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A B S T R A C T

The phenomenon of periodic self-imaging of optical beams, occurring inside any graded-index (GRIN) medium,
was studied during the decade of the 1970s and was exploited to commercialize the GRIN lens. It has been found
in recent years that the periodic self-imaging also affects the nonlinear propagation of optical pulses inside
multimode GRIN fibers. In this paper, we first present the theory of self-imaging in linear GRIN fibers using a
modal expansion approach. It is shown that the optical field at any point inside the fiber can be written without
any reference to the fiber modes as a two-dimensional integration over the input field using a propagation kernel
that is similar to that found in diffraction theory. However, this kernel has a specific property that reproduces the
input field precisely in a periodic fashion along the length of a GRIN fiber (self-imaging). We apply this kernel to
study the propagation of a Gaussian beam and discuss how self-imaging is modified by self-focusing produced by
the Kerr nonlinearity. We then consider propagation of the continuous and pulsed Gaussian beams inside a GRIN
fiber and discuss how self-imaging affects the modulation instability, leads to the formation of GRIN solitons, and
produces novel temporal and spectral features when short optical pulses are launched that are intense enough to
form high-order solitons.

1. Introduction

Light propagation in graded-index (GRIN) media was investigated
during the 1970s, motivated mostly by their applications in optical
communication systems [1–6]. By the year 1980, smaller differential
modal delays of GRIN fibers compared to step-index fibers led to the use
of GRIN fibers in the first-generation communication systems. The in-
terest in GRIN fibers declined after 1985 as the use of single-mode fibers
became dominant. It was only after 2010 that multimode fibers at-
tracted renewed attention for enhancing the capacity of optical com-
munication systems through the technique of space-division or mode-
division multiplexing [7–9]. This revival has led to a resurgence of
interest in GRIN fibers, especially in their nonlinear properties [10–15].
Among the nonlinear phenomena that have attracted attention are so-
liton formation inside GRIN fibers [11,16], geometric parametric in-
stability [12], and spatial-beam cleanup [13].

The phenomenon of self-imaging, a well-known property of any
GRIN medium [2,6], has been found to play a crucial role in these
nonlinear studies [13]. In this paper we first review in Section 2 the
optical modes supported by a GRIN fiber. We then develop in Section 3
theory behind self-imaging using a modal-expansion approach and
show that the output field at any point inside the fiber can be obtained,
without any reference to the fiber modes, using a propagation kernel

that is similar to one found in diffraction theory. However, this kernel
has a specific property such that any input field is reproduced precisely
in a periodic fashion along the length of a GRIN fiber (self-imaging). We
apply this kernel in Section 4 to study the propagation of a Gaussian
beam inside a GRIN fiber and recover a known result for its periodically
varying beam width. We also discuss how self-imaging is modified by
self-focusing produced by the Kerr nonlinearity. In Section 5 we con-
sider propagation of a pulsed Gaussian beam inside a GRIN fiber and
derive an effective nonlinear Schrödinger equation that includes the
effects of periodic self-imaging. We also discuss the conditions under
which such an equation can be used. In Section 6 we use this equation
to study how self-imaging affects the phenomenon of modulation in-
stability. The formation of GRIN solitons is covered in Section 7. We
incorporate the high-order dispersive and nonlinear effects in Section 8
and discuss the novel temporal and spectral features occurring when
femtosecond optical pulses that are intense enough to form high-order
solitons are launched into a GRIN fiber.

2. Modes of GRIN fibers

In this section we consider the propagation of a continuous-wave
(CW) beam of frequency ω inside a GRIN fiber. The refractive index of
most GRIN fibers decreases radially inside the core of radius a from its
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value n1 at the center to the cladding index nc as [17]

= − = +n x y n ρ a ρ x y( , ) [1 2Δ( / ) ], .2
1
2 2 2 2 (1)

The parameter = −n n nΔ ( )/c1 1 plays an important role and is defined
in the same way as for step-index fibers [18]. The modes of GRIN fibers
are obtained by solving the Helmholtz equation

∇ + =n x y kE E( , ) 0.2 2
0
2 (2)

where =k ω c/0 at the optical frequency ω. Although a numerical ap-
proach is necessary in general, this equation can be solved analytically
if we assume that the index profile in Eq. (1) applies for all values of ρ.

In the so-called weakly guiding approximation ( ≪Δ 1), both the
electric and magnetic fields of all modes lie in a plane transverse to the
fiber’s axis ( = =E H 0z z ), and the modes are denoted as LPmn, where m
and n are two integers used for labeling different modes. Their modal
distribution F x y( , )mn and propagation constants βmn are known, but
have different forms depending on whether Eq. (2) is solved using the
Cartesian or cylindrical coordinates. We refer to Ref. [17] for their
expressions in the two coordinate systems. As an example, the modal
propagation constants in the Cartesian coordinates are given by

= ⎡
⎣⎢

− + − ⎤
⎦⎥

β n k m n
n k a

1 2( 1) 2Δ .mn 1 0
1 0

1/2

(3)

For most GRIN fibers, ⩾k a 10 and ⩽Δ 0.01. As a result, as long as
+m n is not too large, we can expand βmn in a binomial series and

approximate it as

≈ − + −β n k m n a( 1) 2Δ / .mn 1 0 (4)

This equation reveals the most important feature of the modes of a
GRIN fiber. It shows that the propagation constants of all non-degen-
erate modes form a ladder-like structure with equal spacing between
any two neighboring modes. This feature is similar to the quantized
energy levels of a harmonic oscillator and is the physical mechanism
behind the self-imaging phenomenon in GRIN fibers. In the following
discussion, we assume that all modes have been normalized such that
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where the integration is over the entire transverse plane.

3. Self-imaging theory

Any optical beam with the input field E x y( , , 0), in general, excites
multiple fiber modes such that
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where the sum extends over the whole range of the two integers
( =m n, 0 to ∞). We can find the expansion coefficients cmn by multi-
plying Eq. (6) with ′ ′

∗F x y( , )m n , integrating over the whole transverse
plane, and using the mode-orthogonality relation in Eq. (5). The result
is given by
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The optical field E x y z( , , ) at any point inside the GRIN fiber is
obtained by multiplying each mode with a phase factor such that
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Substituting cmn from Eq. (7), we can write the result in the form
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where the propagation kernel is given by
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Eq. (9) provides the optical field at any point inside the GRIN
medium in terms of the known input field at =z 0. Its form is similar to
that used for diffraction of optical beams inside a homogeneous
medium of constant refractive index. If the double sum in Eq. (10) can
be evaluated in a closed form, the resulting kernel will include all of the
excited modes of a GRIN fiber, without any explicit reference to them. It
turns out that the double sum can be performed for GRIN fibers because
of the ladder-like structure of the modal propagation constants. We
refer to a 1974 paper for details [2] and write the result directly
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where = =β n k b a, 2Δ /1 0 , and the phase ψ depends only on the lo-
cation of the point = x y zr ( , , ) as
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2
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Noting that =bz b zsin( )/ in the limit →b 0, it is easy to see that the
kernel in Eq. (11) reduces to its form expected for a homogeneous
medium of constant refractive index in that limit.

The kernel in Eq. (11) takes a somewhat simpler form in the cy-
lindrical coordinates ρ and ϕ:
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This form makes it easier to conclude that a radially symmetric input
field (with no explicit dependence on ′ϕ ) will maintain this symmetry as
it propagates down a GRIN fiber. To see this, we first write Eq. (9) in the
cylindrical coordinates as
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If ′ ′E ρ ϕ( , , 0) does not depend on ′ϕ , the integration over ′ϕ can be
carried out using the known result
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As this integral does not depend on ϕ, initial radial symmetry of any
input beam is maintained during its propagation inside a GRIN fiber. In
the modal picture, only the radially symmetric modes are excited by
such an input beam.

The self-imaging property of a GRIN medium follows from the ob-
servation that the Kernel in Eq. (11) is reduced to the form

′ ′ = − ′ − ′K x x y y δ x x δ y y e( , ; , ) ( ) ( ) iβz (16)

at distances that are an integer multiple of the period π b2 / . This can be
seen by noting that bzcot( ) can be replaced with bz1/sin( ) at such dis-
tances and K in Eq. (11) can be written as = − ′ − ′K f x x f y y e( ) ( ) ikz ,
where the function f x( ) is defined as

G.P. Agrawal Optical Fiber Technology 50 (2019) 309–316

310



⎜ ⎟= ⎛
⎝

− ⎞
⎠

=f x
q
π

qx q
βb

i bz
( ) exp ,

2 sin( )
.2

(17)

It is easy to show that ∫ =−∞
∞ f x dx( ) 1. At distances =z mπ b2 / where m

is an integer, q becomes infinitely large, and f x( ) is reduced to the delta
function δ x( ). It follows from Eqs. (9) and (16) that the field E r( ) be-
comes identical to the input field at all such distances, resulting in self-
imaging.

Self-imaging also occurs at a shorter distance =z π b/p with one
major difference. In this case, one can show that the delta functions in
Eq. (16) are replaced with + ′δ x x( ) and + ′δ y y( ). As a result,

= − −E x y z E x y( , , ) ( , , 0)p , i.e., the image is flipped in both transverse
directions. If the input field is radially symmetric, the sign changes have
no impact, and the input field is reproduced (self-imaging) for the first
time at the distance zp and then periodically at distances that are
multiples of zp. It is important to stress that self-imaging at the distance

z2 p occurs for an arbitrary input field, without any restriction on its
functional form. This is the reason why GRIN rods can be used as a lens.
We refer to a 1976 paper for further details on the imaging character-
istics of a GRIN medium [4]. In particular, it can be shown that the ratio

=f bz bcot( )/ plays the role of the focal length of such GRIN lenses. Self-
imaging can occur even when the input beam is only partially coherent
[19].

4. Self-imaging of a CW Gaussian beam

A Gaussian-shape input beam is often launched into a GRIN fiber. It
is thus useful to apply Eq. (9) to an input beam for which
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where A0 is the peak amplitude and w0 is the spot size (1/e width) of
the Gaussian beam. The full width at half-maximum (FWHM) of the
beam is related to w0 as =w w1.665f 0. We can find the electric field at
any point = x y zr ( , , ) inside the fiber by using Eq. (18) in Eq. (9) to-
gether with the kernel in Eq. (11). The two integrations can be per-
formed by using the known integral
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The final result can be written as

=E A F iϕr r r( ) ( )exp[ ( )],0 (20)

where the beam shape is governed by
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and the spatial width w z( ) evolves with z in a periodic fashion as

= +w z w πz z C πz z( ) cos ( / ) sin ( / ) .p p0
2 2 2 (22)

The spatial period zp and parameter C are defined as
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,
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p

0
2 (23)

The phase ϕ r( ) in Eq. (20) is also spatially varying and has the form
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Eq. (21) shows that a Gaussian beam maintains its Gaussian shape
inside a GRIN fiber, but its amplitude and width (also phase) change in
a periodic fashion such that the beam recovers all of its input features
periodically at distances =z mzp (m is a positive integer) because of the
self-imaging phenomenon. At distances = +z m z( ) p

1
2 , the beam’s

width takes its minimum value w C0 , i.e., C governs the extent of beam

compression during each cycle. As an example, Fig. 1 shows the evo-
lution of a Gaussian beam over two periods along the fiber’s length
using =C 0.5. For this value of C, the beam width is reduced by a factor
of two at the point of maximum compression and its peak intensity is
enhanced by a factor of 4. Much more intensity enhancement can occur
for shorter values of C. Note also that the phase front becomes curved as
the beam propagates down the fiber (spatial chirping), and its curvature
also displays a periodic behavior. In particular, the phase front becomes
planar at distance that are multiples of z /2p . This is evident from Eq.
(24) if we note that the slope =dw dz/ 0 at distances where pulse width
attains its minimum or maximum value.

It is important to estimate the values of two parameters defined in
Eq. (23). Using =Δ 0.01 with =a 25 μm (typical values for commercial
GRIN fibers), we find =z 0.55p mm, a remarkably short distance at
which self-imaging first occurs inside such a GRIN fiber. Assuming

=w 8 μ0 m and using =β πn λ2 /1 with =n 1.451 and =λ 1.06 μm, we
find ≈C 0.3, indicating that the beam width is reduced to 30% of its
initial value at z /2p , before it recovers its input value at a distance of zp.
Even smaller values of C can be realized in practice by increasing the
initial spot size w0 of the Gaussian beam. Fig. 2 shows how the ratio
w w/ 0 varies over one self-imaging period for several values of the
parameter C.

So far, we have neglected the nonlinear effects by assuming that the
input power of the CW beam was low enough that all such effects were
negligible. One may ask what happens to the self-imaging property of
GRIN fibers when input power becomes large enough that the Kerr
nonlinearity of the silica material must be considered. It is known that
the Kerr contribution n I2 to the refractive index can lead to self-fo-
cusing of an optical beam with intensity I even inside a homogeneous
medium of constant refractive index. At a critical power level, Pcr , self-
focusing becomes catastrophic in the sense that the beam width shrinks
to zero at a finite distance given by [20]

=
−

=z
βw π

P P
P πn

n β
/

/ 1
, 2

sf
0
2

cr
cr

1

2
2 (25)

Fig. 1. Evolution of a Gaussian beam inside a GRIN fiber over two self-imaging
periods for =C 0.5.

Fig. 2. Beam-width ratio w w/ 0 plotted over one self-imaging period for several
values of the C parameter.
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As a GRIN medium also reduces the beam size, the two effects may act
together in such a way that catastrophic self-focusing occurs even at a
shorter distance. Clearly, self-focusing can destroy the self-imaging
property when input power is close to Pcr.

The real question is whether self-imaging occurs when input power
is well below Pcr but the nonlinear effects cannot be ignored. This
question was answered in 1992 by solving the Gaussian-beam propa-
gation problem with the variational technique [21], after adding the
nonlinear contribution n I2 to the refractive index n x y( , ) in Eq. (1). It
was found that the beam width oscillates as indicated in Eq. (22) with
same period zp but the parameter C in Eq. (23) is modified as

⎜ ⎟= − ⎛
⎝

⎞
⎠

C P P
z β
πw

1 ( / )
/

.p
cr

0
2 (26)

The Kerr nonlinearity reduces the C parameter, but it does not affect the
period of self-imaging. In physical terms, the Kerr nonlinearity only
enhances the extent of beam compression during each self-imaging
cycle. As long as the input power of a CW beam remains below the
critical level of self-focusing, periodic self-imaging occurs just as it
would in the absence of the nonlinear effects.

5. Nonlinear pulse propagation

In this section we consider propagation of a pulsed Gaussian beam
inside a nonlinear GRIN fiber. The full problem is quite complicated
because it requires numerical solutions of a nonlinear wave equation
involving four variables (x y z, , , and t). A modal approach is often used
in practice [22]. Its use requires solving many coupled equations with a
large number of nonlinear terms and is limited in practice to fibers
supporting a relatively small number of modes. It was found in 2017
that a simpler approach is possible for multimode GRIN fibers [14]. Its
main assumption is that the bandwidth of the pulse is narrow enough
that the spatial profile F r( ) of the beam does not vary much over this
bandwidth. By exploiting the self-imaging property of such fibers, we
can write the electric field in the frequency domain as

̃ ̃=E ω A z ω F er r( , ) ( , ) ( ) ,iβ ω z( ) (27)

where F r( ) is at the center frequency ω0 of the pulse and β ω( ) is the
frequency-dependent propagation constant. It is important to keep in
mind that F r( ) is not the spatial profile of a specific mode but results
from a superposition of all the modes excited by the input beam. This is
reflected through the periodic evolution of F r( ) along the fiber’s length
as indicated in Eq. (21).

As is often done in practice [18], we expand β ω( ) in a Taylor series
around a center frequency ω0 as

= + − + − + ⋯β ω β β ω ω β ω ω( ) ( ) ( ) /2 ,0 1 0 2 0
2 (28)

where the dispersion parameters =β d β dω( / )m
m m are evaluated at the

center frequency =ω ω0. After eliminating the transverse coordinates
through a spatial integration and going back to the time domain, the
amplitude A z t( , ) is found to satisfy [14]

∂
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2
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where the nonlinear parameter is defined as

∬⎜ ⎟= = ⎛
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eff
eff
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Recall that F r( ) is normalized such that ∬ =F dx dyr( ) 12 . We call
A z( )eff the effective beam area to distinguish it from the effective mode
area, whose value remains constant with z in single-mode fibers [18].
Eq. (29) with a constant value of γ is known as the nonlinear Schrö-
dinger (NLS) equation. The group-velocity dispersion (GVD) of the fiber
is included through the parameter β2, which can be positive or negative
at the center frequency ω0 of the pulse.

Eq. (29) shows that the pulse evolution inside a GRIN fiber can be
studied by solving a single NLS equation, even though multiple spatial
modes may be propagating simultaneously inside the fiber. The oscil-
lating spatial width of a Gaussian beam, resulting from the GRIN nature
of the fiber and its self-imaging property, gives rise to an effective
nonlinear parameter γ z( ) that is periodic in z. This is not surprising
since the intensity at a given distance z depends on the beam width,
becoming larger when the beam compresses and smaller as it spreads
(see Fig. 1). One can also interpret the same effect as a periodically
varying effective beam area. The spatial integrals appearing in Eq. (30)
can be performed analytically using the functional form of F r( ) in Eq.
(21). The result can be written in the form =γ z γ f z( ) / ( ), where γ is
defined using the initial value of Aeff at =z 0. As a final step, if we use
the reduced time = −T t β z1 , Eq. (29) takes the form

∂
∂

+ ∂
∂

= −A
z

iβ A
T

iγf z A A
2

( ) ,2
2

2
1

2

(31)

where the function f z( ) is found from Eq. (22) and has the form

= +f z πz z C πz z( ) cos ( / ) sin ( / ).p p
2 2 2 (32)

The modified NLS Eq. (31) involves only two variable (z and T) and
can be solved numerically much faster than the full four-dimension
problem for GRIN fibers. It includes the effects of a spatially evolving
beam through the function f z( ) and the two parameters C and zp ap-
pearing in it. However, it neglects the impact of temporal dynamics on
the spatial features of the beam and cannot be applied under all ex-
perimental conditions. It is thus important to summarize the conditions
under which it can be used in practice.

• Weakly guiding approximation requiring ≪Δ 1 must hold. This
approximation is often valid in practice as <Δ 0.01 for most GRIN
fibers.

• The core size of the GRIN fiber must be large enough for it to sup-
port a large number of modes. As the core radius >a μ20 m for most
GRIN fibers, this is often the case in practice.

• Spatial width of the input beam must be smaller than a2 but still
large enough that many low-order modes are excited simulta-
neously.

• At the same time, the total number of excited modes should be
considerably less than 1000 to ensure that the approximation in Eq.
(4) holds.

• The spectral bandwidth of pulses must be such that the beam shape
does not change much over its entire range.

6. Modulation instability

Modulation instability is a well-known nonlinear phenomenon in
the context of single-mode optical fibers [18]. Occurring in the anom-
alous-GVD region of such fibers, it produces temporal oscillations on a
CW beam that are reshaped by the Kerr nonlinearity into a train of
optical solitons. It is thus natural to wonder how this instability is af-
fected by the multimode nature of optical fibers and whether it can
occur in the region of normal GVD of a GRIN fiber. To answer such
questions, a linear stability analysis of the CW solution must be carried
out to find the frequencies of the sidebands that appear on both sides of
the narrow-width spectrum of the CW beam and grow with the gain
provided by this instability.

The stability of a CW Gaussian beam inside a GRIN fiber was studied
[23] in 2003 using the analytic solution given in Eq. (20). A more
general analysis was carried out in 2019 in terms of a Hill’s equation
[24]. In both cases, the analysis is quite complicated. The modified NLS
Eq. (31) provides a simpler approach for studying modulation in-
stability in GRIN fibers [14]. In this case, the stability of the CW solu-
tion of Eq. (31) is analyzed by using
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where =P A0 0
2 is the input peak power and a z t( , ) is a small pertur-

bation. Linearizing Eq. (31) in a, we obtain the following equation:
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We seek its solution in the form = +−a a e a ei T i T
1

Ω
2

Ω , where Ω is the
modulation frequency and the amplitudes a1 and a2 satisfy:
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where =k 1 or 2. These two coupled equations must be solved to find
the frequencies for which the CW solution in Eq. (20) becomes unstable.

Because of the periodic nature of f z( ), the preceding coupled
equations can be solved approximately by expanding −f z( )1 in a Fourier
series as = ∑−f z c e( ) m

imKz1 , where =K π z2 / p and zp is the self-imaging
period given in Eq. (23). The coefficients cm in this series are calculated
using

∫= − −c
z

f z e dz1 ( ) ,m
p

z imKz
0

1p

(36)

Each term in the Fourier series helps in satisfying a phase-matching
condition and results in one pair of sidebands located on opposite sides
of the pump’s frequency. The frequencies at which the gain of each
sideband pair becomes maximum are found to satisfy [25]

= −πm
β z

c
β L

Ω 2 2 ,m
p

2

2

0

2 NL (37)

where m is an integer and the nonlinear length = −L γP( )NL 0
1. The peak

gain of the mth sideband depends on the Fourier coefficient cm and is
given by =g γP c2m m0 . It is easy to show that =c C1/0 . The other
Fourier coefficients can also be computed in terms of C [24]. The =m 0
sideband corresponds to the single-mode case and exists only if <β 02 ,
i.e., when GVD of the fiber is anomalous at the pump wavelength.

Eq. (37) shows that a CW Gaussian beams whose width oscillates
along a GRIN fiber can become unstable to small perturbations, even
when it propagates in the normal-GVD region of the fiber. The gain
spectrum of modulation instability exhibits a rich structure with an
infinite number of sideband pairs at frequencies that are not equally
spaced. The peak gain of each sideband depends on the spatial pattern
of the oscillating Gaussian beam through f z( ). Since spatial variations
play a crucial role, this instability is also known as a geometric para-
metric instability [12].

The numerical values of the sideband frequencies can be estimated
using typical values for commercial GRIN fibers. We saw earlier that the
self-imaging period zp is < 1mm in such fibers. As γ is relatively small
for silica fibers (< 0.1W−1/km), the nonlinear length exceeds 1 meter
even at input power levels as high as 10 kW. The estimated value of c0
is < 5 for ≈w 10 μ0 m. As a result, the first term in Eq. (37) dominates
in most cases of practical interest, and we can approximate the side-
band frequencies in the case of normal GVD as

= ≈ ± = …f π m πβ z mΩ /2 /(2 ) , 1, 2, .m m p2 (38)

As a specific example, using =β 202 ps2/km and =z 0.5p mm, the mth
sideband is found to be shifted by m125 THz from the pump fre-
quency. For a pump laser with its center frequency close to 300 THz, the

=m 1 sidebands will be located at frequencies near 175 THz and
425 THz. The former is in the infrared region (1700 nm), while the
latter lies in the visible region near 700 nm. Moreover, the higher-order
sidebands would fall in the ultraviolet and mid-infrared regions. Note
that all sidebands exist even when <β 02 at the pump wavelength be-
cause the integer m can take negative values in Eq. (37). In this case
frequency shift for the =m 0 sideband pair is typically below 1 THz.

The sideband frequencies predicted by Eq. (38) were seen in a 2016
experiment in which relatively long (900 ps) pulses at 1064 nm were
launched into a 6-m-long GRIN fiber to mimic a quasi-CW situation
[12]. The bottom trace in Fig. 3 shows the experimentally observed
spectrum when the peak power of input pulses was 50 kW. The top
trace shows the numerically simulated spectrum. Dashed vertical lines
mark the locations of the peaks predicted by Eq. (38). The agreement
seen in this figure indicates the usefulness of the modified NLS Eq. (31).
Its only drawback is that it cannot capture spatial changes that may
occur in response to temporal changes.

7. GRIN solitons

The question whether solitons can form inside multimode fibers
attracted attention during the 1980s [26,27]. It was realized that dif-
ferent group delays (or speeds) associated with different modes were
likely to hinder the formation of such solitons. As intermodal group
delays are relatively small for a GRIN fiber, it was natural to consider
soliton formation in such a medium. Theoretical work carried out
during the 1990s indicated that the formation of temporal solitons was
indeed feasible inside a GRIN medium [28–30]. It eventually led in
2013 to the observation of a multimode soliton [11]. In this experiment,
300-fs pulses at a wavelength near 1550 nm were launched into a 100-
m-long GRIN fiber. However, the spatial width of the beam was so small
that only three lowest-order modes of the fiber were excited. The
question remained open whether a multimode soliton involving tens or
hundreds of modes can form inside a GRIN fiber under suitable con-
ditions.

To answer this question, we look for a pulsed-beam solution that has
soliton-like features in the time domain but whose spatial shape evolves
in a periodic fashion along the fiber’s length. As we discussed in Section
5, Eq. (31) governs just such a solution. It is clear from the presence of
f z( ) in this modified NLS equation that perfect solitons cannot form
inside GRIN fibers. More precisely, this equation is not integrable by the
inverse scattering method, which rules out the formation of ideal soli-
tons. However, an equation similar to Eq. (31) was analyzed in 1990 in
the context of single-mode fiber links, employing amplifiers periodi-
cally for compensating fiber losses. It was found that a new kind of
soliton could form inside such fiber links under suitable conditions
[31]. We used the same approach in 2018 to show that GRIN fibers
support propagation of pulsed Gaussian beams that preserve their
temporal shape and behave like a soliton, even though their spatial

Fig. 3. (a) Experimental (bottom) and numerically simulated (top) spectra
when a 6-m-long GRIN fiber is pumped with 900-ps pulses with 50 kW peak
power. Dashed vertical lines and circled numbers show the peak locations
predicted by Eq. (38). (After Ref. [12]; ©2016 APS.)
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width oscillates along the fiber length [16]. We refer to such pulses as
GRIN solitons to emphasize that a parabolic index profile is essential for
their existence.

Before solving Eq. (31) approximately, it is useful to normalize it in
soliton units using the variables [18]

= = =τ T T ξ z L U A P/ , / , / ,D0 0 (39)

where T0 and P0 are the width and the peak power of input pulses and
=L T β/D 0

2
2 is the dispersion length. The normalized NLS equation

takes the form

∂
∂

+ ∂
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+ =i U
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2 ( )

0,
2

2

2 2

(40)

where we assumed <β 02 and introduced the soliton order as
=N γP L( )D0

1/2. The periodically varying function f z( ) given in Eq. (32)
can be written as

= + =f ξ πqξ C πqξ q L z( ) cos ( ) sin ( ), / ,D p
2 2 2 (41)

where zp is the self-imaging period introduced in Eq. (23). As we dis-
cussed in Section 4, the numerical value of zp is < 1mm for typical
GRIN fibers. In contrast, the dispersion length LD exceeds 1m for

>T 0.10 ps if we use = −β 202 ps2/km, a typical value near 1550 nm for
silica fibers. As a result, q is a large number ( >q 100) under typical
experimental conditions. Physically, it represents the number of times
the spatial beam width oscillates inside a GRIN fiber within one dis-
persion length.

The dispersion length provides the scale over which solitons evolve
[31]. Indeed, solitons cannot respond to beam width changes taking
place on a scale of 1mm or less when LD exceeds 1 cm. If we write the
solution of Eq. (40) as = +U U u, whereU is averaged over one spatial
period zp, the perturbations u ξ τ( , ) induced by spatial beam-width
variations remain small enough that they can be neglected (as long as

≫q 1). In other words, the average dynamics of the soliton can be
captured by solving the standard NLS equation

∂
∂

+ ∂
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+ =i U
ξ

U
τ

N U U1
2

0,
2

2
2

2

(42)

where N is the effective soliton order defined as

= = =−N N f ξ N c N C( ) / .2 2 1 2
0

2 (43)

Recall that C represents the fraction by which the beam width shrinks at
z /2p before recovering its original width at =z zp. Clearly, Eq. (42) has
a solution in the form of a fundamental soliton when we choose =N 1
or =N C . This solution exists for a wide range of pulse widths T0 as
long as the peak power is adjusted to satisfy this soliton condition.
Because of an oscillating beam width, the input peak P0 must be ad-
justed to make sure that =N 1 on average along the GRIN fiber.

Fig. 4 shows the temporal and spectral profiles of the fundamental

GRIN soliton ( =N 1) after it has propagated a distance of 100 disper-
sion lengths inside a GRIN fiber using =q 100 and =C 0.45. These re-
sults were obtained by solving Eq. (40) numerically with the initial field

=U τ U τ(0, ) sech( )0 , where U0 was chosen to ensure =N 1. For com-
parison, the corresponding profiles at the input end of the fiber are
shown as dashed lines. On the logarithmic scale used for the figure,
perturbations induced by spatial oscillations can be seen, but their
magnitude remains below the 50 dB level even after 100 dispersion
lengths. Perturbations become larger as q becomes smaller but remains
acceptable even for =q 10. As a worst-case scenario, we consider the

=q 1 case for which the dispersion length becomes equal to the self-
imaging period ( =L zd p). Fig. 5 compares the input and output profiles
(both temporal and spectral) of the fundamental GRIN soliton at a
shorter distance of L10 D. Remarkably, even in this case, the temporal
profile of thee GRIN soliton remains nearly intact after a distances of

L10 D, although its spectrum develops multiple sidebands because of
much larger perturbations introduced by periodic self-imaging of the
Gaussian beam.

8. Soliton fission and dispersive waves

Fission of higher-order solitons is a well-known process that is be-
hind the supercontinuum generation and dispersive-wave emission
occurring in single-mode fibers [18]. In this section we consider how
this process is affected by the spatial oscillations of a pulsed Gaussian
beam related to self-imaging. For this purpose, we modify Eq. (40) to
include the effects of third-order dispersion (TOD) and intrapulse
Raman scattering:
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(44)

where =δ β β T/(6 )3 3 2 0 is the normalized TOD parameter and the non-
linear response function = − +R t f δ t f h t( ) (1 ) ( ) ( )R R R includes both the
Kerr and Raman contributions with =f 0.18R . The form of the Raman
response function is given in Ref. [32]. An equation with a periodic
nonlinear term similar to Eq. (44) was first solved in Ref. [33]; it was
found to produce multiple dispersive waves at different frequencies that
agreed well with the experimental results.

We solved Eq. (44) numerically in the frequency domain using the
fourth-order Runge-Kutta scheme. Fig. 6 shows the temporal and
spectral evolution of a third-order soliton ( =N 3) inside a GRIN fiber
over one dispersion length using, and =δ 0.023 . The input pulse is taken
to be 100-fs wide ( =T 570 fs). The function f ξ( ) is calculated using

=q 100 with =C 0.5, a value for which beam width is reduced by a
factor of two during each self-imaging period. For comparison, the case
of single-mode fibers is shown in Fig. 7 using the same parameters
except that =C 1 so that =f ξ( ) 1 (no spatial oscillations) in Eq. (44). A
direct comparison shows that the soliton dynamics is much richer in the

Fig. 4. (a) Temporal and (b) spectral profiles of the fundamental GRIN soliton
( =N 1) at a distance of L100 D inside a GRIN fiber with =q 100 and =C 0.45.
The corresponding profiles at the input end are shown by dashed lines.

Fig. 5. (a) Temporal and (b) spectral profiles of the fundamental GRIN soliton
( =N 1) at a distance of L10 D inside a GRIN fiber with =q 1 and =C 0.45. The
corresponding profiles at the input end are shown by dashed lines.
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case of a GRIN fiber. In both cases, soliton fission occurs and a dis-
persive wave is produced at a blue-shifted frequency near

− =ν ν T( ) 5.50 0 . However, the fission occurs at a shorter distance in the
case of a GRIN fiber, and multiple dispersive waves are generated at
both the red and the blue sides of the original spectrum. The intrapulse
Raman scattering leads to a red-shift of the shortest soliton in both case,
but the shift is much larger in the case of a GRIN fiber.

There are two reasons for the differences seen in Figs. 6 and 7. First,
because of the periodic beam compression inside a GRIN fiber, the ef-
fective value of the soliton order N is enhanced as indicated in Eq. (44).
From the values =C 0.5 and =N 3 used for Fig. 6, N is equal to 4.24,
i.e., the evolution in Fig. 6 is closer to that occurring for a fourth-order
soliton. This is the reason why, fission occurs sooner and the Raman-
induced frequency shift is enhanced. Second, periodic self-imaging
creates a nonlinear index grating through the Kerr effect because the
refractive index is larger in the regions where the beam width is re-
duced and the intensity is enhanced locally. This grating creates the
multiple dispersive waves seen in Fig. 6, both in the temporal and
spectral domains. The frequency shift of a dispersive wave from the
central frequency ω0 of the input pulse, = −ω ω ωd 0, can be calculated
using a phase-matching condition and is given by [14,33]

+ − = +
β

ω
β

ω δβ ω πm
z

γP
C2 6

2
2

,
p

2 2 3 3
1

1

(45)

where m is an integer (positive or negative) and δβ1 accounts for any
change in the group velocity of the soliton from its initial value.

In the preceding equation, P1 is the peak power of the shortest so-
liton formed after the fission process is completed. In the case of a GRIN
fiber, this power is related to the input peak power P0 as

= −P P N(2 1/ )1 0
2. We can write Eq. (45) in a normalized form using a

new variable = ωTΩ 0:

− − = + −δ δ πmq N2 Ω Ω Ω 4 (2 1) ,3
3 2

1
2 (46)

where =δ δβ L T( / )D1 1 0 . One can estimate ≈δ 41 from the slope of the
shortest soliton’s trajectory in Fig. 6. The real roots of the cubic poly-
nomial in Eq. (46) for different values of m provide the frequencies of
the dispersive waves that agree reasonably well with those in Fig. 6. For
example, =πΩ/(2 ) 5.15 and 7.22 for =m 0 and =m 1 that match the
two vertical lines on the right side of the spectrum seen in Fig. 6. The

=m 0 dispersive wave forms only on the blue side of the original
spectrum for positive values of δ3. This wave does not require the self-
imaging-induced grating and is the only one appearing in Fig. 7. In
contrast, this nonlinear grating creates additional pairs of sidebands in
Fig. 6 (for ≠m 0) on both sides of the original spectrum.

As seen in Fig. 6, the shortest fundamental soliton, created after the
fission of a third-order soliton, undergoes a much larger Raman-induced
frequency shifts (RIFS) inside a GRIN fiber, compared to a single-mode
fiber. The results shown in Fig. 6 are for a specific GRIN fiber for which

=q 100 and =C 0.5. We briefly discuss how the RIFS enhancement is
affected when these parameters are varied. It is easy to deduce that the
RIFS does not depend on the precise value of q as long as the self-
imaging period of the GRIN fiber is much shorter than the dispersion
length, resulting in >q 10. This is not the case for the C parameter. In
fact, we expect the RIFS to depend considerably on this parameter
because the Gaussian beam is compressed more and more during each
self-imaging period as C becomes smaller. The results shown in Fig. 8
confirm this expectation [34]. This figure shows the RIFS as a function
of C for =N 2 and 3, based on the numerical data obtained by isolating
the spectrum of the shortest soliton. As seen there, the RIFS increases
rapidly as C decreases and is always larger for a GRIN fiber compared to
its value at =C 1 for which the beam width does not oscillate.

The enhancement seen in Fig. 8 is a consequence of the spatio-
temporal coupling that occurs invariably in the case of GRIN fibers.
Periodic spatial contraction of the pulsed Gaussian beam increases the
peak power of the soliton in the middle of each self-imaging cycle,
thereby enhancing the nonlinear effects in a periodic fashion. Even
though the soliton cannot respond to variations occurring at a length
scale of 1mm or less, the effective value of the soliton order increases,
resulting in shorter fundamental solitons after its fission. As the Raman
gain is larger for a shorter soliton because of its wider spectrum, the
rate of RIFS is also larger for a shorter soliton. This is the reason a larger
RIFS occurs in the case of a GRIN fiber for the same input value of N.

9. Concluding remarks

In this review I have discussed theory behind the periodic self-

Fig. 6. Temporal and spectral evolution of a third-order soliton ( =N 3) inside a
GRIN fiber over one dispersion length using = =δ q0.02, 1003 and =C 0.5.

Fig. 7. Same as Fig. 6 except that the evolution occurs inside a step-index fiber
with a constant spatial width such that =f ξ( ) 1 (no self-imaging).

Fig. 8. RIFS plotted as a function of C for a GRIN fiber of length L3 D when the
input pulses form second ( =N 2) and third-order ( =N 3) solitons.
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imaging of optical beams occurring inside a GRIN fiber, designed such
that the refractive index inside the fiber’s core decreases in a parabolic
fashion from its peak value at the core’s center. The self-imaging phe-
nomenon was studied extensively during the decade of the 1970s and
was exploited to commercialize the so-called GRIN lens. Even though
an input beam incident on a GRIN fiber may excite hundreds of modes,
the optical field at any point inside the fiber can be written, without any
reference to the fiber modes, as a two-dimensional integral over the
input field using a propagation kernel that is similar to that found in
diffraction theory. However, this kernel has a specific property that
reproduces the input field precisely in a periodic fashion along the
length of a GRIN fiber (self-imaging). The physical origin of self-ima-
ging lies in a ladder-like structure of the modal propagation constants
with equal spacing between any two neighboring modes of the fiber.

It has been found in recent years that the periodic self-imaging also
affects the nonlinear propagation of optical pulses inside multimode
GRIN fibers. I applied the general theory of self-imaging to the propa-
gation of a CW Gaussian beam and discussed how self-imaging is
modified by self-focusing produced by the Kerr nonlinearity. The case
of a pulsed Gaussian beam was studied by following the approach of
Ref. [14]. It resulted in a modified NLS equation that includes the ef-
fects of periodic spatial beam-width oscillations through a periodically
varying effective beam area. I used this equation to discuss the phe-
nomenon of modulation instability inside GRIN fibers. In contrast with
the case of single-mode fibers, a large number of spectral sideband pairs
can form inside GRIN fibers through a new kind of spatio-temporal
instability because o a nonlinear index grating created by the spatial
self-imaging phenomenon.

The last two sections show that self-imaging is also behind the
formation of GRIN solitons. Self-imaging also produces novel temporal
and spectral features when short optical pulses intense enough to form a
high-order soliton are launched inside a GRIN fiber. In particular, it
leads to considerable enhancement of the RIFS, a feature that is likely to
be useful for tuning the wavelength of mode-locked lasers. The polar-
ization effects have been ignored in this review. It is known that self-
imaging can lead to considerable changes in the degree of polarization
of partially coherent light inside a GRIN fiber even when the nonlinear
effects are negligible [35]. In the presence of the Kerr nonlinearity, the
state of polarization of an initially coherent beam is expected to evolve
inside a GRIN fiber both spatially and temporally, as also observed in a
2018 experiment [36].
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