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We investigate the impact of intrapulse Raman scattering
and third-order dispersion on the propagation of a pulsed
optical beam inside graded-index (GRIN) fibers by solving
an effective nonlinear Schrödinger equation that includes
the spatial self-imaging effects through a periodically vary-
ing effective mode area. Numerical simulations are used to
show that the Raman-induced frequency shift of the short-
est fundamental soliton, created after the fission process, is
enhanced considerably inside GRIN fibers compared to
single-mode fibers for the same value of the soliton order.
We also discuss the role of spatial-width contraction during
each self-imaging cycle on the Raman-induced frequency
shifts. © 2019 Optical Society of America

https://doi.org/10.1364/OL.44.002637

Recently, there has been a resurgence of interest in multimode
fibers, partially motivated by their applications in space-division
multiplexing [1]. This has led to a notable effort to examine the
spatiotemporal dynamics of nonlinear propagation in both the
step-index and graded-index (GRIN) fibers [2,3]. Recent experi-
ments have shown Kerr-induced spatial cleaning of pulsed beams
inside GRIN fibers using picosecond as well as femtosecond
pulses [4,5]. A new kind of spatiotemporal instability, known as
geometric parametric instability and first studied in 2003 [6], has
also been observed experimentally using GRIN fibers [7]. A tem-
poral soliton composed of three modes of a GRIN fiber was ob-
served in 2013 [8]. Theoretical work has also shown that solitons
can form inside a GRIN medium [9–11]. Recent research has
focused on the generation of a supercontinuum by exploiting
various nonlinear effects inside GRIN fibers [12–15].

Several higher-order nonlinear and dispersion effects become
quite important when ultrashort optical pulses are propagated
inside single-mode fibers [16]. Among them, a continuous shift
of the pulse’s spectrum towards longer wavelengths, known as
the soliton self-frequency shift, was studied as early as 1986 [17].
In recent years, such Raman-induced frequency shifts (RIFS)
have been exploited to tune the wavelength of mode-locked la-
sers producing femtosecond pulses [18–20]. This technique re-
quires the formation of higher-order solitons inside optical fibers
and is particularly useful for generating radiation in the mid-
infrared region [19]. Clearly, any technique that can enhance

the magnitude of RIFS inside optical fibers would be useful
for practical applications.

In this Letter we show that the RIFS of femtosecond pulses
is enhanced considerably when the pulses are propagated
through a multimode GRIN fiber in place of a single-mode
fiber, while maintaining the same value of the soliton order
at the input end. In what follows, we first present the effective
nonlinear Schrödinger (NLS) equation governing propagation
of pulses inside a GRIN fiber. We compare the temporal and
spectral features for optical pulses evolving inside a GRIN fiber
and a single-mode fiber. We then focus on the RIFS enhance-
ment inside GRIN fibers and study how this enhancement de-
pends on the specific parameters associated with a GRIN fiber.

The refractive index of a GRIN fiber varies radially in a para-
bolic fashion. Including also the contribution of the Kerr
nonlinearity, it can be written as

n�ρ, I� � n0�ω��1 − Δ�ρ∕a�2� � n2I�ρ ≤ a�, (1)
where n0 is the core index, a is the core radius, and Δ � �n0 −
nc�∕n0 with nc standing for the cladding index. The Kerr
nonlinearity of silica glass is incorporated through the Kerr co-
efficient n2 and the local intensity I. When this form is used with
Maxwell’s equations, the resulting wave equation corresponds to
a four-dimensional (4D) problem involving three spatial coordi-
nates (x, y, z) and time t. In the case of a continuous-wave
Gaussian beam, its solution exhibits the phenomenon of periodic
self-imaging such that the beam-width oscillates along the fiber’s
length but recovers its input value at distances that are multiples
of the self-imaging period zp � πa∕

ffiffiffiffiffiffi
2Δ

p
.

The important question is what happens when a pulsed
Gaussian beam is launched into the same GRIN fiber. It was
shown by Conforti et al. in 2017 that, under suitable condi-
tions that hold well in practice for most GRIN fibers, the 4D
pulse-propagation problem can be reduced to an effective 2D
NLS equation involving only the z and t variables [21]. This
equation incorporates the effects of spatial beam-width oscilla-
tions through a periodically varying effective-mode area but as-
sumes that the temporal dynamics of the pulse do not affect
these oscillations. We write the resulting NLS equation in a
normalized form using the dimensionless variables [16]

τ � t∕T 0, ξ � z∕LD, U � A∕
ffiffiffiffiffi
P0

p
, (2)

where T 0 and P0 are the width and the peak power of an input
pulse, respectively, and U �ξ, τ� represents the slowly varying
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envelope of the evolving pulse. The dispersion length is defined
as LD � T 2

0∕jβ2j, where β2 is the group-velocity dispersion
parameter at the pulse’s central frequency ω0. After including
both the Kerr and the Raman contributions [16], the effective
NLS equation takes the form

i
∂U
∂ξ

� 1

2

∂2U
∂τ2

− iδ
∂3U
∂τ3

� N 2

f �ξ�

× U �ξ, τ�
Z

∞

0

R�τ 0�jU �ξ, τ − τ 0�j2dτ 0 � 0. (3)

In the preceding equation, we assumed anomalous group-
velocity dispersion (β2 < 0) and included the effects of third-
order dispersion through δ � β3∕�6jβ2jT 0�. The soliton order
N is defined as

N 2 � γP0LD, γ � ω0n2∕�cAeff �, (4)

where the effective area Aeff appearing in the nonlinear param-
eter γ corresponds to the area at the input end of the fiber.
Periodic variations of Aeff resulting from spatial self-imaging
are included through the function f �ξ� given by

f �ξ� � cos2�πqξ� � C2 sin2�πqξ�, q � LD
zp

: (5)

The parameters zp and C depend on the GRIN-fiber design
and are defined as

zp �
πaffiffiffiffiffiffi
2Δ

p , C � �1 − p�1∕2zp
πβ0w2

0

, (6)

where w0 is the input beam width and p is related to the input
peak power P0 as p � n2�β0w0�2P0∕2n0. Physically, zp repre-
sents the self-imaging period of the GRIN fiber and C governs
the extent of beam compression during each cycle. It is worth
noting that C � 1 amounts to setting f �ξ� � 1, which con-
verts Eq. (3) into the standard NLS equation.

We solve Eq. (3) numerically using the well-known form of
the nonlinear response function [16], R�t� � �1 − f R�δ�t��
f RhR�t�, where f R � 0.18 is the fractional contribution of
the delayed Raman response whose functional form hR�t� is
taken from Ref. [22]. We solve Eq. (3) in the frequency domain
using a technique that employs the fourth-order Runge–Kutta
method in the interaction picture [23].

As the fission of higher-order solitons plays an important role
in producing a large RIFS, it is important to consider how this
process is affected by spatial beam-width oscillations occurring
inside any GRIN fiber. For this purpose, we used numerical sim-
ulations to study the fission of a third-order soliton (N � 3)
inside a GRIN fiber. We assume that a sech-shape pulse with
a duration of 100 fs (full width at half-maximum) is launched
into a GRIN fiber with a peak power such that it propagates as a
third-order soliton. The self-imaging period zp is typically
∼1 mm, whereas the dispersion length LD for a 100-fs pulse
(T 0 � 57 fs) is ∼10 cm. For the results shown in Figs. 1(a)
and 1(b), we choose q � LD∕zP � 100. We also set C � 0.5,
which implies that the beam width is reduced to 50% of its input
value in the middle of each self-imaging period. We used
δ � 0.02, the only other parameter that we needed to specify.
As seen in part (a), the finite value of this parameter leads to the
fission of the third-order soliton into three fundamental solitons
within a fraction of the dispersion length. The spectral evolution

seen in part (b) shows that the pulse spectrum broadens consid-
erably and develops a multi-peak structure after the fission.

To identify the impact of beam-width oscillations, we show
in parts (c) and (d) the temporal and spectral evolutions of the
same third-order soliton inside a single-mode fiber by setting
C � 1. A direct comparison shows that the spatial width os-
cillations occurring inside a GRIN fiber have a huge impact in
both the temporal and spectral domains. The reason is that
width variations translate into peak-power variations (as pulse
energy is conserved when losses are negligible), which translate
into periodic refractive-index variations through the Kerr non-
linearity. The beam-width oscillations thus lead to two distinct
physical mechanisms. First, the effects of self-phase modulation
are enhanced in a periodic fashion as the pulse becomes more
intense on a length scale governed by the self-imaging period
(1 mm or less). Since a soliton cannot respond to such rapid
variations, one can average over them, as discussed in Ref. [11].
The net result is the effective value of N becomes larger and is
given by N̄ � N∕

ffiffiffiffi
C

p
. For the value of C � 0.5 used in

Fig. 1, N̄ exceeds 4, i.e., the third-order soliton behaves as a
fourth-order soliton on average.

We can use this feature to understand the enhancement of
the RIFS in part (b) of Fig. 1 compared to that in part (d). In
both cases, the higher-order soliton breaks up into multiple
fundamental solitons whose widths and the peak powers are
governed by [16]

T k �
T 0

2N � 1 − 2k
, Pk � �2N � 1 − 2k�2 P0

N 2 ,

k � 1…N : (7)

However, we should replace N in this equation with the integer
part of N̄ in the case of a GRIN fiber. As a result, the width of
each fundamental soliton created after the fission process is
shorter in the case of GRIN fibers. Since the RIFS is larger

Fig. 1. Temporal (a) and spectral (b) evolution of a third-order sol-
iton inside a GRIN fiber over a distance of 2LD for δ � 0.2, C � 0.5,
and q � 100. Parts (c) and (d) show these features for a single-mode
fiber under identical conditions except for C � 1 (no spatial oscilla-
tions). In all cases, intensity is color-coded on a 50-dB scale.
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for a shorter soliton, we expect it to be enhanced in the case of a
GRIN fiber, when compared to a single-mode fiber with no
spatial width oscillations. This is precisely what we observe
in parts (b) and (d) of Fig. 1, where the most intense spectral
peak shifts continuously toward the red side through the pro-
cess of intrapulse Raman scattering. Such a red shift of solitons
inside GRIN fibers has been observed in several experiments
[24,25]. We quantify its magnitude in the next section.

Another noteworthy feature of Fig. 1(b) is the generation of
multiple dispersive waves in the case of a GRIN fiber, in com-
parison to a single dispersive wave seen in part (d). It is a mani-
festation of the Kerr-induced index grating formed through
periodic variations of the peak intensity. As is well-known, this
grating enables the generation of a large number of dispersive
waves by helping in satisfying a phase-matching condition
[26,27]. By including terms up to third-order in dispersion,
the frequency shift, ω � ωd − ω0, is found to satisfy the fol-
lowing cubic polynomial [21,28]:

β3ω
3

6
�β2ω

2

2
−δβ1ω�2πm

zp
�γP1

2C
, m��−∞,∞�, (8)

where the δβ1 arises from a change in the group velocity of the
soliton from its initial value [29]. Dispersive waves satisfying
the condition in Eq. (8) were observed by Wright et al. in a
2015 work [28], where Eq. (8) was also discussed. Further,
the experimental results were compared with numerical simu-
lations based on an NLS equation similar to Eq. (3).

In Eq. (8), P1 is the peak power of the shortest soliton
formed after the fission process is completed. It can be esti-
mated from Eq. (7) by taking k � 1 and replacing N with
N̄ in the case of a GRIN fiber. We write Eq. (8) in a normalized
form using a new variable Ω � ωT 0:

2δ3Ω3 −Ω2 − δ1Ω � 4πmq � �2N̄ − 1�2, (9)

where δ1 � δβ1�LD∕T 0�. We estimate from Fig. 1(a) that
δ1 ≈ 4. The real roots of the cubic polynomial in Eq. (9) pre-
dict the frequencies of dispersive waves as Ω∕�2π� �
5.1490, 7.2116, − 4.1841 and −5.4178 for m � 0, 1, − 1,
and −2, respectively. These values agree reasonably well with
the frequencies of the dispersive waves in Fig. 1(b).

As seen in Fig. 1, the shortest fundamental soliton, created
after the fission of a third-order soliton, undergoes a much
larger RIFS inside a GRIN fiber compared to a single-mode
fiber. The same effect occurs for other values of the soliton-
order N . To quantify the magnitude of this enhancement,
we plot in Fig. 2, the normalized RIFS, jΔνjT 0, as a function
of z∕LD for N � 2 and 3 in both types of fibers. The solid dots
show the numerical data obtained by isolating the spectrum of
the shortest soliton. As seen in Fig. 2, the RIFS is enhanced
considerably in the case of a GRIN fiber for both the second-
and third-order solitons. The enhancement factor exceeds 2 in
both cases even for C � 0.5 and is expected to be larger for
shorter values of C , as discussed later. This enhancement is
a consequence of the spatio-temporal coupling that occurs in-
variably in the case of GRIN fibers. Periodic spatial contraction
of the pulsed Gaussian beam increases the peak power of the
soliton in the middle of each self-imaging cycle, thereby
enhancing the nonlinear effects in a periodic fashion. Even
though the soliton cannot respond to variations occurring at
a length scale of 1 mm or less, the effective value of the soliton
order increases, resulting in shorter fundamental solitons after

its fission. As the Raman gain is larger for a shorter soliton be-
cause of its wider spectrum, the rate of RIFS is also larger for a
shorter soliton. This is the reason a larger RIFS occurs in the
case of a GRIN fiber for the same input value of N .

An important feature of Fig. 2 is that the RIFS increases with
distance sub-linearly for bothN � 2 and 3, even though a linear
dependence is expected from soliton theory based on the
assumption that the soliton maintains a constant width [17].
It is easy to deduce that this approximation is not valid when
the effects of third-order dispersion are included. As the soliton’s
spectrum shifts toward the red side, the parameter β2 begins
to change at the center frequency ωs of the soliton. Using
β2�ωs� � β2�ω0� � β3�ωs − ω0�, we note that the magnitude
of jβ2j increases for positive values of β3 used here. From the
relation N 2 � γP1T 2

1∕jβ2j, with T 1 and P1 given in Eq. (7)
for the shortest soliton created after the fission, it follows that
the soliton width T 1 must increase as the RIFS and jβ2j increase.
Numerical simulations also confirm such an increase.

Although an analytic treatment is not possible, we can
estimate the RIFS of the width-varying solitons using the mo-
ment method used for perturbed solitons in Ref. [30]. It shows
that the RIFS rate Δν∕dz for a soliton of width T 1�z� evolves
with distance as

dΔν
dz

� K
T 3

1

, (10)

where K is a constant. We estimate K from the numerical sim-
ulations at a distance zf chosen to be after the fission has oc-
curred and where T 1�zf � can be estimated from Eq. (7). Since
we do not know the exact dependence of T 1 on z, to the first-
order in the Taylor expansion, we take it to be linear and use

T 1�z� � T 1�zf ��1� s�z − zf ��, (11)

where the slope s is estimated from the numerical data.
Integrating Eq. (10) using T 1�z� from Eq. (11), we obtain

1 2 3 4 5
Distance, z/L

D

0

1

2

3

4

5

R
IF

S
, |

|T
0

N=3, GRIN

N=3, SMF

N=2, GRIN

N=2, SMF

Fig. 2. Magnitude of RIFS plotted over a distance of 5LD for the
second- (N � 2) and third-order (N � 3) input solitons in the cases
of GRIN and single-mode fibers (SMF). We used C � 0.5 and q �
100 for the GRIN fiber. The dashed lines show the predictions of a
simple analytic model discussed in the text.
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the z dependence of the RIFS. The results are shown in Fig. 2
with the dashed lines, solid lines showing the numerical results.
As can be seen, our rough estimate agrees with the simulation
results reasonably well.

The results shown in Fig. 2 are for a specific GRIN fiber for
which q � 100 and C � 0.5. We briefly discuss how the RIFS
enhancement is affected when these parameters are varied. It is
easy to deduce that the results do not depend on the precise
value of q as long as the self-imaging period of the GRIN fiber
is much shorter than the dispersion length, resulting in q > 10.
This is not the case for the C parameter. In fact, we expect the
RIFS to depend considerably on this parameter because the
Gaussian beam is compressed more and more during each
self-imaging period as C becomes smaller. The results shown
in Fig. 3 confirm this expectation. As seen there, the RIFS in-
creases rapidly as C decreases and is always larger for a GRIN
fiber compared to its value at C � 1 for which the beam width
does not oscillate.

In conclusion, we have investigated how the intrapulse
Raman scattering and third-order dispersion affect the propa-
gation of optical pulses inside GRIN fibers by solving an effec-
tive NLS equation that includes the spatial self-imaging effects
through a periodically varying effective mode area. Numerical
simulations are used to show that the RIFS of the shortest fun-
damental soliton created after the fission process is enhanced
considerably inside GRIN fibers compared to single-mode
fibers for the same value of the input soliton order N . We also

discuss how a larger beam-width reduction during each self-
imaging cycle leads to a larger RIFS.

Funding. National Science Foundation (NSF) (ECCS-
1505636).
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fiber length of 3LD for the second- (N � 2) and third-order
(N � 3) solitons propagating inside a GRIN fiber. The dashed lines
show the results obtained for single-mode fibers under identical
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