching condition for a given map. We also show how variational analysis

has been applied to the study of dispersion management systems. We show how the sys-

tem performance is characterized with the inclusion of noise, and assimilate different

amplification schemes with dispersion-management techniques to investigate various

design rules.

Chapter 6 characterizes the operation of a fiber laser. Specifically, it focuses on the

mechanism of mode-partition noise in a fiber laser. We present the experimental setup

and discuss the system operation of the fiber laser. We also present our theoretical

formulation and examine the numerical results and compare them to experimental data.

Chapter 7 summaries the main results and findings of the thesis and provides in-

sights for future investigations.
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Chapter 2

Theoretical Foundation

2.1 Introduction

The design of a fiber-optic communication system requires an understanding of the

nonlinear propagation of optical pulses, with emphasis on fiber losses and fiber dis-

persion. In this chapter, we present equations that govern this process; namely, the

nonlinear Schr̈odinger equation supporting picosecond pulses and higher order effects

such as stimulated Raman scattering (SRS). Since the nonlinear Schrödinger equation

cannot be solved in a closed form, numerical techniques such as the split-step Fourier

transform method will be presented to help study it. Variational analysis will also be

presented as a valuable analytical tool to give qualitative understanding of this complex

process.

2.2 Wave Propagation Equation

As always, we begin our analysis of the optical signal propagation through an optical

fiber with Maxwell’s equations. Furthermore, we can safely assume that the optical

fiber is a non-magnetic medium without any free surface charges. Maxwell’s equations
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are then given as (in SI units) [9]

~5× ~E = −∂ ~B
∂t

, (2.1)

~5× ~H =
∂ ~D

∂t
, (2.2)

~5 · ~D = 0, (2.3)

~5 · ~B = 0, (2.4)

where~E is the electric field,~H is the magnetic field,~D is the electric flux density, and

~B is the magnetic flux density. The flux densities within an optical fiber can be written

as

~D = εo
~E + ~P , (2.5)

~B = µo
~H, (2.6)

whereεo andµo are the vacuum permittivity and permeability respectively, and~P is the

induced electric polarization.

The wave equation can be derived by first taking the curl of Eq. (2.1) and using

Eq. (2.6) on the right hand side,

~5× ~5× ~E = −µo
∂

∂t
(~5× ~H). (2.7)

Substituting Eq. (2.2) to the right hand side and expanding the flux densities via
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Eq. (2.5) results in the following form of the wave equation

~5× ~5× ~E = − 1

c2

∂2~E
∂t2

− µo
∂2 ~P

∂t2
, (2.8)

with the speed of light in vacuum defined asc = 1/
√

εoµo. The induced polarization

can be separated into linear and nonlinear parts as

~P (~r, t) = ~PL(~r, t) + ~PNL(~r, t) (2.9)

with linear and nonlinear induced polarizations defined as

~PL(~r, t) = εo

∫ ∞

−∞
χ(1)(t− t′) · ~E(~r, t′) dt′, (2.10)

~PNL(~r, t) = εo

∫∫∫ ∞

−∞
χ(3)(t− t1, t− t2, t− t3)

...~E(~r, t1)~E(~r, t2)~E(~r, t3)dt1 dt2 dt3,

(2.11)

whereχ(1) andχ(3) are the first and third order susceptibility of the fiber respectively.

The second order susceptibilityχ(2) is ignored since an optical fiber possesses inversion

symmetry. Using the second derivatives of vector identities [18] and Eq. (2.3), the wave

equation, Eq, (2.8) can be transform into

52~E =
1

c2

∂2~E
∂t2

+ µo
∂2 ~PL

∂t2
+ µo

∂2 ~PNL

∂t2
. (2.12)

In order to develop a propagation equation from Eq. (2.12), several important as-
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sumptions must be made regarding the nonlinearity of the system [9]. We will make

the following simplifications:

1. The nonlinear-induced polarization is small and can be treated as a perturbation.

2. The optical field can maintain polarization along fiber length, since this will allow

the use of a scalar approach.

3. The optical field is quasi-monochromatic such that its spectral widthδω is small

compared to its center frequencyωo, i.e. δω/ωo � 1.

We will also use the slowly varying envelope approximation to separate the rapidly

varying part of the field by rewriting the field as

~E(~r, t) =
1

2
x̂ [E(~r, t)exp(−iωot) + c.c.], (2.13)

~PL(~r, t) =
1

2
x̂ [PL(~r, t)exp(−iωot) + c.c.], (2.14)

~PNL(~r, t) =
1

2
x̂ [PNL(~r, t)exp(−iωot) + c.c.], (2.15)

wherec.c. stands for complex conjugate,x̂ is the polarization unit vector of the light

assuming to be linearly polarized along thex axis, andE(~r, t) is a slowly varying

function with respect to optical carrier frequency,ωo. We will often find it easier to work

within the Fourier domain and will adopt the following notation for Fourier transforms

Ẽ(~r, ω − ωo) =

∫ ∞

−∞
E(~r, t)ei(ω−ωo)tdt. (2.16)

In the Fourier domain, the linearly-induced polarization in Eq. (2.10) is simply

P̃L(~r, ω) = εoχ̃
(1)(ω) Ẽ(~r, ω). (2.17)
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The nonlinear-induced polarization can be also simplified by assuming that the nonlin-

ear response is instantaneous such that Eq. (2.11) can be reduced to a delta function

response,

~PNL(~r, t) = εoχ
(3)...~E(~r, t) ~E(~r, t) ~E(~r, t), (2.18)

where we use three veritcal dots to denote the tensor nature of the third-order suscep-

tibility. We can establish the nonlinear polarization contribution by simply treating the

field as monochromatic waves [19]. We will treat all fields as scalar variables in the

following derivation of the propagation equation.

E = E cos(ωot). (2.19)

Then we can write the resulting nonlinear polarization

PNL = εoχ
(3)E3 cos3(ωot)

= εoχ
(3)E3

[
1

4
cos(3ωot) +

3

4
cos(ωot)

]
. (2.20)

The nonlinear-induced polarization is found to be oscillating atωo as well as at third-

harmonic3ωo. However, the third-harmonic contribution is small for optical fibers and

therefore can be ignored, further reducing the Eq. (2.18) to the following form

PNL(~r, t) = εoεNLE(~r, t), (2.21)

whereεNL is the nonlinear contribution to the dielectric constant and can be deduced
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from Eq. (2.20)

εNL =
3

4
χ(3)|E(~r, t)|2. (2.22)

In order to solve the wave equation within the Fourier domain, we have to make

the assumption thatεNL is constant. This is justified through the fact that we make the

slowly varying wave approximation and we are also treatingPNL as a perturbation [9].

The wave equation can then be reduced by taking the Fourier transform of Eq. (2.12)

and using Eqs. (2.17) – (2.21) to

52Ẽ + ε(ω)k2
oẼ = 0, (2.23)

whereẼ is the electric field in the Fourier domain and the propagation constantko =

ω/c. Furthermore,

ε(ω) = 1 + χ̃(1)(ω) + εNL (2.24)

is the dielectric constant including both linear and nonlinear contributions from the

induced polarization.

The wave equation Eq. (2.23) can then be solved using the technique of separation

of variables by rewriting the electric field as

Ẽ(~r, ω − ωo) = F (x, y)Ã(z, ω − ωo) exp(iβoz), (2.25)

whereβo = nω/c is the wave number. The separated equations are obtained by insert-
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ing Eq. (2.25) into Eq. (2.23), resulting in

d2F

dx2
+

d2F

dy2
+
[
ε(ω)k2

o − β̃2
]
F = 0, (2.26)

2iβo
dÃ(z)

dz
+ (β̃2 − β2

o)Ã = 0, (2.27)

whereβ̃ is the separation constant (eigenvalue). The equation for the modal distribution

F (r) can be solved by rewriting the dielectric constant as

ε = (n + δn)2 ≈ n2 + 2n δn. (2.28)

wheren is the index of refraction andδn is the nonlinear change of index as defined by

δn = n2 |E|2 +
iα

2ko

=
<e(εNL)

2n
+

iα

2ko

. (2.29)

with n2 as the intensity-dependent index coefficient andα is the fiber loss coefficient.

To first order (neglecting the nonlinear contribution), Equation (2.26) reduces to a well-

known differential equation for the Bessel function by transforming to a cylindrical

coordinateF (x, y) = F (r) exp(imφ) and replacingε by n2,

d2F

dr2
+

1

r

dF

dr
+

[
n2k2

o − β̃2 − m2

r2

]
F = 0, (2.30)
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with the refractive indexn of a fiber of core radiusa given by

n =

 n1 : r ≤ a

n2 : r > a
(2.31)

The general solution in the core area of the fiber is the Bessel function consisting of a

linear combination of Bessel and Neumann functions and is given by

F (r) = Jm(κr), r ≤ a, (2.32)

with κ2 = n2
1k

2
o − β̃2 since the Neumann function is non-physical because of a singu-

larity at r = 0 [9].

Equation (2.27) describes the propagation of the optical field within an optical fiber

and can be reduced by usingβ̃2 − β2
o ≈ (β̃ − βo)(β̃ + βo) ≈ 2βo(β̃ − βo). This is valid

by choosing the eigenvaluẽβ to be close toβo. Furthermore,̃β(ω) can be rewritten as

β̃(ω) = β(ω) + ∆β (2.33)

where∆β is the nonlinear contribution to the eigenvalue and can be calculated by using

the first-order perturbation theory. This is done by perturbing the system represented

by Eq. (2.26) by using Eqs. (2.28) and (2.33), and replacingF = F0 + δF . This results

in the following expression for∆β,

∆β =
k0

∫ ∫∞
−∞ δn |F (x, y)|2dx dy∫ ∫∞
−∞ |F (x, y)|2dx dy

. (2.34)
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The propagation equation Eq. (2.27) then becomes

dÃ(z)

dz
= i [β(ω) + ∆β − βo] Ã. (2.35)

2.2.1 Dispersion

Fiber dispersion is represented in Eq. (2.35) by the frequency dependent wave number

β̃(ω). We can expandβ(ω) in a Taylor series about the carrier frequencyωo as

β(ω) = βo + (ω − ωo)β1 +
1

2
(ω − ωo)

2β2 +
1

6
(ω − ωo)

3β3 + ..., (2.36)

with

βn =

(
dnβ

dωn

)
ω=ωo

. (2.37)

In order to study the propagation of the field in the time domain, we must perform the

inverse Fourier transform to Eq. (2.35) using the following relation

A(z, t) =
1

2π

∫ ∞

−∞
Ã(z, ω − ωo)e

−i(ω−ωo)tdω. (2.38)

The resulting time domain propagation equation including up to the second order effect

then becomes

∂A

∂z
+ β1

∂A

∂t
+

i

2
β2

d2A

dt2
= i∆βA. (2.39)
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Table 2.1: Parameters used in simulation of pulse broadening

Parameter Symbol Value
Pulse shape A Gaussian
Pulse width T0 10 ps
Fiber dispersion β2 −10 ps2/km
Dispersion length LD 10 km

First order fiber dispersionβ1 defines the group velocityvg of the pulse and second

order dispersionβ2, also known as group velocity dispersion (GVD), can cause pulse

spreading because different spectral components will experience different group ve-

locities. In studying pulse propagation, it is often convenient to measure time in the

moving frame of the pulse through the following transformation

T = t− β1z = t− z/vg. (2.40)

The resulting equation then becomes

∂A

∂z
+

i

2
β2

d2A

dT 2
= i∆βA. (2.41)

A pulse launched into a dispersive medium usually does not maintain its shape and

can become a disruptive force in fiber-optic communications systems. As the pulse

is broadened its intensity degrades and crosstalk may develop with adjacent bit slots.

In general, we can define the dispersion lengthLD = T 2
o /|β2| as the length in which

Gaussian pulse will spread to twice its initial pulse width,To. Figure 2.1 shows the

broadening of a Gaussian input pulse through one dispersion length assuming∆β = 0

using the parameters in Table 2.1.
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Figure 2.1: Pulse spreading due to GVD

2.2.2 Fiber Loss

Fiber loss is incorporated within the term∆β in Eq. (2.41). We can rewrite the prop-

agation constant in terms of index of refraction by noting that∆β = ko δn. Ignoring

the first term ofδn [Eq. (2.29)] for now (we will cover it in Section 2.2.3), substituting

Eqs. (2.29) and (2.34) into Eq. (2.41) results in

∂A

∂z
+

i

2
β2

d2A

dT 2
= −α

2
A. (2.42)

Fiber loss is a major problem in fiber-optic communication systems because of the loss

of signal power, which contributes directly to a high bit error rate. Figure 2.2 shows
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how the addition of fiber loss, in conjunction with fiber dispersion, can further degrade

the pulse intensity. The parameter used is the same as in Table 2.1 with the addition of

α = 0.2 dB/km.
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Figure 2.2: Pulse spreading due to GVD in the presence of fiber loss

2.2.3 Nonlinear Schr̈odinger Equation

The nonlinear Schrödinger equation (NSE) is obtained by adding the intensity-

dependent index term to Eq. (2.42) by substituting both terms of Eqs. (2.29) and (2.34)

into Eq. (2.41),

∂A

∂z
+

i

2
β2

d2A

dT 2
+

α

2
A = iγ|A|2A, (2.43)
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where the nonlinear coefficientγ defined as

γ =
ωo n2

c Aeff

, (2.44)

and the effective area defined as

Aeff =

(∫ ∫∞
−∞ |F (x, y)|2dx dy

)2∫ ∫∞
−∞ |F (x, y)|4dx dy

. (2.45)

By itself, nonlinearity can cause self-phase modulation (SPM) of the optical pulse.

SPM is caused by the intensity dependence of the index of refraction which causes a

time dependent nonlinear phase that leads to frequency chirp, a change of instantaneous

optical frequency across the pulse from its center valueωo. SPM induced chirp can

cause spectral broadening (see Fig. 2.3)which can lead to pulse compression. Similar

to the dispersion length, we can define a characteristic length of SPM (nonlinear length)

by

LNL =
1

γPo

, (2.46)

wherePo is the peak power of the pulse.

There are other higher order nonlinear terms that we can add to the right hand side

of Eq. (2.43). In high bit-rate soliton systems that require the use of extremely short

optical pulses, a Raman effect on the pulse delay must be included in the nonlinear

Schr̈odinger equation [9]

∂A

∂z
+

i

2
β2

∂2A

∂T 2
+

α

2
A = iγ

[
|A|2A− TR A

∂|A|2

∂T

]
. (2.47)
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Table 2.2: Parameters used in simulation of pulse spectrum broadening

Parameter Symbol Value
Pulse shape A Hyperbolic secant
Pulse width T0 10 ps
Pulse power Ps 30 mW
Dispersion length LD 1000 km
Nonlinear length LNL 10 km

2.3 Optical Solitons

We have seen in previous sections how fiber dispersion and fiber loss can distort the

shape of the pulse, which can have an adverse effect on signal propagation for commu-

nication purposes. However, if we were to use fiber nonlinearity to counter-balance the

fiber dispersion, a stable pulse can propagate undisturbed through the fiber — this is

the concept of optical solitons.

It is useful to normalize the nonlinear Schrödinger equation, Eq. (2.43), by intro-

ducing

U =
A√
Po

, ζ =
z

LD

, τ =
T

To

. (2.48)

The normalized nonlinear Schrödinger equation without the loss and the Raman term

is given by

∂U

∂ζ
+

i

2
sgn(β2)

∂2U

∂τ 2
− iN2|U |2U = 0, (2.49)
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Figure 2.3: Spectral broadening of optical pulse due to SPM

whereN is the soliton order and is defined by

N2 =
LD

LNL

=
γPoT

2
o

|β2|
. (2.50)

Equation (2.49) can be solved by using the inverse scattering method [8] which consists

of choosing a suitable scattering problem whose potential is the solution sought. The

propagated field is reconstructed from the scattering data and the solution corresponds

to N = 1 is called the fundamental soliton and can be written as

U(ζ, τ) = sech(τ) exp

(
iζ

2

)
. (2.51)
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Table 2.3: Parameters used in simulation of soliton propagation

Parameter Symbol Value
Pulse shape U Soliton
Soliton order N 1
Pulse width T0 10 ps
Fiber dispersion β2 −10 ps2/km
Dispersion length LD 10 km
Nonlinear parameter γ 3.36 (W km)−1

Fiber loss α 0 dB/km

As can be seen readily from Eq. (2.50), whenN = 1, the dispersion lengthLD

exactly equals the nonlinear lengthLNL, indicating that the solution exists when fiber

nonlinearity exactly balances the fiber dispersion by choosing the appropriate launch

power for a given fiber dispersion and pulse width. This is not too surprising since we

have already seen how the pulse broadens due to GVD and compresses due to SPM.

Fig. 2.4 shows the stable propagation of a soliton pulse over a dispersion length without

any change in its shape using the parameters in Table 2.3.

2.4 Split-Step Fourier Transform Method

The inverse scattering method can solve the nonlinear Schrödinger equation only in

some specific cases. Numerical methods are employed to study the nonlinear effects in

optical fibers for most cases. Because of its speed, the most commonly used method

is the split-step Fourier transform method, which takes advantage of finite-Fourier-

transforms (FFT) algorithms [9].

The half-step Fourier transform methodology involves the separation of the equa-

tion into a differential part̂D to be solved in the Fourier domain and a nonlinear partN̂
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Figure 2.4: Soliton pulse propagation

to be solved in the time domain. This can be written mathematically as

∂A

∂z
= (D̂ + N̂)A, (2.52)

where the operators are given by

D̂ = − i

2
β2

∂2A

∂T 2
− α

2
, (2.53)

N̂ = iγ|A|2 + other nonlinear terms. (2.54)

The assumption made in using the split-step Fourier transform method is that even

though dispersion and nonlinearity act concurrently over a small distanceh, the dis-
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persive and nonlinear effects can be assumed to act separately. The method is imple-

mented by applying only the dispersive effect on the first half of the step, then applying

the nonlinearity for the whole step (assuming the power is approximately constant over

the step size,h), and finally re-applying the dispersive effect on the second half of the

step. This is also referred to as the symmetric split-step Fourier transform method, (see

Figure 2.5). Note that since the dispersion operatorD̂ consists of differential operator,

Figure 2.5: Split-step Fourier transform method

it is solved easily in the Fourier domain by using FFT. Mathematically, the numerical

methodology can be given by the following equation

A(z + h, T ) = exp

(
D̂

h

2

)
exp(N̂h) exp

(
D̂

h

2

)
A(z, T ). (2.55)

The accuracy of the symmetric split-step Fourier transform method can be estimated

by comparing the exact solution to the approximated solution. If we assume thatN̂ is
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independent of z, the exact solution is given by

A(z + h, T ) = exp
(
(D̂ + N̂)h

)
A(z, T ). (2.56)

A comparison of the exact solution [Eq. (2.56)] with the approximate solution

[Eq. (2.55)] using the Baker-Hausdorff formula shows that the error is on the order

of h3 [9].

2.5 Variational Technique

The propagation of soliton pulses in each fiber section between two consecutive ampli-

fiers is described by the nonlinear Schrödinger equation, Eq. (2.49). The loss term can

be eliminated with the following change of variables

A = B exp(−αz/2), γ(z) = γ0 exp(−αz), (2.57)

whereγ0 is the nonlinear coefficient in the absence of loss. This reduces the nonlinear

Schr̈odinger equation into the following form:

i
∂B

∂z
− 1

2
β2

∂2B

∂T 2
+ γ(z)|B|2B = 0. (2.58)

The effects of fiber loss are now included through thez dependence ofγ.

Variational analysis provides approximate analytical results for features such as

pulse compression, maximal pulse amplitude, and induced frequency chirp [20]. The

nonlinear Schr̈odinger equation can be restated as a variational problem by casting it in
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the form of the Euler-Lagrange equation

∂

∂z

(
∂L

∂qz

)
+

∂

∂T

(
∂L

∂qT

)
− ∂L

∂q
= 0, (2.59)

whereq represents the fieldB or B∗, the subscriptsT andz denote differentiation with

respect to the appropriate variable, and the Lagrangian densityL is given by [20]

L = − i

2
(B∗Bz −BB∗

z )−
1

2

[
γ(z)|B|4 + β2|BT |2

]
, (2.60)

where a subscript denotes derivative with respect to that variable. Note that combining

Eqs. (2.59) and (2.60) withq = B∗ produces Eq. (2.58).

To carry out the variational analysis, we average the Lagrangian density by integrat-

ing over time

L =

∫ ∞

−∞
L[T, q(z)] dT. (2.61)

Integrating Eq. (2.59) over time, the reduced Euler-Lagrange equation becomes

d

dz

(
∂L
∂qz

)
− ∂L

∂q
= 0. (2.62)

To make further progress, we choose the following ansatz for the soliton shape and

phase:

B(z, T ) = a sech

(
T

To

)
exp

(
iφ− iCT 2

2T 2
o

)
, (2.63)

wherea is the amplitude,φ is the phase,C is the chirp, andTo is the pulse width. All
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of the soliton parameters exceptφ remain constant for a lossless fiber but are allowed

to vary withz when solitons are amplified periodically to compensate for fiber losses.

Performing the integral in Eq. (2.61) gives the following expression for the average

Lagrangian density

L = a2

(
2φzTo −

π2

12
CzTo +

π2

6
CToz

)
− 2

3
γ(z)a4To −

β2a
2

3To

(
1 +

π2

4
C2

)
. (2.64)

By combining Eqs. (2.62) and (2.64) withq representing any of the variablesa, To,

C, or φ, we obtain the following set of four ordinary differential equations governing

variations of soliton parameters along the fiber link:

d(a2To)

dz
= 0, (2.65)

dTo

dz
=

β2C

To

, (2.66)

dC

dz
=

4

π2
γ(z)a2 +

β2

T 2
o

(
4

π2
+ C2

)
, (2.67)

dφ

dz
=

β2

3T 2
o

+
5

6
γ(z)a2. (2.68)

These equations are equivalent to solving the nonlinear Schrödinger equation within

the variational approximation. Note however, that this approach is only approximate

and does not account for characteristics such as radiative loss [21], damping of the

amplitude oscillations, and changing of soliton shape [20]. It should be stressed that

Eqs. (2.65) – (2.68) can also be applied for dispersion-managed solitons by makingβ2

explicitly z-dependent. In the next chapter, we consider the case of constant-dispersion

fibers first.
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2.6 Summary

In this chapter, we presented the theory for nonlinear pulse propagation based on

Maxwell’s equations taking into account fiber dispersion, fiber losses, and fiber non-

linearity. We have also presented the optical soliton as a solution to the nonlinear

Schr̈odinger equation that can be used advantageously in fiber optic communication

systems. An efficient numerical algorithm is presented to effectively study the nonlin-

ear pulse propagation. Furthermore, we presented the foundation of the variational

method as an effective analytical tool in studying nonlinear propagation dynamics.

This technique will be crucial in providing analytic insight in studying periodicity of

constant-dispersion (Chapter 3) as well as dispersion-managed systems (Chapter 5).
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Chapter 3

Chirped Solitons in
Constant-Dispersion Fiber Links

3.1 Introduction

We introduced the concept of optical solitons in section 2.3 for transmitting information

in an optical communication system. The ability of the soliton to maintain its shape as

it propagates through an optical fiber, a dispersive and nonlinear medium, makes it an

ideal choice in transmitting signals. Unfortunately, fiber loss reduces the nonlinearity

needed to balance fiber dispersion, and a soliton can no longer be preserved. Optical

amplifiers were developed to mitigate the problem of fiber loss and have been very

successful. Lumped amplification systems place optical amplifiers periodically along

the fiber link to compensate for the fiber loss. For cost effectiveness, it is necessary to

have as large an amplifier spacing or conversely, as few amplifiers as possible.

The principal concept that has emerged in the context of lumped amplification is

the path-averaged or guiding-center soliton [22–24]. This allows propagation of soli-

tons through lossy fibers provided the amplifier spacingLA is short compared to the

dispersion lengthLD. The soliton is launched with enough energy such that the path-
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averaged peak power over one amplifier spacing is equal to the peak power needed

for soliton propagation. However, this results in the need to limitLA to a fraction

of LD (LA � LD), which in turn necessitates unreasonably short amplifier spacings

(< 10 km) when operating at high bit rates. This limitation comes from the fact that the

system is not perfectly periodic whenLA becomes comparable to or exceedsLD. As a

result, large perturbations generate spectral side bands and dispersive radiation which

degrade the system performance [25–27]. Several techniques have been proposed to de-

sign soliton communication systems that can operate beyond the average-soliton regime

[28–31]. However, their use often requires additional optical elements such as a fast sat-

urable absorber [9]. We propose a way to extend the amplifier spacing to beyond the

guiding-center soliton through pulse prechirping.

3.2 Guiding-Center Solitons

The normalized nonlinear Schrödinger equation including the effect of periodic optical

gain provided by a series of inline optical amplifiers can be written as [2]

∂U

∂ζ
+

i

2
sgn(β2)

∂2U

∂τ 2
− iN2|U |2U = −Γ

2
U +

(√
G− 1

) N∑
n=1

δ(ζ − nzA)U, (3.1)

whereΓ = γLD is the normalized loss coefficient,G = exp(Γ zA) is the amplifier

gain, andzA is the normalized amplifier length for the fundamental soliton (N = 1)

in a anomalous dispersion fiber (β2 < 0). Similar to the slowly varying envelope

approximation of the previous chapter, we will separate the fast varying function that

describes the soliton losses and amplifications (a) and the slowly varying function of

the dispersion and nonlinear effect (u). The optical field can then be written as the
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product of these functions

U(ζ, τ) = a(ζ)u(ζ, τ). (3.2)

After separating out the fast-varying processes, the resulting propagation equation is in

the form of the lossless nonlinear Schrödinger equation , Eq. (2.49) after separating out

the rapidly-varying processes,

∂u

∂ζ
+

i

2
sgn(β2)

∂2u

∂τ 2
− ia2(ζ)N2|u|2u = 0, (3.3)

with a(ζ) obtained by solving the rapidly-varying dynamics of gain-loss evolution,

da

dζ
= −Γ

2
a +

(√
G− 1

) N∑
n=1

δ(ζ − nzA)a. (3.4)

Equation (3.4) can be easily solved with the result being an exponential loss with an

abrupt amplification atζ = zA as can be seen in Figure 3.1.

The concept of guiding-center solitons relies on the fact that the amplitude varia-

tions are rapidly varying with the periodzA � 1. Since the solitons react on a much

slower length scale, we can approximatea2(ζ) by its average over the period. The so-

lution to Equation (3.3) can be written as a combination of averaged solution (guiding-

center soliton)̄u and a perturbationδu, i.e. u = ū + δu. The resulting equation for the

guiding-center soliton is then

∂ū

∂ζ
+

i

2
sgn(β2)

∂2ū

∂τ 2
− i
〈
a2(ζ)

〉
N2|ū|2ū = 0, (3.5)

with the perturbation small enough to be ignored forzA � 1 [2]. For fundamental
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Figure 3.1: Amplitude variations of lumped amplification withLA=20 km and 0.2 dB/km loss.

solitons to operate in the guiding-center soliton, input peak power of the pulse should

be given such that〈a2(ζ)〉N2 = 1. For amplifier gain equal to fiber loss over the

amplifier span, the peak power is given as

Pin =
G ln G

G− 1
P0, (3.6)

whereP0 is the power required for the fundamental soliton in a lossless fiber. Figure

3.2 shows the evolution of a guiding center soliton through two amplifier stages with

zA = 0.2 (see Table 3.1). The figure clearly illustrates the effect of fiber loss which
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Table 3.1: Parameters used in simulation of soliton propagation

Parameter Symbol Value
Pulse shape U Soliton
Soliton order N 1.117
Pulse width T0 10 ps
Fiber dispersion β2 −2 ps2/km
Dispersion length LD 50 km
Nonlinear parameter γ 3.36 (W km)−1

Fiber loss α 0.2 dB/km
Amplifier spacing LA 10 km

causes pulse broadening but it also shows the ability of the pulse to retain its soliton

nature through periodic amplification.

3.3 Pre-Chirped Solitons

A question one may ask is whether the periodicity of solitons (see Figure 3.3) can be re-

stored even whenLA ∼ LD by modifying the system design in an appropriate way. For

example, the guiding-center soliton is launched with an unique peak power obtained

by averaging the soliton energy over one amplifier spacing. However, the soliton is as-

sumed to remain unchirped [22,32]. The trick is then to allow both the width and chirp

of the soliton to vary in each fiber section between two amplifiers (similar concepts

have been used in dispersion-managed solitons [33–38]). We use variational analy-

sis to determine the optimal launch conditions for the guiding-center soliton (GCS)

or path-averaged soliton (PAS). We require the pulse width and chirp to be periodic

and determine the exact pre-chirping and peak power needed to maintain periodicity

of soliton in periodically amplified fiber links. The use of prechirping provides a new
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Figure 3.2: Evolution of guiding-center soliton

operating regime for such systems in whichLA can be comparable and even exceed

LD. This regime is especially useful at high bit rates (B > 10 Gb/s) for which the

dispersion length becomes∼ 10 km. Furthermore, even though we focus on the case of

constant-dispersion fibers, the new regime discussed here may find applications in the

case of dispersion-managed lightwave systems.

3.3.1 Variational Results

Equation (2.65) shows the conservation of pulse energyEp =
∫
|B|2 dt and relates the

amplitudea of the pulse to its widthTo. We can write the relation asa2 = a2
0To(0)/To

wherea0 andTo(0) are the initial pulse amplitude and width, respectively. As a result,
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Figure 3.3: Periodicity of soliton pulse through each amplifier unit

φ is strictly determined byTo, and the variational analysis is reduced to solving a pair of

coupled ordinary differential equations forC andTo only [Eq. (2.66) and (2.67)]. Fur-

thermore, it is useful to introduce the normalized lengthξ = z/LA, and the normalized

pulse widthW = To/To(0). Equation. (2.66) and (2.67) then become

dW

dξ
= −zAC

W
, (3.7)

dC

dξ
=

4zAP0 exp(−Γξ)

π2W
− zA

W 2

(
4

π2
+ C2

)
. (3.8)

whereΓ = αLA, andP0 = γ0 a2
0 LD is the normalized initial peak power. Our objec-

tive is to find a periodic solution of Eqs. (3.7) and (3.8) such that all soliton parameters

(exceptφ) recover their initial values after one amplifier spacing. This periodicity con-

dition can only be met under certain launch conditions. The optimal launch conditions

are determined by solving Eqs. (3.7) and (3.8) with the boundary conditions

C(0) = C0 = C(1), W (0) = 1 = W (1). (3.9)
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3.3.2 Analytical Results

In general, Eqs. (3.7)–(3.9) should be solved numerically by considering different in-

put values for the peak powerP0, pulse widthTo(0), and initial chirpC0. Because of

the multidimensional nature of the parameter space, an exhaustive search for periodic

solutions is quite time consuming. However, we can solve Eqs. (3.7) and (3.8) approx-

imately by using a perturbation method in the regimezA << 1. The natural parameter

for perturbation expansion iszA sinceC andW vary little along the fiber length for

zA << 1. ExpandingC andW up to second-order inzA, we can write

W = W0 + W1zA + W2z
2
A, (3.10)

C = C0 + C1zA + C2z
2
A. (3.11)

SinceC0 = 0 andW0 = 1 (the lossless case), we obtain the following two equations

by substituting Eq. (3.10) and (3.11) into Eq. (3.7) and (3.8) and collecting the terms in

similar powers ofzA,

dW2

dξ
= −C1, (3.12)

dC1

dξ
=

4P0 exp(−Γξ)

π2
− 4

π2
. (3.13)

The width parameterW has no first-order corrections. These equations can be solved

by direct integration to obtainC1(ξ) and W2(ξ). Applying the boundary condition

C1(0) = C1(1) sets the launch condition for peak power to be

P0 =
Γ

1− exp(−Γ)
=

G ln G

G− 1
. (3.14)
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Similarly, applying the boundary conditionW2(0) = W2(1) provides the input chirp

C1(0) =
2

π2
−
(

4

π2

)
exp(−Γ) + Γ− 1

Γ(1− exp(−Γ))

=
4

π2

[
1

2
+

(G− 1)−G ln G

ln G(G− 1)

]
. (3.15)

The peak-power condition, Eq. (3.14), is the same as that obtained by the guiding-center

soliton theory [22] (also see Eq. (3.6)) assuming that an unchirped soliton is launched at

the input end. The chirp condition, Eq. (3.15), is new and is obtained by requiring that

the pulse width recovers its initial value periodically. We have seen that the variational

analysis allows us to examine the conditions of periodicity for both the chirp and the

width, resulting in an additional constraint in Eq. (3.15). We will refer these solitons as

chirped path-average solitons.

3.4 Numerical Results

In this section we discuss the new operating regime of chirped solitons and compare it

with the standard operating regime in which unchirped solitons are launched at the input

end. The perturbation analysis of Section 3.3.1 provides an estimate of the launching

parameter only forzA << 1. However, we expect on physical grounds chirped solitons

to be useful for designing high-speed periodically amplified fiber links even whenzA

exceeds 1. The operating region in which the amplifier spacing is comparable or larger

than the dispersion length (zA > 1) can be studied by solving Eqs. (3.7) and (3.8)

numerically.

To obtain the numerical solution, we use a root-finding algorithm to satisfy the

boundary conditions imposed by Eq. (3.9). For definiteness, we chooseLA = 40 km
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andG = 10 (Γ = 2.3) and find the optimum values ofP0 andC(0) numerically for

zA in the range 0–2.5. Figure 3.4 compares the peak powerP0 needed for launching

chirped (solid line) and unchirped (dashed line) soliton aszA is increased from 0 to

2.5. In the regimezA << 1, the launch power is virtually the same for both chirped

and unchirped solitons; this result agrees with our perturbation analysis as well as with

guiding-center soliton theory. AszA increases, the chirped soliton requires slightly

more power. However, the increase in peak power is less than 2% even forzA = 2.5.

Figure 3.4 shows the amount of prechirping required as a function ofzA. The input

soliton needs to be prechirped more and more as amplifier spacing increases.
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Figure 3.4: Comparison of launching peak power (top) and initial chirp (bottom) for chirped (solid
curves) and unchirped (dotted curves) solitons or GCS as a function of normalized amplifier spacing
when amplifiers with 10-dB gain (Γ = 2.3) are placed 40 km apart.
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The need for negative prechirping can be understood by examining Eq. (3.8), which

shows thatdC/dξ contains a negative term (sinceβ2 < 0 for anomalous dispersion)

and an exponentially decreasing positive term. Initially, the positive term dominates

due to the high peak power, and the chirp increases with propagation. However, the

nonlinear term is reduced because of fiber loss, anddC/dξ becomes negative, resulting

in a downward concave trajectory. In addition the boundary condition Eq. (3.9) requires

that

∫ 1

0

C(ξ) dξ = 0. (3.16)

For a concave-down trajectory this integral relation can be satisfied only for negatively

prechirped pulses [C(0) < 0] [see figure 3.6(b)].

Since both the soliton width and chirp are allowed to vary alongz periodically in the

new operating regime proposed here, it is important to consider the extent of variation

in each fiber section between two amplifiers. Figures 3.5 and 3.6 show variation of

pulse width and chirp along the fiber length forzA = 0.4 andzA = 2.1 respectively

using launch conditions corresponding to a chirped (solid line) and an unchirped soliton

(dashed line).

In the zA << 1 regime, the chirp is fairly periodic in both cases. But since the

unchirped soliton does not impose periodicity of the pulse width, soliton width is re-

duced by 1%. In contrast, the width recovers its initial value for the chirped soliton.

In thezA > 1 regime, however, the perturbation becomes too great for the unchirped

soliton to maintain the periodic nature of the pulse width and chirp. As seen in Fig-

ure 3.6(a), the soliton width can vary as much as by 20% (dashed line) and is smaller

by 10% after one amplifier spacing. In contrast, the chirped PAS recovers both pulse
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Figure 3.5: Evolution of pulse width and chirp over one amplifier stage for a chirped (solid curves) and
an unchirped (dotted curves) soliton or GCS as predicted by variational analysis. Normalized amplifier
spacing iszA = 0.4.

width and chirp after each amplifier. Also, width variations are much smaller (< 5%)

for chirped solitons showing clearly that such solitons are not perturbed significantly

even whenzA > 1.

In order to check the validity of variational analysis, Figure 3.7 and 3.8 are obtained

using the same parameters as those used in Figure 3.5 and 3.6 except that the nonlinear

Schr̈odinger equation is solved numerically over 20 amplification stages (total trans-

mission distance of 800 km). The root-mean-square (RMS) width [2] (see Appendix)

and chirp of the pulse are calculated numerically. We decided to estimate the RMS

width since the shape of the pulse is not guaranteed to remain preserved even though

variational analysis requires it. The chirp parameter is estimated by fitting a parabola

to the phase profile in the vicinityT = 0 and noting from Eq. (2.63) that the quadratic

term varies asCT 2/2T 2
o . Figure 3.7 and 3.8 show that the periodicity inC andTo
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Figure 3.6: Evolution of pulse width and chirp over one amplifier stage for a chirped (solid curves) and
an unchirped (dotted curves) soliton or GCS as predicted by variational analysis. Normalized amplifier
spacing iszA = 2.1.

is maintained only approximately over multiple amplifiers. For example, RMS pulse

width varies1% from amplifier to amplifier whenzA = 0.4, and variations become as

large as10% whenzA = 2.1. This is not surprising and indicates that the “sech” pulse

shape is not the true pulse shape for the periodic solution of the nonlinear Schrödinger

equation . As we noted earlier, variational analysis cannot accurately predict the soli-

ton parameters once the shape of the soliton is not preserved. Figures 3.7(a) and 3.8(a)

show that the RMS width varies less when a chirped soliton is launched. For instance,

in the casezA = 2.1, width of unchirped solitons exhibit more than20% variation,

whereas chirped solitons exhibit a maximum of10% variation. This feature suggests

that, in general, the use of prechirped solitons is likely to provide better system perfor-

mance compared with unchirped solitons.

To explore the soliton-stability issue, we have plotted the chirp and width variations
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Figure 3.7: Same as in Fig. 3.5 except that soliton evolution over 20 amplification stages (total distance
of 800 km) is shown by solving the NSE numerically.

in the two-dimensional phase space as a Poincaré map since such a map shows the

phase-space region over which width and chirp vary along the fiber length. Figure 3.9

shows the Poincaré map for chirped and unchirped solitons over 100 amplifier spacing

(4000 km). Ideally, if the system is perfectly periodic, we would expect all the points

to coincide, resulting in a single dot in the plot. Our numerical results show that for

both zA = 0.4 and zA = 2.1, the chirped soliton is more localized, implying that

both the soliton width and chirp vary over a smaller range from one amplifier to the

next. This behavior confirms our variational result that prechirping is necessary for

stable propagation. Forysiaket al. [30] reached a similar conclusion using an operator-

splitting technique.
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Figure 3.8: Same as in Fig. 3.6 except that soliton evolution over 20 amplification stages (total distance
of 800 km) is shown by solving the NSE numerically.

3.5 Summary

Fiber-optic communication systems employ the technique of lumped amplification to

compensate for fiber losses. In order to maintain soliton integrity in the presence of

fiber losses, guiding-center soliton is used but the system is then limited in the am-

plifier spacing it can sustained. We have found a new operating regime for soliton

transmission in periodically amplified lightwave systems. This regime requires launch-

ing of an initially chirped soliton. Our variational analysis recovers the guiding-center

soliton result in the regimezA << 1. By allowing both the pulse width and the chirp

to vary over each amplifier section, we find that prechirping the pulse is necessary in

order to sustain path-averaged solitons in the regimezA ∼ 1 in a periodically amplified

optical communication system. We use the results of variational analysis to determine

the amount of pre-chirping and initial peak power required to recover initial launch val-
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Figure 3.9: Poincaré map obtained by plotting soliton width and chirp at the end of each amplifier section
for 100 amplification stages (4000 km) for unchirped or GCS (*) and chirped (•) soliton. ForzA = 0.4,
nearly circular compact region shows the quasi-periodic nature of soliton evolution. ForzA = 2.1,
soliton width and chirp vary over a wider region.

ues at each amplifier. Numerical solutions of the nonlinear Schrödinger equation show

that the use of prechirped solitons improves stability since variations of pulse width and

chirp over a large transmission distance are much smaller compared to guiding-center

solitons. The new operating regime should be useful at high bit rates (> 20 Gb/s) by

permitting amplifier spacing to become larger than the dispersion length. This tech-

nique is simple to implement because most pulses emitted by semiconductor lasers are

chirped. In addition, correct prechirping can also be achieved through propagating the

pulse through a correct length of optical fiber.
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Chapter 4

Distributed Amplification in
Constant-Dispersion Systems

4.1 Introduction

Soliton communication systems are leading candidates for long-haul lightwave trans-

mission links because they offer the possibility of a dynamic balance between group-

velocity dispersion (GVD) and self-phase modulation (SPM), the two effects that

severely limit the performance of non-soliton systems [2,39]. Most system experiments

employ the technique of lumped amplification and place fiber amplifiers periodically

along the transmission line for compensating the fiber loss.

The limitation on the amplifier spacing imposed by lumped amplification was stud-

ied (see guiding-center soliton, section 3.2). This limitation can be overcome by

prechirping the pulse (see Chapter 3) or by using distributed amplification [14]. In this

scheme [40,41], the transmission fiber is pumped periodically, creating sufficient gain

through either the presence of rare-earth erbium ions or using stimulating Raman scat-

tering (SRS) for compensating the fiber loss. Since the gain is distributed throughout

the fiber link and compensate the fiber loss locally all along the fiber, soliton peak-
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power variations can be made much smaller compared with the lumped amplification

scheme. Although one expects the pump-station spacingLA to become comparable

and even exceedLD in the case of distributed amplification, a systematic comparison

of the lumped and distributed amplification schemes is not available in the literature.

Furthermore, shorter pulses needed at high bit rates are affected considerably by SRS,

therefore the inclusion of SRS is essential in modeling high-bit-rate systems [9].

4.2 Erbium-Doped Fiber Amplifiers

Fiber-optic communication systems compensates for fiber losses through the use of

EDFAs. An EDFA consists of regular silica fiber doped with erbium rare earth ions and

is modeled as a three-level gain medium (see Figure. 4.1). Semiconductor lasers are
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the pump-station spacingLA to become comparable and even exceedLD in the case of

distributed amplification, a systematic comparison of the lumped and distributed ampli-

fication schemes is not available in the literature. Furthermore, shorter pulses needed

at high bit rates are affected considerably by SRS, therefore the inclusion of SRS is

essential in modeling high-bit-rate systems [12].

4.2 Erbium-Doped Fiber Amplifiers

4.2.1 Introduction

Fiber-optic communication systems compensates for fiber loss through the use of

EFDA. EDFA consisted of regular silica fiber doped with erbium rare earth ions can
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usually used as pump power sources to provide the population inversion necessary to

achieve gain.
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The rate equations for the three level system can be written down as follows:

dN3

dt
= WpN1 −N3γ3 −WpN3 (4.1)

dN2

dt
= N3γ3 −W (N2 −N1)−N2γ2 (4.2)

dN1

dt
= N2γ2 + W (N2 −N1)−Wp(N1 −N3), (4.3)

WhereN1, N2, andN3 are the number of erbium ions in each of the respective energy

levels, andNT = N1 + N2 + N3 is the total number of erbium ions (ions/µm3) in the

fiber. The relaxation rate of the energy states (second and third level) are represented

by γ2 andγ3 respectively,W andWp are the photon density rates of the signal and the

pump. The steady state solution ofdNi

dt
= 0 (where i=1, 2, 3) reduces the rate equations

(4.1) – (4.3) to the following equalities:

N1 =
N3(γ3 + Wp)

Wp

≈ N3γ3

Wp

(4.4)

N2 =
N3γ3 + WN1

W + γ2

≈ N1(W + Wp)

W + γ2

(4.5)

N3 =
N1(Wp + W )−N3Wp

W + γ2

≈ N1(Wp + W )

W + γ2

, (4.6)

with the assumption that the third level decays faster than the pump absorption (γ3 �

Wp), and most of the ions are going to be in the ground state as compared to the upper

state (N1 � N3). The population inversion∆N can then be calculated from the above

equations using∆N = N2 −N1

∆N =
NT (γ3Wp − γ3γ2 −Wpγ2)

W (3Wp + 2γ3) + 2Wpγ2 + γ3(Wp + γ2)
. (4.7)
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For a rapid upper state relaxation (γ3 � γ2, Wp), Eq. (4.7) can be further reduced to

∆N =
NT (Wp − γ2)

2W + Wp + γ2

. (4.8)

The gain of the medium is the product of the absorption cross section and the population

inversion so that

g = σ∆N =
σNT (Wp − γ2)

2W + Wp + γ2

. (4.9)

Lumped amplification schemes using EDFA necessitates that the net gain of the ampli-

fier exactly compensates for the fiber loss. To this end, the fiber is doped heavily and

Eq. (4.9) is solved with respect to pump rateWp such that sufficient gain is obtained,

the stipulation being of course that the amplifier lengthLA obeys the guiding-center

soliton condition of section 3.2 or the prechirped path-average condition of section 3.3.

Even though the amplifier is intended to amplify a train of optical pulses, the com-

munication system operates at very high bit rates with pulses in the order of picoseconds

and because the fluorescence lifetime of the excited erbium ions is only order of≈ 10

ms, we can write the signal and pump waves in the continuous wave (CW) regime [2].

The equations that describe the pump-signal interaction are given as

dPp

dz
= −(σpN1 + αp)Pp, (4.10)

dPs

dz
= (σs∆N − αs) Ps. (4.11)

wherePp, Ps, σp, andσs are the pump and signal powers and transition cross sections

respectively. The above equations are used to study the small-signal and large-signal
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amplification and their predictions are accurate for our purposes. The gain of EDFA can

be as high as 30 dB with only 30 m of erbium-doped fiber requiring only approximately

4 mW of pump power at 1.48µm [2].

4.3 Distributed Erbium-Doped Fiber Amplifiers

Distributed erbium-doped fiber amplifiers (d-EDFA) basically replace the traditional

set of transmission fiber and high-gain EDFA with a transmission fiber that is lightly

doped with rare-earth erbium ions. The link then becomes essentially transparent when

pumped from both directions (see Figure 4.2). Fiber transparency can be accomplished

with various dopant concentrations, which can be used to adjust for minimum gain/loss

perturbation for the soliton pulses.

Figure 4.2: Distributed-erbium doped amplifier link

4.3.1 Modeling Gain in Distributed Fiber Amplifiers

Since d-EDFA is just an extension of EDFA, we can use the same three-level gain model

from the previous section (Sec. 4.2). Since the erbium-doped fiber length is much
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longer and we are trying to minimize gain/loss perturbation, the optimal pump scheme

consists of bi-directional pumping [42] (see Fig. 4.3). We can study the evolution of

4.2. ERBIUM-DOPED FIBER AMPLIFIERS 43

the pump-station spacingLA to become comparable and even exceedLD in the case of
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essential in modeling high-bit-rate systems [12].
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Figure 4.3: Bi-directional pumping of d-EDFA

forward and backward pump powers along with the signal power using the following

set of three equations.

dPf

dz
= [−A N1(z; Pf , Pb)− αp]Pf , (4.12)

dPb

dz
= [A N1(z; Pf , Pb) + αp]Pb, (4.13)

dPs

dz
= [σ ∆N(z; Pf , Pb)− αs]Ps. (4.14)

which include the saturation of gain as well as pump depletion.Pf , Pb, andPs are the

forward, backward-pump and signal powers respectively.

4.3.2 Small-Signal Solution

Assuming small signal power, we can solve the above equations analytically by ignor-

ing the first term in the pump power equation that represents the pump depletion due

to absorption. Just keeping the fiber loss term of the pump powers, the forward and
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backward pumped powers are given as

Pf (z) = Pi exp(−αp z), (4.15)

Pb(z) = Pi exp[αp(z − LA)], (4.16)

wherePi is the initial pump power. The saturation power can be written in terms of

the pump powers by noting that the signal and pump rate can be rewritten in terms of

power

W =
σ P

Eo Aeff

. (4.17)

Eq. (4.9) can then be rewritten as

g =
go

1 + Ps/Psat

, (4.18)

where the small signal gaingo and the saturation power are define as

go =
σ Nt(Pf + Pb + PA)

Pf + Pb + PA

, (4.19)

Psat =
1

2
(Pf + Pb + PA) , (4.20)

wherePA = Eo Aeffγ2/σ represents the spontaneous emission, which contributes to

the noise of the system.



4.3. DISTRIBUTED ERBIUM-DOPED FIBER AMPLIFIERS 56

4.3.3 Numerical Solution

Full solution can be obtained numerically by integrating Eqs. (4.12)–(4.14). Further

simplification can be applied to reduce the complexity of the problem by noting that

Eqs. (4.12)–(4.13) have the following equality

− 1

Pf

dPf

dz
=

1

Pb

dPb

dz
. (4.21)

Simple algebraic manipulation yields the following relation between the forward and

backward pump powers

d

dz
[ln(Pf ) + ln(Pb)] = 0,

d

dz
(Pf + Pb) = 0,

Pf Pb = C, (4.22)

where C is a constant that is the product of the forward and backward pump-powers.

To summarize, the following constrains are used to solve coupled ordinary differential

equations given by Eqs. (4.12)–(4.14):

Pf Pb = C, (4.23)

Pf (z = 0) = Pb(z = LA), (4.24)∫ LA

o

g(z)− αs dz = 0. (4.25)

Figure 4.4 shows the comparison between the analytical and numerical solution of

the pump power evolution, showing the role of pump absorption on a 100 km d-EDFA



4.3. DISTRIBUTED ERBIUM-DOPED FIBER AMPLIFIERS 57

amplifying an averaged signal power of 0.3 mW with losses of 0.2 dB/km for both

pump and the signal. Not that even for such a small signal power, there is a noticeable

Figure 4.4: Analytical and numerical solution of the forward, backward, and total pump powers

differences in the pump power evolution which are due to the effect of pump depletion

that was neglected in the analytical analysis. For systems using high power pulses or

employing WDM technology, it is imperative that the effect of pump absorption due

to signal-gain depletion be included. The results showed that a pump power of nearly

80 mW is required to amplify the signal using 100 km of d-EDFA fiber with a dopant

density of 200 ions/µm3. As the dopant density is increased, the pump power required

is decreased (Figure 4.5). This comes from the fact that for low dopant densities, ad-
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ditional pump power is needed to penetrate deeper into the erbium-doped fiber against

pump power absorption and fiber loss. For higher dopant densities, enough gain can

be garnished within a short span of erbium-doped fiber that additional power is not

necessary. Unfortunately, because of the higher pump absorption caused by the higher

dopant densities, the maximum gain experienced by the signal is also increased (see

Figure 4.6).
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Figure 4.5: Pump power needed for various dopant levels

4.4 Raman Amplifier

Raman amplifiers use the nonlinear property of the fiber to convert pump light at one

wavelength to signal gain at another wavelength. Unlike the d-EDFA, the transmission

fiber is not modified with dopants but higher intensity pump powers are required to
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Figure 4.6: Maximum net gain for various dopant levels

initiate the nonlinear process. The Raman gain can be obtained by solving the following

equations

dIf

dz
= −ωp

ωs

gRIfIs − αpIf , (4.26)

dIb

dz
=

ωp

ωs

gRIbIs + αpIb, (4.27)

dIs

dz
= gR(If + Ib)Is − αsIs, (4.28)

whereIs, If andIb are the signal and the forward and backward pump intensity respec-

tively andgR is the Raman gain coefficient. The frequency of the pump and signal is

given byωp andωs.
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4.4.1 Small Signal Analysis

We can solve Eqs. (4.26)-(4.28) analytically in the small-signal domain by assuming

that the pump intensity is dominated by fiber losses. The forward and backward pump

powers (note that we can convert intensity to power simply by usingP = I Aaeff )

are given similarly by Eqs. (4.15)–(4.16). The pump parameter that we derived in

Eq. (4.22) can also be applied to Raman amplification. Combining these equations, we

can write the Raman gain as

g(z) =
gR

Aeff

[
Pi exp(−αp z) +

C

Pi

exp(αp z)

]
. (4.29)

Imposing the equal pump condition and fiber transparency (see Eq. (4.23)) yields the

following solution for the pump power needed

Po =
αs αp LA Aeff

2 gR (1− exp(−αp LA))
. (4.30)

4.4.2 Numerical Results

The small signal approximation is valid for most single-channel systems since SRS is

not a very efficient processes. For instance, even for average signals on the order of

mW, the pump absorption due to signal-gain depletion is only on the order of

gR Aeff Is = 10−16

[
km

W

]
10−3[W]

50× 10−18 [km2]
≈ 0.01

dB

km
, (4.31)

which is much smaller than typical fiber loss 0.2 dB/km. Nevertheless, as in the case of

d-EDFAs, the use of WDM technology greatly increases the total signal power that it
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is often necessary to solve the equations exactly using numerical methods. The signal

power as well as well as the forward and backward are solved simultaneously to obtain

the gain

g(z) =
gR

Aeff

[Pf (z) + Pb(z)] . (4.32)

Figure 4.7 shows numerical result of the pump power evolution and the gain of a 100

km section of fiber compensated through bi-directional pumped Raman gain for low

power signals. Note that the pump power needed is lower than a 100-km 200-ions/µm3

Figure 4.7: (Top) Numerical solution of forward (dotted line), backward (dashed line) and total pump
power (solid line) of Raman amplifier. (Bottom) Numerical solution of gain variations of Raman ampli-
fier

d-EDFA but its net gain is larger in comparison.
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4.5 Amplifier Performance

We modify the generalized nonlinear Schrödinger equation, Eq. (3.1) to study the effect

of using distributed amplification as

∂U

∂ζ
+

i

2
sgn(β2)

∂2U

∂τ 2
− iN2|U |2U =

(
g(ζ)− α

2

)
U − iτR

∂|U |2

∂τ
, (4.33)

with τR is the SRS coefficient and with lumped amplitude gain given by

g(z) =
(√

G− 1
) N∑

n=1

δ(ζ − nζa). (4.34)

Distributed amplification using d-EDFA and Raman gain is included by solving for

the gain variation through Eq.(4.9) and Eq.(4.32) respectively. We used the split-

step Fourier-transform method [9] to compare soliton propagation for lumped and dis-

tributed amplification schemes.

We first demonstrate the advantages offered by distributed amplification for a 20

Gb/s system having 100-km pump-station spacing, uniform dispersion withβ2 = −0.5

ps2/km,γ = 3.36 W−1/km, τR = 3 fs andα = 0.23 dB/km at the operating wavelength

near 1.55 mm. The soliton width should be a fraction of the 50-ps bit slot. We choose

the input fieldA(0, t) =
√

P0 sech(t/T0) with T0 = 5 ps (TFWHM = 8.8 ps). The

peak powerP0 corresponds toN = 1 for distributed amplification andN = 2.307

in the lumped amplification case as required in the average-soliton regime [2]. The

dispersion length is 50 km for such a system, and the amplifier spacing is chosen to be

100 km both cases.

Figure 4.8(a) shows soliton evolution for the case of lumped amplification. Since
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LA/LD = 2, the soliton develops significant dispersive waves after only 3 amplifiers

and is distorted significantly after 6 amplification stages. Such a system cannot transmit

Figure 4.8: Comparison of (a) lumped, (b) d-EDFA, and (c) Raman amplification schemes for the case
of a 20-Gb/s system designed with 100-km amplifier spacing.

the 20-Gb/s signal over more than 600 km. Figure 4.8(b) shows soliton evolution over

5000 km under identical operating conditions except for distributed amplification, with

no visible sign of degradation. The optimum dopant density is found to be only 200

ions/µm3 when the fiber is bidirectionally pumped using equal pump powers of 79 mW

at both ends. Figure 4.8(c) shows soliton evolution using Raman amplification. It uses

slightly less pump power, roughly 60 mW at each end although it also supports soliton

at the longer amplifier spacing; there were substantially more dispersive waves being

generated. A logarithmic plot of the pulse power (Figure 4.9) shows the contribution

of residual dispersive waves to remain below the10−4 level even after 5000 km for d-
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EDFA scheme while Raman amplification scheme has residual dispersion below10−2.

Figure 4.9: Level of dispersive wave using d-EDFA (solid line) and Raman amplification (dotted line)

The most important criterion for designing soliton systems with distributed ampli-

fication is to ensure that peak power varies as little as possible over each fiber span.

Figure 4.10 shows the variation of pump power and the net signal gain defined as

G(z) = exp(
∫ z

0
g(z) dz − αz) over one fiber span for the results shown in Figures

4.8(b). SinceG(z) < 0.4 dB, the soliton peak power varies less than 10%, compared

with more than 20-dB variation occurring for lumped amplification or the 2 dB varia-

tion for Raman amplification (Figure 4.7). In general, peak-power variations become

smaller as dopant density is reduced, but at the same time, required pump power in-

creases [40]. In practice, one must choose the dopant density as small as possible for a

given amount of pump power.
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Figure 4.10: Pump power and gain variations of d-EDFA amplifier

Figure 4.10: (Top) Numerical solution of forward (dotted line), backward (dashed line) and total pump
power (solid line) of d-EDFA. (Bottom) Numerical solution of gain variations of d-EDFA

4.6 Summary

In this chapter, we set forth the models required to study distributed amplification using

lightly-doped erbium ions as well as using distributed Raman gain. We present analyt-

ical solutions for the design of these distributed amplifiers in the small-signal regime.

We also set forth the constrains needed to solve them numerically. In extending the

guiding-center soliton limitation of the amplifier spacing, we found that distributed

amplification can support solitons with amplifier spacing as large as2 LD. We also

demonstrated through numerical simulation of the nonlinear Schrödinger equation that
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distributed amplification can permit single-channel speeds of 20 Gb/s over transoceanic

distances while maintaining 100 km spacing between pumping stations.
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Chapter 5

Dispersion-Management Systems

5.1 Introduction

The two biggest obstacles in the design of high-capacity lightwave transmission sys-

tems are fiber loss and chromatic dispersion. It has been shown earlier that the use of

distributed amplification can reduce the limitations of the guiding-center soliton ampli-

fier spacing (see Chapter 4). Another way of solving the dispersion problem is through

the use of dispersion management techniques. Thus far, the use of EDFAs in combi-

nation with dispersion management has produced commercial WDM systems having

single-channel bit rates of up to 10 Gb/s with practical amplifier spacings. However,

the increasing demand is pushing the industry toward systems with a capacity of a few

Tbit/s. Keeping the current single-channel bit rate of 10 Gb/s would require hundreds

of WDM channels in such systems. Increasing the single-channel bit rate to 40 and

80 Gb/s would reduce the number of multiplexed channels needed while simplifying

the network management [43] by reducing the number of components required.

Soliton communication system is a natural candidate for long-haul, ultra-high-bit-

rate lightwave transmission links, since the short pulse width required for high bit-rates

will also induced large nonlinearity that must be accounted for. Solitons can effectively
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use nonlinear SPM to dynamically balance GVD [2]. Most fiber-optic communication

system experiments employ the technique of lumped amplification and place fiber am-

plifiers periodically along the link to compensate for the fiber loss. However, lumped

amplification introduces large peak-power variations, which limit the amplifier spac-

ing, LA, to a fraction of the dispersion lengthLD [2]. At high bit rates (> 20 Gb/s),

the dispersion length can become quite small, making the use of lumped amplification

impractical. For example, a recent experiment demonstrating a 40 Gb/s soliton system

using dispersion management needed amplifier of 28 km [44]. Indeed, loss and gain

perturbations along the fiber link are the most serious obstacle in designing practical

soliton communication systems.

While many recent studies have considered novel dispersion maps and distributed

amplification schemes [45–48], and a few studies even have examined the added stabil-

ity of dispersion management with distributed amplification [46,47], a systematic study

on the system level performance which includes the effect of ASE and incorporates both

of these design features has not yet been performed. The performance of high-speed

single-channel systems (operating at 40 and 80 Gb/s) with large amplifier spacings (100

km and 40 km, respectively) is examined in this thesis using several different hybrid

amplification schemes. Two-step as well as dense dispersion-management configura-

tions are used in conjunction with a variety of lumped and distributed amplification

schemes. Specifically, the performance of lightwave systems using lumped amplifiers,

hybrid amplifiers (backward-pumped Raman with EDFA), bidirectionally pumped Ra-

man amplifiers (d-Raman), and distributed EDFA are compared.
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5.2 Dispersion Managed Soliton

Dispersion Management uses spatially varying dispersion along the fiber to combat the

effect of GVD. There are two basic techniques which consist of either using dispersion-

decreasing fibers [9,49,50] or periodic dispersion maps. A dispersion decreasing fiber

matches the dispersion of the fiber to the loss profile of the fiber. Such fibers are dif-

ficult to make and are not yet available commercially. The most popular technique of

dispersion management by far is the use of a periodic dispersion map to compensate

for GVD.

Substantial work has been done on the stability and the conditions of dispersion-

managed solitons using a variety of techniques [51–58]. By far, the most commonly

used technique has been the use of variational analysis [20,52,57]. The theoretical

framework using variational analysis to calculate the amount of prechirping and launch-

ing power needed for stable pulse propagation is presented below.

5.2.1 Variational Analysis

Variational analysis is used to develop an approximate solution in a periodic disper-

sion map. It has been shown in Chapter 3 that prechirping is necessary for additional

soliton control in establishing soliton periodicity. We also have seen that the creation

of solitons necessities a careful balance of nonlinearity and dispersion, so calculating

the optimal launching power is also critical. Studies have shown that a detuning of the

input soliton energy from its optimal value can generate dispersive-wave emission that

can contribute to long-range soliton-soliton interactions [59,60].
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5.2.2 Two-Step Dispersion Map

The nonlinear Schrödinger equation can be modified to account for the dispersion-

variation by allowing the GVD to be a function of time. Equation (3.3) is generalized

as

∂U

∂z
+

i

2
β2(z)

∂2U

∂T 2
− i G(z)γ|U |2U = 0, (5.1)

whereG(z) takes place of the fast-varying dynamics of gain-loss evolutiona2, β2(z) is

defined as

β2(z) =

 β21 : 0 < mod(z, LA) < L1

β22 : 0 < mod(z, LA) < Lmap

(5.2)

whereβ21, β22, L1, andL2 are the dispersion values and fiber section lengths of the two

section of the fiber (see Figure 5.1) with differing signs of dispersion values (β21 β22 <

z

Figure 5.1: Two-step dispersion map

0). At the same time, the dispersion values sufficiently compensate each other such that

|β21 L1| ≈ |β22 L2| ∼ T 2
o , (5.3)
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whereτo is the pulse width.

It is convenient to renormalize the system with respect to dispersion mapLmap,

normalized soliton energyUo, and pulse [52],

ξ =
z

Lmap

, u =
U

Uo

, ς =
T√

L1 L2 |β21−β22|
Lmap

. (5.4)

This normalization allows us to rewrite the equation as follow

iuξ −
1

2
β2(ξ) uςς + ε

[
1

2
β̄2uςς + G(ξ)u|u|2

]
= 0 (5.5)

whereε and the average dispersion,β̄2 are defined as

ε = Lmap γ |Uo|2, (5.6)

β̄2 =
β21L1 + β22L2

L1 L2|β21 − β22| |Uo|2
. (5.7)

Following the analysis set forth in 2.5, we will replace the soliton ansatz in

Eq. (2.63) with a Gaussian ansatz of the form

uo =
A√(

1 + 2i
(

∆
ς2o

)) exp

(
iφ− iς2

ς2
o + 2i∆

)
. (5.8)

whereA is the amplitude,ςo is the initial normalized width,∆ is the normalized chirp

parameter, andφ is the phase. The corresponding pulse parameter evolution is then
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[52]

A2 ςo = E = constant, (5.9)

dς

dξ
=

√
2ε G(ξ) E ςo∆(ξ)

W 3(ξ)
, (5.10)

d∆

dξ
= εβ̄2 +

ε G(ξ) E [4∆2(ξ)− ς4
o ]

2
√

2W 3(ξ)
, (5.11)

with varying width defined as

W (ξ) =
4∆2 − ς4

o

ς0
. (5.12)

As in chapter 3, the periodicity condition can be imposed on the system as

ςo(ξ) = ς(ξ + 1), ∆o(ξ) = ∆o(ξ + 1) (5.13)

with the new normalized width and chirp (also note that the length is now normalized

to Lmap). This is done by integration Eq. (5.10) and (5.11) from 0 to 1 and requiring

them to be 0. With a simple change of variables using

ξ =

 L1(s + 1
2
) : 0 < ξ < L1

L1 + L2

(
1
2
− s
)

: L1 < ξ < 1
(5.14)
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the periodicity boundary condition yields the following constrains [52]:

∫ 0.5

−0.5

[
s + ∆o + 1

2

]
g(s) ds[

ς4
o + 4

(
s + ∆o + 1

2

)2] 3
2

= 0, (5.15)

β̄2 =

√
2A2ς4

o

4

∫ 0.5

−0.5

[
4
(
s + ∆o + 1

2

)2 − ς4
o

]
g(s) ds[

ς4
o + 4

(
s + ∆o + 1

2

)] 3
2

, (5.16)

where

g(s) = L1 G

(
L1(s +

1

2
)

)
+ L2 G

(
L1 + L2(

1

2
− s)

)
. (5.17)

The normalized chirp∆o parameter is obtained by solving Eq. (5.15) and the normal-

ized launching powerA2 is obtained by solving Eq. (5.16). The gain characteristics

of the different amplification schemes can be easily incorporated through modifying

Eq. (5.17).

5.2.3 Dense Dispersion Management

The strength of a DM map is defined as

Smap =
|β21 L1 − β22 L2|

τ 2
FWHM

, (5.18)

whereτFWHM is the full width half maximum of the pulse and is related to the char-

acterized pulse widthτo by τFWHM ≈ 1.665τo for Gaussian pulses. This parameter

characterizes the amount of perturbation a dispersion-varying medium has on the pulse.

Typically, DM solitons are stable whenSmap < 3 [52]. But as the single-channel bit

rate is increased the pulse width decreases. This can dramatically increase the map
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strength, especially if the map period,Lmap = L1 + L2, (which until now is equivalent

to the amplifier spacing) is kept relatively large. This will severely limit the amplifier

spacing of high-bit rate systems. Dense DM map systems overcome this by allowing

the amplifier spacing to contain multiple map periods (LA = M Lmap), whereM is an

integer. This allows the use of relatively tamed maps for pulse propagation at high bit

rates while maintaining a large amplifier spacing (see Figure 5.2).

Figure 5.2: (Top) Two-step dispersion map. (Bottom) Dense dispersion map

The formula derived in the previous section is still valid in calculating the launching

condition for dense DM map systems with only the gain needs to be modified. Equation

(5.17) can be generalized as

g(s) =
M∑

m=0

exp

(
−m α Lmap

2

)[
L1 G

(
L1(s +

1

2
)

)
+ L2 G

(
L1 + L2(

1

2
− s)

)]
.

(5.19)
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5.3 System Performance

System performance can be gauged through observation of the received eye diagram.

The eye diagram is a superposition of the pulse train in various combinations and gives

in general an excellent indicator on the system performance. The more“open” the eye

appears, the better the decision circuits can differentiate the “1” from the “0” bit and

therefore, the less likely it is to make an error. It is beneficial to have a figure of merit to

quantify the eye opening of the eye diagram for system performance characterization.

The system performance is quantified through the use of the Q factor, which approxi-

mates the bit-error rate (BER) and is defined as (see Appendix B)

Q =
I1 − I0

σ1 + σ0

(5.20)

whereI1, I0, σ1 andσ0 are the intensity and the standard deviation of the received ”1”

and ”0” of the bit pattern. In order to accurately calculate the Q, it is necessary to

include the noise in the system.

5.3.1 Amplifier Noise

Amplified spontaneous emission (ASE) noise comes from the spontaneous emission

amplified through cascade of optical amplifiers. The amount of ASE generated per a

given bandwidth is given by

PASE = 2 nsp h ν ∆ν (G− 1) (5.21)
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wherensp is the spontaneous emission factor,h is the Planck’s constant,ν is the fre-

quency, and∆ν is the bandwidth. The spontaneous emission factor can be written as a

ratio of the ground and excited-level populations

nsp =
NT −N1

NT − 2N1

, (5.22)

which describes the amount of inversion of the system. Noise figure NF is often used

when characterizing the noise performance of a system and it is defined asNF =

10 log(2 nsp). For fully-inverted amplifier,N1 = 0, thensp is 1. Note that since the

d-EDFA consists of long length of fiber, the NF changes as a function of distance [via.

N1(z)].

5.3.2 Numerical Results

In this section, 40 and 80 Gb/s systems using different amplification schemes and dis-

persion maps are examined using the Q factor to compare system performance. For a

bit rate of 40 Gb/s, it is necessary to use a pulse width of only 2.5 ps (TFWHM = 4.4

ps). Using the same design parameters as for the 20-Gb/s distributed amplification sys-

tem in Chapter 4, the dispersion length is calculated to be only 12.5 km. To account

for soliton interaction, a 64-bit pseudorandom sequence is used in numerical simula-

tions. The two-bit-wide optical “eye diagram” (unfiltered) displayed in Figure 5.3(a)

shows the combined effects of Raman-induced soliton self frequency shift (SSFS) and

soliton interaction on the pulse train at a distance of 1000 km using lumped amplifica-

tion excluding ASE. Clearly such a system will perform poorly in practice. We have
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Figure 5.3: Two-bit-wide eye diagrams for a 40-Gb/s system in three different operating conditions. (a)
after 1000 km without DM. (b) after 5000 km with lumped amplification and DM. (c) After 5000 km
with distributed amplification and DM.

Figure 5.3: Two-bit-wide optical eye diagrams for a 40-Gb/s system without noise in three different
operating conditions. (a) after 1000 km without DM. (b) after 5000 km with lumped amplification and
DM. (c) After 5000 km with distributed amplification and DM.

found that both that both the SSFS and the soliton interaction problems can be solved

by combining distributed amplification with dispersion management.

Figure 5.3(b) shows the eye diagram after 5000 km for a dispersion-managed (DM)

system under identical operating conditions. The dispersion map consists of two 50-

km fibers withβ21 = 0.3 ps2/km andβ22 = −0.38 ps2/km, resulting in an average

dispersion of−0.04 ps2/km and a map strengthSmap = 1.75 [52]. As evident in

Figure 5.3(c), solitons barely move out of their time slot when distributed amplifica-

tion is used with DM. The case of lumped amplifiers with DM was studied [44] and
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it was found that both SSFS and soliton interaction are reduced in this case as well

(Figure 5.3(b)) although system performance is better in the case of distributed ampli-

fication (Figure 5.3(c)).

Noise is included in the system by using a noise figure of 4.5 dB for EDFAs and 3

dB for Raman amplifiers. The launch power and initial chirp are calculated using the

results of a variational analysis for dispersion-managed solitons. The distributed gain

(for both d-EDFA and Raman amplifiers) is obtained numerically taking into account

gain saturation and pump depletion. The results of the system simulation for different

amplification schemes are shown in Fig. 5.4. where system performance as measured

by Q is plotted vs. propagation distance. The maximum transmission can be deduced

by noting thatQ = 6 corresponds to BER of about10−9.

Figure 5.4 shows clearly the advantage of distributed amplification for high-speed

lightwave systems. When lumped EDFAs are used, the transmission distance is limited

to below 500 km, but increases to 3400 km for d-EDFA. Use of Raman amplification

also improves the performance, although not as much as d-EDFA. The reason for this

is that the design of a d-EDFA can be optimized by adjusting the dopant concentration.

A Raman amplifier does not have this additional degree of freedom. The net gain over

the 100-km amplifier span is only 0.5 dB for optimized d-EDFA but it increases to 6 dB

for a distributed Raman amplifier and to over 15 dB for a hybrid amplification scheme

(see Figure 5.5).

As the single-channel bit rate increases beyond 40 Gb/s, a reduced pulse width and

a practical amplifier spacing combine to create a dispersion map that is too strong for

stable propagation of solitons. A solution is provided by the technique of dense dis-

persion management [48] for which amplifier spacing is chosen to be a multiple of
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Q = 6

Figure 5.4: System performance of a 40-Gb/s DM soliton system using different amplification schemes.

the map period, which can be reduced to below 10 km. 2.93-ps pulses are launched

into a dispersion map consisting of 2.231-km sections withβ21 = 3.2 ps2/km and

β22 = −3.2 ps2/km, resulting in an average dispersion of -0.013 ps2/km and a map

strength of 1.65. The amplifier spacing of 40 km corresponds to 9 map periods. Figure

5.6 shows the performance of such an 80-Gb/s, multiple-cell soliton system for vari-

ous amplification schemes. The results show again that the transmission distance can

be increased using distributed amplification. Although one might expect the system

performance (Q) to be a strictly monotonically decreasing function of distance, how-

ever, the system operates with two distinct dynamic time scales. There is a fast time

scale that revealed the rapid oscillation of the pulse width and power due to periodic



5.3. SYSTEM PERFORMANCE 80

5.4. SUMMARY 83

Figure 5.5: Net gain vs. distance for (a) hybrid, (b) distributed Raman, and (c) distributed-erbium
amplification schemes.

Figure 5.5: Net gain vs. distance for hybrid (top), distributed Raman (middle) , and distributed-erbium
amplification schemes (bottom).

variations of the dispersion and amplification, and a second slow time scale that results

from the combined effects of nonlinearity, residual dispersion, and pulse prechirping

[61]. Nevertheless, it is clear from Figure 5.7, which plots the pulse evolution of a pair

of solitons (corresponding to a pattern of 0 1 1 0) as it propagates through the system,

that the advantage of the distributed amplification systems is to significantly reduce the

effect of pulse to pulse interactions.
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Q = 6

Figure 5.6: System performance of a 80-Gb/s DM soliton system using different amplification schemes.

5.4 Summary

Distributed amplification can increase the total transmission distance of ultra-high-bit-

rate systems employing different dispersion maps. The improvement depends not only

on the amplification scheme but also on details of the dispersion map. For systems lim-

ited by amplified spontaneous emission because of a relatively long amplifier spacing,

the use of erbium doping provides best performance. Simulation results of 40 Gb/s sys-

tems using two-step dispersion map and 100 km amplifier spacing showed an increase

of up to a factor of 7 in the maximum distance allowed by using d-EDFAs verus ED-

FAs. For systems limited by the map strength, the benefit of distributed amplification

(Raman or erbium-doping) comes from the smaller net gain and a lower effective noise
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Figure 5.7: Pulse-to-pulse interaction for a 80-Gb/s soliton system using (a) EDFA, (b) hybrid, (c) dis-
tributed Raman, and (d) distributed erbium amplification schemes

figure. Simulation results of 80 Gb/s systems using dense dispersion map and 40 km

amplifier spacing showed an increase of up to a factor of 2 in the maximum distance

allowed by using d-EDFAs verus EDFAs.
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Chapter 6

Fiber Lasers

6.1 Introduction

Ideally, we would liked to compare the results of our numerical simulations with ex-

perimental transmission systems. Unfortunately, such systems are expensive and hard

to come by. In an effort to establish a transmission system from the ground up, we have

focused much of our experimental efforts to the understanding and characterization of

fiber lasers, which can be used as transmitters, the first building block of a fiber-optic

communication systems.

6.2 Experimental Setup

The ring-cavity of our fiber laser (see Fig. 6.1) consists of 7.2 m of erbium-doped fiber

and 11.1 m of standard fiber, resulting in a total cavity length of18.3 m [see Figure 6.1]

[62]. A 980-nm pump laser diode (LD) (Lasertron QLM9S470) injects light through

a 980/1550-nm WDM coupler; it couples about 95% of the pump light into the cavity.

The output coupler transmits approximately 10% of the bidirectional circulating powers
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Figure 5.1: Experimental Configuration of Fiber Laser

Figure 6.1: Experimental configuration of the fiber laser

per round trip. Each end of the output coupler is connected to a large-area germanium

photoreceiver (New Focus Model 2033).

6.2.1 Output Power

We first measured the output power from the fiber laser through the monitor (Pmonitor),

and the sum of the co-propagating and counter-propagating ports (Ptot) as a function

of the pump current. As is evident from Figure 6.2, the threshold for the 980-nm pump

LD (which is measured through the monitor port) is 20 mA. The power emitted by the

fiber laser in each counter propagating direction is observed through the output port of

the 90/10 1550 nm coupler. The threshold for the fiber laser is measured to be 30 mA,

which translate roughly to 5 mW of pump power at 980 nm. The slope efficient is about
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Figure 6.2: Output power vs. pump current for the fiber laser

10% for the fiber laser (see Figure 6.3). The temperature controller is set to25o C for

these measurements.

6.2.2 Frequency Characteristics

The spectrum of both the pump LD and the fiber laser was measured using a CVI

monochrometer. The spectrum of the pump LD was measured from the monitor port

(see Figure 6.1). As can be seen in Figure 6.4, the spectrum is actually center around

976 nm with a full width close to 4 nm. The output of the fiber laser is shown in Fig. 6.5,

the spectrum consists of many modes with a dominated mode centered around 1559.7

nm.
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Figure 6.3: Output power vs. pump power for the fiber laser

6.3 Mode-Partition Noise

Mode-partition noise has been observed in a variety of lasers including semiconductor

lasers [63,64], gas lasers [65], and dye lasers [66]. In semiconductor lasers, mode-

partition noise arises from competition among multiple longitudinal modes. Mode-

partition noise can also occur when cavity design forces co and counter-propagating

modes to compete for the same gain. In particular, bidirectional-ring dye lasers have

been found to exhibit random on-off switching between the two counter-propagating

modes of the cavity such that whenever one mode turns on, the other turns off com-

pletely [66]. This phenomenon is attributed to the strong mode coupling that can occur

in a homogeneously-broadened gain medium [67]. Fiber lasers are made using silica

fibers whose core is doped with rare-earth ions, together with other codopants such as

aluminum and germanium. Depending on the proportion of codopants, the gain spec-
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trum of fiber lasers can be dominated by homogeneous or inhomogeneous broadening

[68]. In this section, we present the experimental evidence of mode-partition noise in

fiber lasers. We have also developed a theoretical model, based on the Langevin rate

equations, whose predictions agree well with our experimental results.

6.3.1 Experimental Observation

Temporal evolution of the photoreceiver signals is monitored using an oscilloscope.

Since we do not use an intracavity isolator, the laser emits light in both the clockwise

and counter-clockwise directions. Figure 6.6 shows the output powers for the two di-

rections when the laser is pumped 2.6 times above its threshold. The two modes are

almost perfectly anti-correlated; an increase in the power of the one mode corresponds
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Figure 6.5: Spectrum of the fiber laser output

to a decrease in the other. The sum of the powers remains nearly constant, except for

small fluctuations occurring at the relaxation oscillation frequency (≈ 29 kHz). The

individual powers on the other hand, fluctuate on a rather slow time scale (∼ 0.1 s).

These fluctuations are due to mode-partition noise induced by cross-gain saturation.

This interpretation is confirmed by the theoretical model presented next. Figure 6.6 is

snap shot of the temporal evolution of the signal on a 20 second time interval.

6.3.2 Mode-Partition Noise Theory

We use the standard three-level rate-equation model but simplify it by assuming rapid

transfer of the pumped population to the excited state. The resulting rate equations with
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Figure 6.6: Output power of fiber laser for clockwise mode (middle), counter-clockwise mode (bottom),
and sum of the two modes (top)

added Langevin noise terms can be written as [69]

Ṗ1 = (BN − γ)P1 + Rsp + F1(t), (6.1)

Ṗ2 = (BN − γ)P2 + Rsp + F2(t), (6.2)

Ṅ = Wp(NT −N)− 2(P1 + P2)BN − (N + NT )/T1, (6.3)

whereP1 andP2 are the number of photons in the co- and counter-propagating modes,

respectively, andN represents the population-inversion level. The cavity-decay rateγ

is related to the photon lifetimeτp asγ = 1/τp. The rate of spontaneous emission is

taken to beRsp = nspBN , wherensp is the inversion parameter, andB is related to the

rate of stimulated emission. In Eq. (6.3),Wp is the pump rate,NT is the total number
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Table 6.1: Parameters used in simulation of fiber laser dynamics

Parameter Symbol Value
Average photons in the clockwise mode P1 4.056× 109

Average photons in the counter-clockwise modeP2 3.314× 109

Population inversion density N 4× 1023m−3

Total dopant density NT 1× 1025m−3

Rate of cavity decay γ 4.14× 106s−1

Population relaxation time T1 1× 10−2s
Pump photon rate WP 390s−1

Effective active volume Va 2.256× 10−11m3

Rate of stimulated emission B 4.588× 10−7s−1

of dopants, andT1 is the fluorescence time. The coupling betweenP1 andP2 is solely

due to cross-gain saturation resulting from gain sharing.

The Langevin noise sourcesF1(t) andF2(t) are responsible for fluctuations inP1

andP2, respectively. They vanish on average (< Fi(t) >= 0). Assuming noise to be

Markoffian (white noise), we use [69]

< Fi(t)Fj(t
′) >= 2Dijδ(t− t′), (6.4)

wherei, j = 1, 2. The diffusion coefficient are related to the rate of spontaneous emis-

sion as

D11 = RspP̄1, D22 = RspP̄2, D12 = 0, (6.5)

whereP̄1 andP̄2 are the average steady-state values.

The stochastic rate equations Eq. (6.1)–(6.3) are solved numerically using param-

eter values appropriate to our fiber laser (a noise figure of 3.4 dB corresponding to
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nsp = 1.1 is assumed). Figure 6.7 shows a 5 second section of the time series simulated

numerically. Comparing Fig. 6.6 and 6.7, we see that our model reproduces all qual-

itative features of the mode-partition noise observed experimentally. This agreement

April 28, 2000 ZML: Ditech

Theory and Predictions

Figure 6.7: Numerical simulation of output powers in clockwise (top curve) and counter-clockwise (bot-
tom curve) directions.

confirms that the anticorrelation seen in Fig. 6.6 has its origin in cross-gain saturation.

6.4 Summary

We have built and characterized an erbium-doped fiber laser pumped by a 980 nm LD.

We observed a threshold of 20 mA for the pump LD and 30 mA for the fiber laser.
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With respect to the pump light, the lasing threshold was measured to be 5 mW. The

slope efficiency of the fiber laser was found to be 10%. The spectrum of the fiber laser

was measured to be centered at 1559.7 nm with a linewidth of approximately 2 nm.

We have also experimentally observed mode-partition noise in a fiber laser. We have

developed a rate-equation model that is capable of reproducing the experimentally ob-

served behavior. We did not observe complete on-off switching similar to that observed

in dye lasers [66]. We believe that the inhomogeneous broadening of the gain spectrum

in our fiber laser leads to weak mode coupling. It is well known that codopants such as

aluminum can make the gain spectrum nearly homogeneously broadened. Such fiber

lasers may exhibit complete on-off switching.
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Chapter 7

Conclusions

7.1 Overview

This thesis developed several techniques and concepts that will help shape the next

generation of high-capacity fiber-optic communication systems. The principal target

has been to increase the amplifier spacing through various techniques in present and

future systems. In this chapter, we will expand and elaborate on the three main research

areas covered in this thesis: design of constant dispersion system, design of dispersion

management systems, and fiber laser dynamics. In each section, we will summarize

our findings and provide additional insights for future research.

7.2 Constant-Dispersion Fibers

For a constant-dispersion system, soliton evolution through a lossy medium can be

described by the guiding-center soliton theory. This allows stable propagation of soliton

pulses provided that the fiber loss is compensated and the amplifier spacing is a fraction

of the the dispersion length. Extending the amplifier spacing can be achieved in two

ways: providing an additional degree of freedom in the guiding center soliton theory
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to relax the amplifier-spacing constraint or to replace the large perturbation of lumped

amplification by distributed amplification.

In Chapter 3, we used the variational analysis to solve the periodicity condition for

pulse propagation in a lumped-amplification system by allowing both the pulse width

and the chirp to change over the amplifier spacing. We were able to recover the input

power condition as prescribed by the guiding-center soliton theory in the small ampli-

fier spacing regime (LA � LD) while, at the same time, predict the additional power

and the initial chirp needed for the large amplifier regime (LA ≥ LD). Our numer-

ical results show a much greater stability for systems operating at amplifier spacing

exceeding those valid for the guiding-center solitons.

Amplifier spacing can also be extended by noting that the amplifier spacing con-

strain is a result of the large perturbation caused by the use of lumped amplifiers which

give a large kick to the system within a very small distance (the longer the amplifier

spacing, the larger the gain needed to compensate for fiber loss). In Chapter 4, we have

seen that the use of distributed amplification can make the fiber appear transparent to

the optical pulses. We use distributed erbium-doped fiber amplifiers as well as Raman

gain to design distributed-amplification systems. The optimal pump configuration is bi-

directional pumping as it allows a more uniform gain distribution for the system. Unlike

the distributed Raman amplifiers, d-EDFA has an additional degree of freedom which

allows the amplifier to be designed with minimal gain excursion. The penalty to pay

for the low gain excursion is the higher pump power needed for d-EDFA. Although at

high dopant concentration, less pump power is needed for loss compensation since the

pump power does not need to penetrate deep into the fiber and work as hard (because

the high dopant is able to provide a large gain in a short span close to the pump). Of
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course, there is a limit — at too low a dopant density, no amount of pump power is able

to compensate for the fiber loss at the signal and the pump wavelengths. For a 100-km

distributed amplifier, gain excursion using a d-EDFA only experienced 0.4 dB by using

a dopant density of 200 ions/µm3 while distributed Raman amplifiers experienced 2-dB

gain excursion (as compared to lumped amplifiers of 20 dB gain excursion). The pump

power at each direction needed for d-EDFA was nearly 80 mW, slightly larger than the

pump power needed for distributed Raman (60 mW). Backward-pumped Raman gain

has already attracted considerable attention for current system designers to achieve ex-

tra system margin; it will be only a matter of time before system complexity can only

be solved through distributed-amplification solutions.

Our study has shown the advantage of prechirping and distributed amplification

in extending the amplifier spacing in high-bit-rate single-channel constant-dispersion

soliton communication systems. On a practical note, prescribing precise chirp at the

launching of a pulse is not a trivial issue, although chirp can be provided by simply

propagating the pulse through a fixed length of fiber, because measurements of fiber

length or GVD in the field are not precise enough. Further studies on the sensitivity of

the initial input parameters vs. the system stability will provide critical information on

the feasibility of this technique. The capacity of the system can be greatly increased

if WDM technology is employed. Further investigation is needed to study the effect

of prechirping and distributed amplification in a WDM system. Our analysis has al-

ready shown that the small-signal analytical solution is insufficient to describe the gain

distribution; the presence of multiple channels in a WDM system will surely present

similar challenges since the sum of the channel powers can easily exceed 40 mW. Fur-

thermore, the presence of constant, undiminished power at each of the channels along
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the transmission line can further increase the nonlinear penalties such as cross-phase

modulation (XPM) and four-wave mixing (FWM) [9].

7.3 Dispersion-Management Technique

In Chapter 5, we presented the technique of dispersion management in soliton trans-

missions. The two-step dispersion map allows compensation of chromatic dispersion

through the use of fibers with normal and anomalous GVD. For ultra-high-bit-rate sys-

tems, it was necessary to use multiple dispersion maps within an amplifier spacing to

keep the map strength low enough for stable pulse propagation. We have also gath-

ered current amplifier technologies as well as developed future technologies such as

d-EDFA and bi-directional pumped Raman amplifiers in conjunction with dispersion

management in an effort to study the advantages of using each kind of amplifier.

Since distributed amplifiers offer better noise performance for systems limited by

noise, distributed amplification was able to outperform other schemes (lumped amplifi-

cation and hybrid amplification) by being able to transmit over seven times the distance

for a 40 Gb/s system. However, for systems limited by dispersion map, distributed

amplification was not able to offer as much advantage. Nonetheless, a lower gain ex-

cursion, and therefore a smaller soliton-soliton interaction effect, can also improve the

system performance of distributed amplifiers over lumped amplifiers, by roughly in-

creasing the transmission distance by a factor of 3 times over a 80 Gb/s system. The

effect of collision-induced timing jitter in dispersion-managed systems has been shown

to degrade the system performance in WDM systems. This has been attributed to the

asymmetric collisions at the amplifier nodes; it would be of extreme interest to study

how this effect changes with distributed-amplification schemes. Dispersion-managed
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solitons have also been shown to be able to reduce the Gordon-Haus timing jitter be-

cause of the ability of the dispersion to create a potential trapping for the soliton pulses.

Further studies of this effect in conjunction with distributed amplification will also be

fruitful.

7.4 Fiber-Laser Dynamics

In Chapter 6, we characterized the operation of a fiber laser in an ongoing effort to

build a transmitter for a fiber-optic transmission system. The threshold as well as the

spectrum properties of the pump LD and the fiber laser was measured. We also experi-

mentally demonstrated mode-partition noise in a fiber laser. The theoretical model was

successful in duplicating the phenomenon. It is well known that the complete on-off

switching that has been reported for dye lasers is an effect of the homogeneous na-

ture of the gain medium; the lack of this similar phenomenon in the fiber laser can be

attributed to the inhomogeneous broadening of the gain spectrum. Since fibers with

codopants such as aluminum has been known to be able to make the fiber nearly ho-

mogeneous, it would be worthwhile to test the above hypothesis by duplicating the

experiment with aluminum-doped fiber lasers.

7.5 Summary

As evident in the previous chapters, this thesis seeks to explore the issues in expanding

amplifier spacing for a wide range of soliton-communication systems while maintaining

or surpassing the system performance. We can summarize the contribution of this work

to the development of soliton-communication system as follows:
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• Expanded on Guiding-center soliton theory by prechirping the pulse, which pro-

vides an additional degree of freedom for satisfying the periodicity conditions.

• Demonstrated a new regime of operation beyond that of Guiding-center solitons

whereLD ≥ LA.

• Predicted the ability of distributed amplification to extend the performance be-

yond the Guiding-center soliton whereLD ≥ LA.

• Predicted an improvement in the system performance (through greater transmis-

sion distance) with the use of distributed amplification in a two-step dispersion

managed system because of a better noise figure.

• Predicted an improvement in the system performance (through greater transmis-

sion distance) with the use of distributed amplification in a dense dispersion man-

aged system because of a smaller gain excursion.

• Constructed and characterized the operation threshold and the spectrum proper-

ties of an erbium-doped fiber laser.

• Experimentally demonstrated and theoretically verified the effect of mode-

partition noise in fiber lasers.

These advances have significantly advanced the theory and design of high-capacity

soliton transport systems, especially in the realm of distributed amplification.
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Appendix A

Calculating Pulse Parameters

Throughout this thesis, we are required to study pulse dynamics in various scenar-

ios. It is therefore necessary to numerically calculate certain pulse characteristics in

order to ascertain the stability and periodicity of the pulse. Even though we primarily

study the dynamics of soliton pulses, it has been found that dispersion managed soli-

tons have attributes much more like a gaussian pulse than to a hyperbolic secant shape.

The primary attributes that we are interested are pulse width, center, and chirp. We

will therefore discuss the mathematics of how to calculate these characteristics for both

soliton as well as gaussian pulses.

A.1 Gaussian Pulse

The field of a gaussian pulse can be expressed as

q(t) = Ao exp

(
−(t− tc)

2

2T 2
o

)
exp

(
− i C

2T 2
o

(t− tc)
2

)
, (A.1)

with tc as the pulse center andAo as the pulse amplitude. The intensity is therefore

|q(t)|2 = A2
o exp

(
−(t− tc)

2

T 2
o

)
. (A.2)
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It is advantageous to define the following property of the pulse through the calculation

of the moments of the pulse as given by

σn =

∫∞
−∞ tn |q(t)|2 dt∫∞
−∞ |q(t)|2 dt

(A.3)

whereσn is the nth order moment of the pulse withn = 1, 2...

The energy of the pulse by the following relations

Ep = A2
o

∫ ∞

−∞
exp

(
−(t− tc)

2

T 2
o

)
dt

=
√

π ToA
2
o. (A.4)

Similarly, the center of the pulse can be calculated by noticing that the first moment of

the pulse is given by

σ1 =
1

Ep

A2
o

∫ ∞

−∞
t exp

(
−(t− tc)

2

T 2
o

)
, dt

= tc. (A.5)

The RSM width is calculated using< σ2 > − < σ1 >2 with σ2 given as

σ2 =
1

Ep

A2
o

∫ ∞

−∞
t2 exp

(
−(t− tc)

2

T 2
o

)
dt

=
T 2

o

2
+ t2c . (A.6)

The quadratic chirp of the pulse can be extracted using the following formula which
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can be written in terms of second moment of the pulse,

Ψ =
i

2Ep

∫ ∞

−∞
(t− tc) [q q∗T −q∗ qT ] dt

=
−C

EpT 2
o
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2
. (A.7)

A.2 Hyperbolic Secant Pulse

The field of a hyperbolic secant pulse (soliton) can be expressed as

q(t) = Ao sech

(
t− tc
To

)
exp

(
− i C

2T 2
o

(t− tc)
2

)
, (A.8)

The intensity is therefore

|q(t)|2 = A2
o sech2

(
t− tc
To

)
. (A.9)

The characteristic width of the pulse can also be related to the zero momentσ0 of

the pulse by the following relations

Ep = A2
o

∫ ∞

−∞
sech2

(
t− tc
To

)
dt

= 2ToA
2
o. (A.10)
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Similarly, the center of the pulse can be calculated by noticing that the first moment of

the pulse is given by (via u substitution)

σ1 =
1

Ep

A2
o

∫ ∞

−∞
t sech2

(
t− tc
To

)
dt

= tc. (A.11)

The second moment is calculated to be

σ2 =
1

Ep

A2
o
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−∞
t2 sech2
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)
dt

=
π2 T 2
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12
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The quadratic chirp of the pulse can be extracted using the following formula which

can be written in terms of second moment of the pulse,

Ψ =
i

2Ep

∫ ∞
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Appendix B

Bit-Error Rate

In Chapter 5, we first introduced the parameter Q which approximates bit-error rate

(BER) to qualify system performance. We will now provide a more in depth derivation

of calculating BER [70].

BER is an excellent measurement of the system performance because it quantifies

the probability in which an error is made in the decision system. The error is often

due to the presence of various noises in the system. As a result, BER typically has a

strong dependence on the signal to noise ratio (SNR) of the signal received. A BER of

10−9 corresponds to 1 error per109 bits. Error-free transmission is often referred to as

having BER less than10−9, although modern systems often require BER to be less than

10−12. In a binary coding system, BER is merely the sum of probabilites of identifying

1 bit as 0 bit and vice versa. Mathematically, it is expressed as

BER = p(1) P (0/1) + p(0) P (1/0), (B.1)

wherep(1) andp(0) is the probability of receiving 1 and 0 bits respectively. P(0/1) is

the conditional probability of assigning a 0 bit to the signal when in actuality a 1 bit is
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received and P(1/0) is the conditional probability of assigning a 0 bit to the signal when

in actuality a 1 bit is received.

In calculating the BER, two assumptions are made. First, it is safe to assume that in

any given pattern, the probability of receiving 1 and 0s is about the same. As such, we

can equatep(0) = p(1) = 0.5. The second assumption involves the probability density

function of the random process of received signals. For most systems not dominated

by inter-symbol interference (ISI), we can assume the random process to be Gaussian

with different average and variance for the 1 and 0 bits, i.e.,

p(m) =
1

σm

√
2π

exp

[
−(I − Im)2

2σ2
m

]
(B.2)

with Im and σm corresponding to the average current and variance for 1 or 0 bits,

depending onm = 0 or 1. Now we can evaluate the two conditional probabilities in

Eq. (B.1) as

P (0/1) =
1

σ1

√
2π

∫ ID

−∞
exp

[
−(I − I1)

2

2σ2
1

]
dI (B.3)

P (1/0) =
1

σ0

√
2π

∫ ∞

ID

exp

[
−(I − I0)

2

2σ2
0

]
dI, (B.4)

whereID is the threshold setting between deciding whether a received signal is 1 or 0

bit. The above integral is in the form of the complementary error function defined by

erfc =
2√
π

∫ ∞

x

exp(−y2) dy. (B.5)
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Evaluating Eqs. (B.3)–(B.4) using Eq. (B.5) simplify Eq. (B.1) into

BER =
1

4

[
erfc

(
I1 − ID

σ1

√
2

)
+ erfc

(
ID − I0

σ0

√
2)

)]
. (B.6)

It suffices to say that all system designers wish to minimize BER. Optimizing BER

with respect to the only free variable left,ID, yielded the following expression (creating

our new parameter, Q)

I1 − ID

σ1

=
ID − I0

σ0

≡ Q. (B.7)

Under this condition, it is straight forward to write the decision threshold as

ID =
σ0I1 + σ1I0

σ0 + σ1

, (B.8)

and Q as

Q =
I1 − I0

σ1 + σ0

. (B.9)

This reduces the equation for BER as follows,

BER =
1

2
erfc

(
Q√
2

)
≈ exp(−Q2/2)

Q
√

2π
, (B.10)

where the approximated is reasonably accurate forQ > 3.


