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A B S T R A C T

We develop averaged equations to model nonlinear propagation in multimode fibers that are valid in all regimes
of random, linear, intermodal coupling. The propagation equations apply to the three existing regimes of linear
coupling – the two previously studied all-mode (strong) and mode-group (weak) couplings and the new inter-
mediate coupling regime. The equations are therefore general and can describe nonlinear propagation for all
types of intermodal linear coupling that can exist between modes in a fiber supporting multiple spatial modes.
Numerical simulations are performed to validate the new averaged propagation equations in the nonlinear
regime.

1. Introduction

Space-division multiplexing (SDM) over multimode or multicore
fibers is considered a promising solution to enhance the capacity limit
(per fiber) of the next generation of telecommunication systems. An
important challenge in such systems is to understand how linear in-
termodal coupling, which may arise from a variety of sources like mi-
crobending, density fluctuations, and random variations in the core
shape and size, affects the nonlinear signal transmission [1,2].
Different SDM fibers or different modes within a single SDM fiber

can exhibit different levels of linear coupling. Modeling nonlinear
transmission including such random linear mode coupling (RLMC) ef-
fects usually is time consuming because it requires a large number of
realizations of random coupling. In practice, it is important to find
averaged equations that can model the effects of RLMC in an efficient
manner. Such averaging can reduce the computational times by orders
of magnitude. The averaged equations are referred to as generalized
Manakov equations, after a similar treatment used to average random
birefringence fluctuations in single-mode fibers [3,4].
Generalized Manakov equations have been derived for SDM fibers in

two limiting cases when (i) all modes are strongly coupled or (ii) when
groups of nearly-degenerate modes couple among each other but there
is negligible inter-group coupling [5–8]. But certain multimode fibers
(MMF) may exhibit some degree of inter-group coupling between these
extremes. Currently, there is no theoretical framework that describes
the average propagation behavior in such an intermediate coupling

regime (ICR). Moreover, there are no definitive criteria to determine
when the intermediate coupling region exists, or where the transition
occurs between the strong and weak coupling regimes.
In this Letter we consider all regimes of linear coupling and provide

a way to derive the averaged nonlinear equations by using a transfer-
matrix approach to modeling RLMC. The coefficients of the averaged
nonlinear terms in the generalized Manakov equations are found to
depend on the fourth-order moments of the transfer matrix elements.
We verify our approach by deriving the generalized Manakov equations
in the all-mode (strong) coupling regime (SCR) and mode-group (weak)
coupling regime (MGCR). The treatment used here also lets us identify
the boundary between the different coupling regimes and the extent of
the ICR, as a function of a dimensionless coupling strength parameter.
We can use this treatment to study the impact of RLMC on nonlinear
transmission systems in SDM fibers and we use a particular example of a
few-mode fiber to show this. Finally, we perform full numerical simu-
lations of an SDM system to study nonlinear transmission in different
coupling regimes.

2. Numerical model

We consider a MMF supporting M spatial modes and =N M2 total
modes after accounting for both polarizations. We include the effects of
RLMC through random perturbations of the refractive index of the fiber
[ = +x y z n x y x y z( , , ) ( , ) ( , , )2 ] in the nonlinear Helmholtz equa-
tion [9]. The procedure for deriving the N coupled nonlinear
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Schrödinger (NLS) equations is well known [10] (and references
therein). The entire set of coupled NLS equations can be written in a
matrix form as [7]
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where A is an N-element column vector containing the field envelopes
of each mode and B B B, ,0 1 2 are ×N N diagonal matrices containing,
respectively, the propagation constant ( 0), inverse group velocity ( 1)
and dispersion parameter ( 2) of various modes along their diagonal.
The matrices =B B0 0 01 and = vB B 1/ g1 1 1 use 01 and group
velocity v1/ g1 of the fundamental mode as reference values, and
=n cA( / )2 0

eff is the nonlinear parameter of this mode. The effects of
linear and nonlinear couplings are included through the matrices
Q G, (1), and G(2), whose elements are defined as
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Here F x y( , )k is the transverse field distribution of the kth mode of
the fiber. The orthogonality condition for spatial modes is given by

=F x y F x y dx dy n
n

, , ,p m m pm
eff
1

eff (3)

where n m
eff is the effective propagation constant of the mth mode.

To study the impact of linear coupling on nonlinear transmission,
we introduce the concept of a random transfer matrix zT( ), which
tracks the random linear coupling effects and is given by

= + =
z

i iT B T QT T I; (0) ,0 N (4)

where IN is a ×N N identity matrix. We make a transformation =A TĀ
to obtain the following matrix NLS equation
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where the nonlinear term is given by
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A discretized model used to calculate the transfer matrix is shown in
Fig. 1. We divide the fiber into K segments of length ld, which corre-
sponds to the decorrelation length associated with the fluctuations of

x y z( , , ). We assume to be normally distributed with zero mean
and a pre-specified standard deviation . To account for the fast
random birefringence fluctuations, after every fiber section we multiply
the transfer matrix by a block-diagonal matrix Rk comprising of M 2×2
random unitary sub-matrices along the diagonal, the total transfer
matrix of a fiber of length =L Kld is then given by

= +
=

i lT R B Qexp[ ( ) ].
k

K

k k d
1

0
(7)

3. Averaged nonlinear equations

The set of coupled NLS equations in Eq. (5) is stochastic and any

meaningful result requires solving the entire set numerically for different
realizations of the randommatrix T. However, by averaging each term in
Eq. (5) with respect to random realizations of T, we can obtain a set of
averaged equations for Ā. This approach is similar to that used for single-
mode fibers to include the impact of birefringence fluctuations in an
average manner [4]. For the averaging of the nonlinear terms, consider

kN for the kth mode of the fiber. While this quantity contains a large
number of terms ( N 7 for a N-mode fiber), some of them contribute
little on average. Using the orthogonality relations between modes and
the fact that intermodal four-wave mixing (IM-FWM)-like terms are not
phase-matched [11] for strongly-coupled modes, we obtain
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where tij are the transfer matrix elements and dij is equal to 1 if the modes
i and j belong to the same mode group but 0 otherwise. The spatial
overlap factors that govern nonlinear coupling are given by

=f A F F F F dx dy.plmn p l m n
eff

(9)

We can use Eq. (8) to write the final averaged NLS equation for each fiber
mode. Let Sm be the group of modes that couple strongly with the mth

mode (with the convention m Sm) and let nm denote the number of
modes in Sm. Using these notations, we can write the average propaga-
tion equation for the kth mode in the following form
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where B k1 and B k2 are the elements of diagonal matrices =B T B T1
H

1
and =B T B T2

H
2 . Physically, we would expect the modes that are

strongly coupled to travel at the same group velocity on average. This
analytic prediction has been verified numerically in the MGCR and SCR.
However, we should note that Eq. (10) misses the randomness of group
delay and such averaging is not necessarily the best indicator of DGD
[12].
Following the transformation =A TĀ, all the random fluctuations

are explicitly included through T and Ā is deterministic. The nonlinear
coefficients in Eq. (10) are given by
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Eqs. (10) and (11) can be used to model the average behavior of an SDM

Fig. 1. Model used for calculating the random linear transfer matrix T. The
fiber is divided into K sections of length ld, and each section is followed by a
random birefringence plate.
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system in any regime of RLMC, including the ICR. We next discuss how
to evaluate the averaged nonlinear coefficients.
Eq. (11) shows that the coefficients of the averaged nonlinear term

depend on the average values of the fourth-order moments of the ele-
ments of the transfer matrix T. More specifically, we need the following
four types of fourth-order moments:

=m xX( ) ,ij ij
(1) 4 (12a)

=m x x k lX( ) ( ),ikl ik il
(2) 2 2 (12b)

=m x x i j k lX( ) ( and ),ijkl ik jl
(3) 2 2 (12c)

=m x x x x i j k lX( ) ( and ),ijkl ik jl il jk
(4)

(12d)

where X is any matrix and xij are its elements. Although our analysis is
general and valid for any SDM fiber, to show how to calculate these
average nonlinear coefficients, we consider here a six-mode step-index
fiber with a core diameter of µ11 m and nclad = 1.444 such that =V 3.8
at = µ1.55 m. Such a fiber supports three spatial modes (denoted by
LP01, LP a11 and LP b11 in the basis of linearly polarized (LP) modes), re-
sulting in =N 6.
For our example fiber, T is a ×6 6 random matrix. However, LP a11

and LP b11 modes can be strongly coupled because of their degenerate
nature. Also, orthogonally polarized components of any spatial mode
are assumed to be strongly coupled owing to birefringence fluctuations.
It is thus useful to express T in the form

=T
T T

T T
1 12

12
H

2 (13)

where T1 is a ×2 2 matrix for the LP01 mode group g T,1 2 is a ×4 4
matrix for the LP11 mode group g2, and T12 is a ×2 4 matrix representing
coupling between these two mode groups. This coupling is induced by
random index perturbations and its magnitude may vary considerably
for different SDM fibers.
We calculate the average values for the individual blocks of T nu-

merically. For this purpose, we introduce a dimensionless coupling
parameter

= q / ,g g g g1, 2 0, 1, 2 (14)

where g g0, 1, 2 is the difference in propagation constants between the
LP01 and LP11 mode groups and qg g1, 2 governs the linear coupling be-
tween them. Physically, represents the normalized coupling strength
between the two mode groups. As an example, we choose a fiber with L
= 1 km and ld = 50m, and calculate the values of the fourth-order
moments as a function of this ratio. Fig. 2 shows such a plot for T1. It
should be noted that the moments shown in that figure are averaged
over all possible elements (i j, ) of T1 in Eq. (12). A striking feature in this
figure is that all moments change rapidly in the range < <0.01 0.1,
but remain virtually constant outside this range. Since small and large
values of correspond to weak and strong coupling between mode-
groups, respectively, it is possible to predict the limiting values of m p( )

analytically in these two regimes. For this purpose, we use the concept
of a Haar matrix, which is a unitary random matrix whose elements are
uniformly distributed over the entire range. If the coupling among
mode groups is totally random in the sense that all unitary transfor-
mations are equally probable, then we expect the corresponding
transfer matrix block to be a Haar matrix. Interestingly, the fourth-
order moments of a Haar matrix depend only on the dimension n of the
matrix and are given by [13]:
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where a bar is used to indicate the Haar limit. These expressions agree

with the numerical results in Fig. 2 in the two extreme limits of weak
and strong intergroup coupling. In the case of weak coupling, =n 2 as
T1 is an isolated 2×2 matrix. In contrast, in the case of strong intergroup
coupling, =n 6 since all modes are equally coupled. These analytical
predictions are shown by the solid and dashed horizontal lines in Fig. 2.
Fig. 2 provides the averaged values of the moments of matrix ele-

ments for the LP01 mode group. A similar figure can be generated for the
LP11 mode group (moments of T2), whose values in the weak and strong
coupling limits can be predicted analytically from Eqs. (15) and (16).
The moments of the off-diagonal matrix blocks T12 and T21, which will
have significant contributions in the ICR, can also be computed nu-
merically using Eqs. (12). Once values of all these averaged fourth-
order moments are known, they can be used in the propagation Eqs.
(10) and (11) to model the average behavior of an SDM system in any
regime of linear coupling. It should also be noted here that the coupling
strength parameter and the associated averaged moments are not an
indicator of the amount of energy coupled between mode-groups [14
Eq. (8)]. Indeed, we would expect that even in the MGCR, there would
be exchange of power between mode-groups after propagating very
long distances within the fiber.
To validate further our general expression in Eq. (11), we apply it to

the two extreme coupling regimes that have been studied earlier. In the
MGCR, only some modes (with a larger value of ) are strongly coupled.
In this limit,

=
+

C
n n d

f(MGCR) 2 1 ,klmn
k l lk

mmnn (17)

where, as before, dmk is 1 when m and k belong to a coupled mode-
group but 0 otherwise. This is a general expression which allows for
strong coupling between degenerate modes. In the SCR, all modes are
assumed to be equally coupled, which means that Sk and Sm contain all
N modes ( = =n n Nk m ). Under this condition, we get

=
+

C
N N

f(SCR) 2
( 1)

.klmn mmnn (18)

Both of these cases have also been studied in the past [5–7], and our
formulas agree with earlier results. As a final check, in the limit =N 2
and using the known values of = =f f 11111 2222 and = =f f 1/31122 2211 ,
our results reduce to the well known standard Manakov equation for a
single-mode fiber [4]. In general, the nonlinear terms are smaller when
all modes of a multimode fiber are strongly coupled because of the
presence of the factor +N(N 1) in the denominator of Eq. (18). Indeed,
linear coupling has been shown to reduce nonlinear penalties in mul-
ticore fibers with coupled cores [15,16].
In the ICR, the nonlinear terms in Eq. (11) depend on the coupling

parameter , as shown in the Fig. 2. In this case, the transfer matrix
does not reduce to a Haar matrix as its elements are not uniformly
distributed. However, we can compute the nonlinear coefficients in Eq.
(11) numerically and use them in Eq. (10) to model the system per-
formance. We have observed that the transition region of intermediate
coupling seen in Fig. 2 becomes slightly narrower as the system length
increases. Thus, our results allows us to predict where the transition to
the ICR would occur for any SDM fiber.

4. Nonlinear transmission simulation

To show how useful the results of this paper are for modeling the
realistic SDM systems, we perform full numerical simulation for a
specific SDM system and predict the optical signal-to-noise ratio
(OSNR) in different coupling regions. Using the same six-mode fiber
(core diameter = 1.1 µm, nclad = 1.444 and V =3.8 at 1.55 µm), we
transmit six QPSK-format data streams, each at 28.5 Gbaud (bit rate
57 Gb/s). The 1000-km-long transmission line consists of 10 spans of
100-km fiber, each followed by a fiber amplifier that compensates for
all span losses. No dispersion management is employed along the fiber
link, but all linear impairments are assumed to be perfectly
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compensated at the digital receiver.
Fig. 3 shows the OSNR penalties (compared to back-to-back per-

formance) at a bit-error rate (BER) of 10 3 as a function of the standard

deviation, , of refractive-index fluctuations. The OSNR has been cal-
culated using a noise bandwidth of 0.1 nm (12.5 GHz) and the BER
value chosen here is commonly used as the forward-error correction
threshold. The plot is obtained by solving Eq. (5) with the split-step
method. The dashed horizontal lines correspond to the values predicted
by using the averaged nonlinear terms in the MGCR and SCR. The most
important feature of this figure is the sharp peak observed in the ICR,
indicating that the OSNR penalty degrades considerably in the ICR. We
have verified that in the absence of nonlinearity, no degradation is
observed. Therefore, the increased penalty in the ICR in Fig. 3 can be
attributed to nonlinear effects. Moreover, as seen in Fig. 3, it is pre-
ferable to operate in the SCRthan in the MGCR. The transfer matrix
approach used in this paper can predict the transition region between
the two coupling regimes and can be useful in designing SDM fibers for
optimal performance.

5. Conclusions

In this work we have studied the impact of random linear mode
coupling in fibers on the performance of lightwave systems designed for
space-division multiplexing. Our physical model of linear mode cou-
pling is based on random perturbations of the refractive index in the
transverse plane that also change along the fiber’s length with a rela-
tively short decorrelation length. We show that the resulting coupling
between any two modes depends on a dimensionless parameter ,
which is a ratio of the coupling coefficient and the difference in their

Fig. 2. Averaged fourth-order moments of T1 in Eq. (13) as a function of when =L 1 km and =l 50d m. Haar-limit predictions are shown by solid and dashed
horizontal lines for =n 2 and 6, respectively. Magnitude of transfer matrix elements [Eq. (13)] in the three coupling regions, computed numerically using Eq. (7), is
shown on top using a gray-shaded logarithmic scale.

Fig. 3. OSNR penalties for a 6 channel SDM system, transmitted over 1000 km
28.5-Gbaud channels in the QPSK format, as a function of . The dashed hor-
izontal lines show the penalties obtained by using the averaged equations.
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propagation constants . We use this ratio to identify the two extreme
regimes, referred to as the mode-group coupling and strong-coupling
regimes.
We develop a vectorial nonlinear propagation equation that de-

scribes evolution of all modes simultaneously. It includes linear mode
coupling through a random coupling matrix as well as variations in the
modal propagation constants via birefringence fluctuations through a
block diagonal matrix. Since the use of such a stochastic equation is
time consuming in practice, we develop an averaging procedure similar
to that used to study the random birefringence effects in single-mode
fibers. The averaging of the nonlinear effects requires knowledge of the
fourth-order moments of the elements of a random transfer matrix. We
discuss the dependence of the magnitude of these moments on for a
specific three-mode fiber. We also find simple analytical expressions for
these fourth-order moments in the mode-group and strong coupling
limits using Haar matrices. In these two limits, we were able to obtain
analytic expressions for various nonlinear terms.
The averaging method discussed here can be applied to all SDM

fibers with any number of spatial mode-groups. For fibers with more
than two mode groups, each mode-group pair can have different
strengths of RLMC (different ). One needs to calculate the nonlinear
coefficients in Eq. (11) separately for each mode-group pair and then
use those coefficients in Eq. (10) to model the average nonlinear
transmission. For the example shown here, the agreement of the full
numerical simulations with the predicted averaged values indicates that
this approach can be used for reducing the computation time for SDM
systems.

Acknowledgements

This work was supported by National Science Foundation (NSF)
(ECCS-1505636).

References

[1] R.-J. Essiambre, R.W. Tkach, Capacity trends and limits of optical communication
networks, Proc. IEEE 100 (2012) 1035–1055.

[2] L. Pamieri, Coupling mechanism in multimode fiber, Proc. SPIE 90090G (2014).
[3] S.V. Manakov, On the theory of two-dimensional stationary self-focusing of elec-

tromagnetic waves, Zh. Eksp. Teor. Fiz. 65 (1973) 505–516.
[4] D. Marcuse, C.R. Menyuk, P.K.A. Wai, Application of the Manakov-PMD equation to

studies of signal propagation in optical fibers with randomly varying birefringence,
J. Light. Technol. 15 (1997) 1735–1746.

[5] A. Mecozzi, C. Antonelli, M. Shtaif, Nonlinear propagation in multi-mode fiber in
the strong coupling regime, Opt. Express 20 (2012) 11673–11678.

[6] A. Mecozzi, C. Antonelli, M. Shtaif, Coupled Manakov equations in multimode fi-
bers with strongly coupled groups of modes, Opt. Express 20 (2012) 23436–23441.

[7] S. Mumtaz, R.-J. Essiambre, G.P. Agrawal, Nonlinear propagation in multimode and
multicore fibers: generalization of the Manakov equations, J. Light. Technol. 24
(2012) 1574–1576.

[8] C. Antonelli, M. Shtaif, A. Mecozzi, Modeling of nonlinear propagation in space-
division multiplexed fiber-optic transmission, J. Light. Technol. 34 (2016) 36–54.

[9] G.P. Agrawal, Nonlinear Fiber Optics, 5th ed., Academic Press, 2012.
[10] F. Poletti, P. Horak, Description of ultrashort pulse propagation in multimode op-

tical fibers, J. Opt. Soc. Am. B 25 (2008) 1645–1654.
[11] Y. Xiao, R.-J. Essiambre, M. Desgroseilliers, A.M. Tulino, R. Ryf, S. Mumtaz,

G.P. Agrawal, Theory of intermodal four-wave mixing with random linear mode
coupling in few-mode fibers, Opt. Express 22 (2014) 32039–32059.

[12] K.P. Ho, M. Kahn, Statistics of group delays in multimode fiber with strong mode
coupling, J. Light. Technol. 29 (2011) 3119–3128.

[13] A.M. Tulino, S. Verdú, Random matrix theory and wireless communications,
Commun. Inf. Theory 1 (2004) 1–182.

[14] C. Antonelli, A. Mecozzi, M. Shtaif, P.J. Winzer, Random coupling between groups
of degenerate fiber modes in mode multiplexed transmission, Opt. Express 21
(2013) 9484–9490.

[15] S. Mumtaz, R.-J. Essiambre, G.P. Agrawal, Reduction of nonlinear penalties due to
linear coupling in multicore optical fibers, IEEE Photon. Technol. Lett. 24 (2012)
1574–1576.

[16] S. Mumtaz, G.P. Agrawal, R.-J. Essiambre, Spatially multiplexed transmission in
multicore fibers: role of core coupling on system performance, FW1D.2, Front. Opt.
(2012).

S. Buch et al. Optical Fiber Technology 48 (2019) 123–127

127

http://refhub.elsevier.com/S1068-5200(18)30566-2/h0005
http://refhub.elsevier.com/S1068-5200(18)30566-2/h0005
http://refhub.elsevier.com/S1068-5200(18)30566-2/h0010
http://refhub.elsevier.com/S1068-5200(18)30566-2/h0015
http://refhub.elsevier.com/S1068-5200(18)30566-2/h0015
http://refhub.elsevier.com/S1068-5200(18)30566-2/h0020
http://refhub.elsevier.com/S1068-5200(18)30566-2/h0020
http://refhub.elsevier.com/S1068-5200(18)30566-2/h0020
http://refhub.elsevier.com/S1068-5200(18)30566-2/h0025
http://refhub.elsevier.com/S1068-5200(18)30566-2/h0025
http://refhub.elsevier.com/S1068-5200(18)30566-2/h0030
http://refhub.elsevier.com/S1068-5200(18)30566-2/h0030
http://refhub.elsevier.com/S1068-5200(18)30566-2/h0035
http://refhub.elsevier.com/S1068-5200(18)30566-2/h0035
http://refhub.elsevier.com/S1068-5200(18)30566-2/h0035
http://refhub.elsevier.com/S1068-5200(18)30566-2/h0040
http://refhub.elsevier.com/S1068-5200(18)30566-2/h0040
http://refhub.elsevier.com/S1068-5200(18)30566-2/h0045
http://refhub.elsevier.com/S1068-5200(18)30566-2/h0050
http://refhub.elsevier.com/S1068-5200(18)30566-2/h0050
http://refhub.elsevier.com/S1068-5200(18)30566-2/h0055
http://refhub.elsevier.com/S1068-5200(18)30566-2/h0055
http://refhub.elsevier.com/S1068-5200(18)30566-2/h0055
http://refhub.elsevier.com/S1068-5200(18)30566-2/h0060
http://refhub.elsevier.com/S1068-5200(18)30566-2/h0060
http://refhub.elsevier.com/S1068-5200(18)30566-2/h0065
http://refhub.elsevier.com/S1068-5200(18)30566-2/h0065
http://refhub.elsevier.com/S1068-5200(18)30566-2/h0070
http://refhub.elsevier.com/S1068-5200(18)30566-2/h0070
http://refhub.elsevier.com/S1068-5200(18)30566-2/h0070
http://refhub.elsevier.com/S1068-5200(18)30566-2/h0075
http://refhub.elsevier.com/S1068-5200(18)30566-2/h0075
http://refhub.elsevier.com/S1068-5200(18)30566-2/h0075
http://refhub.elsevier.com/S1068-5200(18)30566-2/h0080
http://refhub.elsevier.com/S1068-5200(18)30566-2/h0080
http://refhub.elsevier.com/S1068-5200(18)30566-2/h0080

	Averaged nonlinear equations for multimode fibers valid in all regimes of random linear coupling
	Introduction
	Numerical model
	Averaged nonlinear equations
	Nonlinear transmission simulation
	Conclusions
	Acknowledgements
	References




