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Introduction

• Nonlinear optical effects have been studied since 1962 and have

found applications in many branches of optics.

• Nonlinear interaction length is limited in bulk materials because of

tight focusing and diffraction of optical beams.

• Much longer interaction lengths become feasible in optical wave-

guides, which confine light through total internal reflection.

• Optical fibers allow interaction lengths of meters and even > 1 km.

• The advent of Nonlinear Fiber optics during the 1970s has led to

many advances, supercontinuum generation being a recent example.

• Even though most nonlinear phenomena are polarization dependent,

polarization effects are often ignored.
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Major Nonlinear Effects
• Self-Phase Modulation (SPM)

• Cross-Phase Modulation (XPM)

• Four-Wave Mixing (FWM)

• Stimulated Brillouin Scattering (SBS)

• Stimulated Raman Scattering (SRS)

Origin of nonlinearity in silica fibers

• Silica glass exhibits isotropic behavior (χ (2) = 0).

• All nonlinear effects result from third-order susceptibility χ (3).

• Imaginary part of χ (3), responsible for two-photon absorption, is

negligible for silica fibers.
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Third-order Nonlinear Susceptibility
• Maxwell’s equations leads to the wave equation

∇
2E− 1

c2

∂ 2E
∂ t2 = µ0

∂ 2P(1)

∂ t2 +µ0
∂ 2P(3)

∂ t2 .

• The general form of third-order nonlinear polarization is quite com-

plicated. Its ith component (i = 1,2,3 for x, y, z directions) is

P(3)
i (t)= ε0 ∑

j,k,l

∫∫∫
∞

−∞

χ
(3)
i jkl(t1, t2, t3)E j(t−t1)Ek(t−t2))El(t−t3)dt1dt2dt3.

• Here χ (3)(t1, t2, t3) is a fourth-rank tensor that vanishes for negative

values of its arguments to ensure causality.

• The tensorial nature of χ (3) makes the situation quite complicated.

• It can be simplified considerably when the nonlinear medium re-

sponds instantaneously. This limit is known as the Kerr nonlinearity.
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Kerr nonlinearity
• Kerr nonlinearity refers to a fast-responding nonlinear medium.

• If the dominant nonlinear response comes from electrons that can

respond at sub-femtosecond time scales, we obtain

P(3)
i (t) = ε0

3

∑
j=1

3

∑
k=1

3

∑
l=1

χ
(3)
i jklE j(t)Ek(t)El(t).

• This form excludes stimulated Raman scattering that results from

the response of silica molecules to the incident pump.

• This form also neglects any frequency dependence of χ
(3)
i jkl.

• If a single linearly polarized field is propagating inside the fiber, only

a single term survives in the triple sum:

P(3)
x (t) = ε0χ

(3)
xxxxEx(t)Ex(t)Ex(t).
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Kerr nonlinearity (cont.)

• The scalar form of P(3)
x (t) is often used in practice.

• If we use Ex(t) = 1
2[E(t)e

−iω0t + c.c.], we obtain

P(3)
x (t) = χ

(3)
xxxx

ε0

8

[
E3(t)e−3iω0t +3|E(t)|2E(t)e−iω0t + c.c.

]
.

• Using P(3)
x (t) = 1

2[P(t)e
−iω0t +c.c.] with P(t) = ε0εNLE(t) and ne-

glecting the third-harmonic terms, we obtain

εNL =
3
4

χ
(3)
xxxx|E(t)|2.

• Using ε = εL+ εNL = (n+∆n)2, we obtain

∆n =
εNL

2n
=

3
8n

χ
(3)
xxxx|E(t)|2 = n2|E(t)|2.

• The Kerr coefficient n2 plays an important role in nonlinear optics.
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Self-Phase Modulation

• Since the refractive index depends on the local intensity I(t) =
|E(t)|2, an optical pulse modulates its own phase with propagation.

• This is the well-known phenomenon of self-phase modulation (SPM),

first observed in 1967 [F. Shimizu, PRL 19, 1097 (1967)].

• Using φ = k0(n+n2I)L, with k0 = 2π/λ , the nonlinear part of the

phase shift in a fiber of length L is given by

φNL(t) = (2π/λ )n2I(t)L = γP(t)L.

• The nonlinear parameter γ = 2πn2/(λAeff), where Aeff is the effec-

tive mode area, governs the extent of SPM.

• Time dependence of φNL indicates that pulses become chirped inside

a nonlinear fiber, resulting in SPM-induced spectral broadening.
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Nonlinear Schrödinger Equation
• In the presence of dispersive effects, evolution of pulse envelope

along the fiber is governed by [E(z, t) = x̂A(z, t)exp(iβ0z− iω0t)]

i
∂A
∂ z
− β2

2
∂ 2A
∂ t2 + γ|A|2A = 0.

• Dispersive effects within the fiber included through the parameter

β2 that takes negative values in the case of anomalous dispersion.

• If we ignore the dispersive effects, solution can be written as

A(L, t) = A(0, t)exp(iφNL), where φNL(t) = γ|A(0, t)|2L.

• Nonlinear phase shift depends on the shape of input pulses.

• In the case of anomalous dispersion (β2 < 0), SPM leads to the

formation of optical solitons.
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Polarization Effects
• When the incident field is elliptically polarized, we need to include

both the x and y components:

E(t) = 1
2(x̂Ex + ŷEy)e−iω0t + c.c.

• Nonlinear polarization is again calculated using the vector relation

P(3)(t) = ε0χ
(3)...E(t)E(t)E(t).

• For an isotropic medium such as silica glass χ (3) has the form

χ
(3)
i jkl = χ

(3)
xxyyδi jδkl +χ

(3)
xyxyδikδ jl +χ

(3)
xyyxδilδ jk.

• Using it, we obtain P(t) = 1
2[(x̂Px + ŷPy)e−iω0t + c.c.] with

Pi =
3ε0

4 ∑
j=x,y

(
χ
(3)
xxyyEiE jE∗j +χ

(3)
xyxyE jEiE∗j +χ

(3)
xyyxE jE jE∗i

)
.
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Polarization Effects (cont.)
• It appears Px and Py depend on three different elements of χ (3).

• For an isotropic medium, χ
(3)
xxyy = χ

(3)
xyxy = χ

(3)
xyyx =

1
3χ

(3)
xxxx.

• Using it, Px and Py are found to be

Px =
3ε0

4
χ
(3)
xxxx

[(
|Ex|2+

2
3
|Ey|2

)
Ex +

1
3
(E∗x Ey)Ey

]
,

Py =
3ε0

4
χ
(3)
xxxx

[(
|Ey|2+

2
3
|Ex|2

)
Ey+

1
3
(E∗y Ex)Ex

]
.

• Writing Pj = ε0εNL
j E j and using ε j = εL

j + εNL
j = (nL

j +∆n j)
2, we

obtain the Kerr nonlinear response in the form

∆nx = n2

(
|Ex|2+

2
3
|Ey|2

)
, ∆ny = n2

(
|Ey|2+

2
3
|Ex|2

)
.
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Cross-Polarization Modulation
• Nonlinear index change ∆nx = n2(|Ex|2 + 2

3|Ey|2) has, as expected,

a SPM-type contribution (first term).

• Second term indicates that ∆nx has a contribution from the polar-

ization component in the y direction; ∆ny = n2(|Ey|2+ 2
3|Ex|2) also

has a similar contribution.

• The second contribution leads to a nonlinear phenomenon called

cross-polarization modulation.

• If light is elliptically polarized such that Py 6= Px, the refractive in-

dices seen by the x and y polarized components are different.

• This is the well-known phenomenon of nonlinear birefringence.

• It has many practical applications. For example, it can be used for

pulse shaping and to make mode-locked fiber lasers.
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Nonlinear Polarization Rotation
• Consider an elliptically polarized beam launched into an optical

fiber:

EEE(rrr, t) = F(x,y)[x̂xxAx(z, t)eiβxz+ ŷyyAy(z, t)eiβyz]e−iω0t.

• Two polarization components develop different nonlinear phase shifts:

φx = γ

(
|Ax|2+

2
3
|Ay|2

)
L, φy = γ

(
|Ay|2+

2
3
|Ax|2

)
L.

• State of polarization rotates on the Pontcaré sphere if the relative

phase difference between the two components is finite:

∆φNL = φx−φy =
1
3

γL(Ax|2−|Ay|2).

• This rotation is due to nonlinear birefringence and is known as the

Nonlinear Polarization Rotation (NPR).
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NPR-Induced Mode Locking

• A ring cavity with a polarizing isolator inside it is pumped to make

a mode-locked fiber laser.

• A polarization controller after isolator ensures elliptical polarization.

• NPR changes the state of polarization such that it is linear near

pulse center but remains elliptical in the wings.

• Pulse wings experience higher losses at the polarizing isolator.
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Coupled NLS Equations
• In the presence of dispersive effects, evolution of pulse envelope

along the fiber is governed by two coupled NLS equations:

∂Ax

∂ z
+β1x

∂Ax

∂ t
+

iβ2

2
∂ 2Ax

∂ t2 +
α

2
Ax

= iγ
(
|Ax|2+

2
3
|Ay|2

)
Ax +

iγ
3

A∗xA2
y exp(−2i∆β z),

∂Ay

∂ z
+β1y

∂Ay

∂ t
+

iβ2

2
∂ 2Ay

∂ t2 +
α

2
Ay

= iγ
(
|Ay|2+

2
3
|Ax|2

)
Ay+

iγ
3

A∗yA2
x exp(2i∆β z).

• Here ∆β = β0x−β0y accounts for linear birefringence of the fiber.

• The β1 terms govern polarization-mode dispersion (PMD) resulting

from slightly different speeds of the two polarization components.
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Cross-Phase Modulation (XPM)
• Situation becomes more complicated when two optical pulses of

different wavelengths and polarizations are launched simultaneously.

• When the two incident fields are arbitrarily polarized, we must use

E(t)= 1
2[EEE1e−iω1t +EEE2e−iω2t]+ c.c.,

P(3)(t)= 1
2[PPP1e−iω1t +PPP2e−iω2t]+ c.c.

• In the case of the Kerr nonlinearity, PPP1 and PPP2 are found to be

PPP j =
ε0

4
χ
(3)
xxxx[(EEE j ·EEE j)EEE∗j +2(EEE∗j ·EEE j)EEE j

+ 2(EEE∗m ·EEEm)EEE j +2(EEEm ·EEE j)EEE∗m+2(EEE∗m ·EEE j)EEEm] ( j 6= m).

• If we employ the ket notation for Jones vectors, we can use

EEE j(rrr, t) = Fj(x,y)|A j(z, t)〉exp(iβ jz).
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Coupled NLS Equations

• In the case of two optical pulses of different wavelengths and po-

larizations, the coupled NLS equations become

∂ |A1〉
∂ z

+
1

vg1

∂ |A1〉
∂ t

+
iβ21

2
∂ 2|A1〉

∂ t2 +
α1

2
|A1〉=

iγ1

3

(
2〈A1|A1〉

+ 2〈A2|A2〉+2|A2〉〈A2|+ |A∗1〉〈A∗1|+2|A∗2〉〈A∗2|
)
|A1〉,

∂ |A2〉
∂ z

+
1

vg2

∂ |A2〉
∂ t

+
iβ22

2
∂ 2|A2〉

∂ t2 +
α2

2
|A2〉=

iγ2

3

(
2〈A2|A2〉

+ 2〈A1|A1〉+2|A1〉〈A1|+ |A∗2〉〈A∗2|+2|A∗1〉〈A∗1|
)
|A2〉.

• Here vg1 and vg2 are group velocities at the two wavelengths.

• These equations assume that fiber is without any linear birefrin-

gence. They can be generalized further to include it.
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Pump–Probe Configuration
• If we neglect dispersion and assume that the probe pulse is much

weaker than the pump pulse, the coupled NLS equations become

∂ |A1〉
∂ z

+
1

LW

∂ |A1〉
∂τ

=
iγ1

3

(
2〈A1|A1〉+ |A∗1〉〈A∗1|

)
|A1〉,

∂ |A2〉
∂ z

=
2iγ2

3

(
〈A1|A1〉+ |A1〉〈A1|+ |A∗1〉〈A∗1|

)
|A2〉.

• Introducing the normalized Stokes vectors for the pump and probe

fields as ppp = 〈A1|σσσ |A1〉/P0 and sss = 〈A2|σσσ |A2〉/P20, we obtain

∂ ppp
∂ξ

+µ
∂ ppp
∂τ

=
2
3

ppp3× ppp,

∂ sss
∂ξ

=−4ω2

3ω1
(ppp− ppp3)× sss.

• Here ξ = z/LNL, LNL = (γ1P0)
−1, and µ = LNL/LW .
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Self-polarization Changes of Pump
• Pump equation is relatively easy to solve and has the solution

ppp(ξ ,τ) = exp[(2ξ/3)ppp3(0,τ−µξ )×]ppp(0,τ−µξ ).

• Stokes vector ppp rotates on the Poincaré sphere along the vertical

axis at a rate 2p3/3.

• This nonlinear polarization rotation is due to XPM-induced nonlin-

ear birefringence.

• If the pump is linearly or circularly polarized initially, its state of

polarization (SOP) does not change along the fiber.

• For an elliptically polarized pump, SOP changes as the pump pulse

propagates through the fiber.

• Since the rotation rate depends on the optical power, different parts

of a pump pulse acquire different SOPs.
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Pump-Induced Probe Polarization Changes

• Evolution of pump (solid) and probe (dashed) SOP on the Poincaré

sphere with time at a distance of 20LNL.

• Parts (a) and (b) show the front and back of the Poincaré sphere.

• Both pulses are Gaussian in shape and have the same width.

• Pump is elliptically polarized but the probe is linearly polarized at

the input end.
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Polarization Dependence of the Probe
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• (a) Shapes and (b) spectra at z = 20LNL for the x (dashed) and y
(dotted) components of the probe pulse. Total intensity is shown

by a solid line.
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Probe Polarization Dependence (cont.)
• Probe pulse is linearly polarized at 45◦ and the pump pulse is ellip-

tically polarized at z = 0.

• Different spectral broadening is expected from different XPM-induced

phase shifts. They occur even for all input SOPs of the pump.

• Different shapes of the x and y components of the probe pulse occur

only for elliptically polarized pump pulses.

• They are related to changes in the SOP of the the pump pulse.

• As the pump SOP evolves, the probe SOP changes across the pulse

in a complex manner.

• These results show that the nonlinear interaction of two pulses of

different wavelengths exhibits quite complex polarization dynamics

inside optical fibers.
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Simple Application: Kerr Shutter

• A cross polarizer at the fiber output blocks probe transmission (po-

larized at 45◦) in the absence of the pump beam.

• When pump is turned on, nx > ny for the probe because of pump-

induced cross-phase modulation.

• Probe transmissivity depends on the pump intensity and can be

controlled simply by changing it.

• In particular, a pulse of suitable energy at the pump wavelength

opens the Kerr shutter only during its passage through the fiber.
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Dispersion and Soliton Effects
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• In the case of anomalous dispersion, pump pulse forms an optical

soliton. Probe pulse is trapped by the pump and travels with it.

• Temporal shapes of pump (left) and probe (right) pulses at z = 0
(dotted) and 50LD for the x (solid) and y (dashed) components.

• Pump pulse is linearly polarized along the x axis, while the probe is

oriented at 45◦ with respect to it.
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Pulse Trapping and Compression

• (a) copolarized and (b) orthogonally polarized components of a

probe pulse, polarized at 45◦ from a linearly polarized pump pulse.
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Pump-Induced Polarization Pulling

• A counter-propagating pump can pull probe polarization toward its

own SOP [review by Millot and Wabnitz (JOSA B, Nov. 2014)].

• Scrambled SOP of a 40-Gb/s signal became uniformly polarized in

the presence of a CW pump inside a 6.2 km long fiber.
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Polarization Pulling (cont.)

• Signal can itself act as the pump if a part of the output is reflected

and amplified before sending it back into the fiber.

• Figure shows how the SOP of the signal changes in four cases (Millot

and Wabnitz, JOSA B, Nov. 2014).
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Four-Wave Mixing (FWM)
• FWM involves four waves such that ω1+ω2 =ω3+ω4. In the case

of a single pump, ω1 = ω2.

• Total electric field and third-order polarization now have the form

E = Re
[ 4

∑
j=1

EEE j exp(−iω jt)
]
, PNL = Re

[ 4

∑
j=1

PPP j exp(−iω jt)
]
.

• In the case of Kerr nonlinearity, PPP1 and PPP2 related to the two pumps

are found to be (assuming much weaker signal and idler)

PPP j(ω j)=
ε0

4
χ
(3)
xxxx

[
(EEE j ·EEE j)EEE∗j +2(EEE∗j ·EEE j)EEE j

+ 2(EEE∗m ·EEEm)EEE j +2(EEEm ·EEE j)EEE∗m+2(EEE∗m ·EEE j)EEEm
]

( j 6= m).

• First term governs SPM of the two pumps. The remaining terms

govern the interaction between two pump waves through XPM.
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Four-Wave Mixing (cont.)
• Using the same procedure, PPP3 and PPP4 are found to be

PPP j(ω j)=
ε0

2
χ
(3)
xxxx

[
(EEE∗1 ·EEE1)EEE j +(EEE1 ·EEE j)EEE∗1+(EEE∗1 ·EEE j)EEE1

+ (EEE∗2 ·EEE2)EEE j +(EEE2 ·EEE j)EEE∗2+(EEE∗2 ·EEE j)EEE2

+ (EEE∗m ·EEE1)EEE2+(EEE∗m ·EEE2)EEE1+(EEE1 ·EEE2)EEE∗m
]
.

• If we employ the ket notation for Jones vectors, the evolution of
signal and idler waves inside an optical fiber is governed by

d|A3〉
dz

=
2iγ
3

(
〈A1|A1〉+ |A1〉〈A1|+ |A∗1〉〈A∗1|+ 〈A2|A2〉+ |A2〉〈A2|+ |A∗2〉〈A∗2|

)
|A3〉

+
2iγ
3

(
|A2〉〈A∗1|+ |A1〉〈A∗2|+ 〈A∗1|A2〉

)
|A∗4〉e−i∆kz,

d|A4〉
dz

=
2iγ
3

(
〈A1|A1〉+ |A1〉〈A1|+ |A∗1〉〈A∗1|+ 〈A2|A2〉+ |A2〉〈A2|+ |A∗2〉〈A∗2|

)
|A4〉

+
2iγ
3

(
|A2〉〈A∗1|+ |A1〉〈A∗2|+ 〈A∗1|A2〉

)
|A∗3〉e−i∆kz.

• Here ∆k = β (ω3)+β (ω4)−β (ω1)−β (ω2) is the phase mismatch.
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Conservation of Angular Momentum
• In addition to the conservation of linear momentum (phase match-

ing), FWM also requires conservation of angular momentum.

• The LCP and RCP states represent photons with angular momenta

of +h̄ and −h̄, respectively.

• To describe FWM among arbitrarily polarized optical fields, we de-

compose the Jones vector of each field as

|A j〉= U j| ↑〉+D j| ↓〉.

• Creation of idler photons is then governed by the following two

equations (assuming perfect phase matching):

dU4

dz
=

4iγ
3

[U1U2U
∗

3 +(U1D2+D1U2)D
∗
3 ] ,

dD4

dz
=

4iγ
3

[D1D2D
∗
3 +(U1D2+D1U2)U

∗
3 ] .
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Angular Momentum (cont.)
• Consider one of the two equations:

dU4

dz
=

4iγ
3

[U1U2U
∗

3 +U1D2D
∗
3 +D1U2D

∗
3 ] .

• Three terms on the right represent three FWM processes that con-

serve angular momentum.

• First term: Both pumps and the signal are in U state and produce

the idler in the same state.

• Second and third terms: Two pump photons are orthogonally po-

larized U and D such that their total angular momentum is zero.

• To conserve this value, the signal and idlers must also be orthogo-

nally polarized.

• Thus, only signal photons in D state can produce U idler photons.
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Polarization Dependence of Parametric Gain
• Conservation of angular momentum affects considerably the para-

metric gain and the efficiency of underlying FWM process.

• Consider again the generation of idler photons in the U state:

dU4

dz
=

4iγ
3

[U1U2U
∗

3 +U1D2D
∗
3 +D1U2D

∗
3 ] .

• In the case of single-pump configuration, the two pump photons

have the same SOP as they are indistinguishable.

• If the pump is circularly polarized, only the first term can produce

idler photons.

• In the case of a linearly polarized pump, all terms can produce idler

photons as long as the selection rules are satisfied.

• It is easy to conclude that the parametric gain for a single-pump

configuration is always polarization-dependent.
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Dual-Pump Configuration

• The use of two distinct pumps makes it possible to make a fiber-

optic parametric amplifier (FOPA) whose gain does not depend on

the signal’s SOP.

• In the dual-pump configuration, the two pumps photons are distin-

guishable and can be chosen to be orthogonally polarized.

• If the two pumps are in the LCP and RCP states, the FWM process

becomes independent of the signal’s SOP.

• The FWM process does not depend on the signal’s SOP when the

two pumps are linearly polarized with orthogonal SOPs.

• The important question to ask is which configuration produces a

better FOPA from the standpoint of practical applications.
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Dual-Pump Configuration

• Vector FWM theory can be used to answer this question..

• For two elliptically but orthogonally polarized pumps, we obtain

d|A3〉
dz

=
2iγ
3
√

P1P2e−i∆kz(cos2θσ2+2isin2θσ0)|A∗4〉,

d|A4〉
dz

=
2iγ
3
√

P1P2e−i∆kz(cos2θσ2+2isin2θσ0)|A∗3〉.

• Here θ is the ellipticity angle of the pump, σ0 is a unit matrix, and

σ2 is one of the Pauli matrices.

• Assuming A4(0) = 0 initially, the parametric gain g is found to be

g(θ) = (2γ/3)
√

P1P2(1+3sin2 2θ)− (3∆k/4γ)2.
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Polarization Dependence of Parametric Gain

• Parametric gain versus θ plotted for two elliptically polarized pumps

with orthogonal SOPs. It peaks for circularly polarized pumps.

• The maximum value used for normalization is gm = 4γ
√

P1P2/3.

• Solid curve assumes perfect phase matching.
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Linear versus Circular Polarization

• Gain spectra for four different pumping schemes for a dual-pump

FOPA pumped with P1 = P2 = 0.5 W at 1535 and 1628 nm.

• Circularly polarized pumps provide 23-dB gain that does not depend

on signal’s SOP.
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Stimulated Raman Scattering
• Raman Scattering involves delayed molecular response EM fields.

• One must go beyond the instantaneous Kerr response to have a

suitable mathematical model of stimulated Raman scattering (SRS).

• The slowly varying part of third-order polarization now has the form

P(3)
i (t) =

ε0

4 ∑
j
∑

k
∑

l
χ
(3)
i jklE j(t)

∫ t

−∞

R(t− t1)E∗k (t1)El(t1)dt1.

• Nonlinear response function R(t) has the general form

R(t) = (1− fR)δ (t)+ faha(t)+ fbhb(t).

• fR = fa+ fb is the fractional contribution of delayed response.

• Functions ha(t) and hb(t) represent the isotropic and anisotropic

parts of this time-dependent response.
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Rman response Function
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• Time dependence of ha(t) and corresponding frequency dependence

of the Raman gain.
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Tensor Nature of Nonlinear Response

• For an isotropic medium such as silica glass χ (3) has the form

χ
(3)
i jkl = χ

(3)
xxyyδi jδkl +χ

(3)
xyxyδikδ jl +χ

(3)
xyyxδilδ jk.

• Using this form and R(t), we find [Hellwarth, PQE 5, 1, (1979)]

χ
(3)
i jklR(t)= χ

(3)
xxxx

[1− fR

3
(δi jδkl +δikδ jl +δilδ jk)δ (t)

+ faha(t)δi jδkl +
1
2 fbhb(t)(δikδ jl +δilδ jk)

]
.

• In the case of SRS in fibers, total field and its response is of the

form

E(t)=Re[EEE p exp(−iωpt)+EEEs exp(−iωst)],
P(3)(t)=Re[PPPp exp(−iωpt)+PPPs exp(−iωst)].
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Coupled Pump and Stokes Equations
• Third-order polarization at pump and Stokes frequencies is

PPP j =
3ε0

4
χ
(3)
xxxx

[
c0(EEE j ·EEE j)EEE∗j + c1(EEE∗j ·EEE j)EEE j

+ c2(EEE∗m ·EEEm)EEE j + c3(EEEm ·EEE j)EEE∗m+ c4(EEE∗m ·EEE j)EEEm

]
,

• Here c0 to c4 depend on the two Raman response functions.

• Introducing Jones vectors |Ap〉 and |As〉, we obtain

d|Ap〉
dz

+
αp

2
|Ap〉= iγp

(
c1〈Ap|Ap〉+ c0|A∗p〉〈A∗p|

+ c2〈As|As〉+ c3|As〉〈As|+ c4|A∗s〉〈A∗s |
)
|Ap〉,

d|As〉
dz

+
αs

2
|As〉= iγs

(
c1〈As|As〉+ c0|A∗s〉〈A∗s |

+ c2〈Ap|Ap〉+ c3|Ap〉〈Ap|+ c4|A∗p〉〈A∗p|
)
|As〉.
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Evolution of Stokes Vectors
• Polarization effects can be studied by using the Stokes vectors

PPP = 〈Ap|σσσ |Ap〉, SSS = 〈As|σσσ |As〉.

• Evolution of PPP and SSS on the Poincaré sphere is governed by

dPPP
dz

+αpPPP=− ωp

2ωs
[(ga+3gb)PsPPP+(ga+gb)PpSSS−2gbPpSSS3]+WWW p×PPP

dSSS
dz

+αsSSS=
1
2
[(ga+3gb)PpSSS+(ga+gb)PsPPP−2gbPsPPP3]+WWW s×SSS.

• Here Pp and Ps are the pump and Signal powers and

WWW p =
2γp

3
[PPP3+2(1+δb)SSS3− (2+δa+δb)SSS] ,

WWW s =
2γs

3
[SSS3+2(1+δb)PPP3− (2+δa+δb)PPP] .



41/47

JJ
II
J
I

Back

Close

Linear and Circular Polarizations
• For a linearly polarized pump (P3 = 0), the signal evolves as

dSSS
dz

+αsSSS =
1
2
[(ga+3gb)PpSSS+(ga+gb)PsPPP].

• If signal is also linear polarized, both P and S maintain their initial

SOPs with propagation.

• When the pump and signal are co-polarized, two gain terms add in

phase, and Raman gain is maximum with a value g‖ = ga+2gb.

• When the two are orthogonally polarized, two gain terms add out

of phase, and the Raman gain is minimum with the value g⊥ = gb.

• In the case of circular polarization, g‖ = ga+gb and g⊥ = 2gb.

• Raman gain clearly depends on the relative SOPs of the pump and

signal.
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Polarization Dependence of Raman Gain
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• Raman gain when the Stokes and the pump are co-polarized (blue

curve) and orthogonally polarized (red curve).

• Raman gain coefficient is highly polarization dependent for silica

fibers.
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Supercontinuum Generation

Apolonski et al., JOSA B (2002) Choi et al., PRA (2008)

• Suppercontinuum generation depends on the SOP of input pulses.

• Two examples of this behavior are shown in the figures above.

• Even at a given input SOP, output may exhibit complicated

polarization properties.
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Vector NLS Equation for isotropic Fibers

• This case was studied in 2004 [Lu et al., PRL 93, 183901 (2004)].

• Mathematically, we need to solve the vector NLS equation:

∂ |A〉
∂ z

+
1
2

(
α + iα1

∂

∂ t

)
|A〉+

M

∑
m=2

im−1βm

m!
∂ m|A〉
∂ tm

=σ1|A〉+ i
(

γ + iγ1
∂

∂ t

)
|Q(z, t)〉

• Polarization dependent nonlinear effects are included through

|Q(z, t)〉= 2
3
(1− fR)

[
〈A|A〉

]
|A〉+ 1

3
(1− fR)

[
〈A∗|A〉

]
|A∗〉

+ fR|A(z, t)〉
∫ t

−∞

hR(t− t ′)〈A(z, t ′)|A(z, t ′)〉dt ′.
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Vector Nature of Soliton Fission

Lu et al., PRL 93, 183901 (2004)

• Propagation in ideal isotropic fiber (no birefringence).

• Input SOP slightly elliptical (32 dB extinction ratio).

• A 150-fs pulse with N ≈ 12 is launched into a tapered fiber.

• Different solitons exhibit different SOPs.
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Concluding Remarks
• Nonlinear phenomena in optical fibers exhibit a rich variety of polariza-

tion-dependent effects.

• In the case of a single pulse, cross-polarization modulation leads to

nonlinear polarization rotation with a multitude of applications.

• In the case of two different wavelengths, cross-phase modulation

can be used to control polarization of one pulse using the other.

• XPM applications include polarization pulling, ultrafast optical switch-

ing, pump-induced probe compression, and soliton trapping.

• In the case of four-wave mixing, circularly polarized pumps can

provide larger polarization-independent parametric gain.

• Polarization effects play an important role during supercontinuum

generation inside optical fibers.
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