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We develop a general formalism for investigating the evolution of arbitrarily polarized short pulses inside a bi-
refringent optical fiber. We use it to numerically study the formation of a dispersive wave inside fibers exhibiting
medium to high birefringence when a short optical pulse is launched such that it propagates as a vector soliton.
We also investigate the polarization evolution of both the vector soliton and dispersive wave generated by it. The
results show that, while the polarization of the dispersive wave is controlled by linear birefringence of the fiber,
polarization of the vector soliton is affected considerably by the nonlinear birefringence. The coupled nonlinear
equations that we solve include both the Raman and Kerr nonlinearities. Moreover, they include the cross-
polarization Raman terms that couple the orthogonally polarized components of the vector soliton.
Polarization of the vector soliton is found to be affected considerably by the Raman nonlinearity in the case
of medium birefringence. © 2018 Optical Society of America

OCIS codes: (190.4370) Nonlinear optics, fibers; (190.5530) Pulse propagation and temporal solitons.
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1. INTRODUCTION

It is well known that short optical pulses, propagating as tem-
poral solitons inside an optical fiber, shed some energy in the
form of a dispersive wave (DW) when perturbed by third-order
dispersion (TOD) [1–5]. Indeed, such DWs and their trapping
by solitons play a crucial role when optical fibers are used for
supercontinuum generation [3–5]. DWs are also produced in
birefringent optical fibers where the vector nature of optical
solitons becomes important. However, most studies are based
on the use of a scalar nonlinear Schrödinger (NLS) equation
with only few exceptions [6–10]. Here, we use the term vector
soliton in its broad sense, recalling that such solitons are in fact
solitary waves.

Several fundamental questions emerge when we consider the
perturbation of vector solitons inside birefringent optical fibers.
A vector soliton consists of two orthogonally polarized compo-
nents that move at a common speed by shifting their spectra to
compensate for polarization-mode dispersion of the fiber.
When such an entity is perturbed, it is not clear whether both
components generate their own DWs at two distinct frequen-
cies or if a single DW is created at a specific frequency.
Furthermore, the initial state of polarization (SOP) of the
DW is not obvious. It may coincide with the soliton’s SOP,
or it may lie far from that if each component of the vector
soliton sheds its own DW. One may also ask how SOPs
of the vector soliton and DWs evolve inside the optical fiber.

Depending on whether the DW is trapped or not by the
vector soliton, its polarization evolution may exhibit different
features.

In this study, we answer these questions by numerically in-
vestigating the generation of DWs inside birefringent optical
fibers when an intense pulse is launched such that it propagates
as a vector soliton. The coupled NLS equations that we solve
include all relevant effects, including the cross-polarization
(intermodal) Raman scattering. In Section 2, we provide the
coupled NLS equations and discuss other mathematical details.
In Section 3, we solve them numerically but ignore the Raman
effects to focus on the Kerr-induced polarization dynamics of
vector solitons and DWs. We discuss the general case in
Section 4 by including the Raman effects and compare the re-
sults with those in Sections 3 to isolate the Raman-induced
features. Section 5 is devoted to polarization instability, and
the results are summarized in Section 6.

2. NUMERICAL MODEL

We consider a single-spatial-mode fiber with a stressed core
such that it supports two orthogonally polarized modes with
the same spatial profile but different propagations constants,
denoted by βx�ω� and βy�ω�. An optical pulse is launched into
this fiber with an initial SOP such that both polarization com-
ponents are excited simultaneously and form a vector soliton.
By expanding βx�ω� and βy�ω� in a Taylor series around the
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pulse’s central frequency ω0 and following a standard procedure
[5], we write the total electric field as

E�r, t� � Re�x̂Axei�β0x−iω0t� � ŷAyei�β0y−iω0t�� (1)

and obtain the following two coupled NLS equations for the
slowly varying envelope amplitudes Aj�z, t��j � x, y�:

∂Aj

∂z
� β1j

∂Aj

∂t
� iβ2

2

∂2Aj

∂t2
−
β3
6

∂3Aj

∂t3
� Qj, (2)

where we retained the dispersive terms up to the third order,
included different group delays of the two polarization modes
through β1j, and assumed β2 and β3 to be the same for them. It
is important to include the TOD through β3 as it controls the
DW generation. The difference of β1x − β1y represents the
differential group delay (DGD) of a birefringent fiber.

The nonlinear terms Qx and Qy include both the Kerr and
Raman contributions. Before writing them, we convert these
equations into a dimensionless form by using the so-called
soliton units [5]:

τ � �t − β̄1z�∕T 0, ξ � z∕LD,

Ax � u
ffiffiffiffiffi
P0

p
e−iΔβz∕2, Ay � v

ffiffiffiffiffi
P0

p
eiΔβz∕2, (3)

where T 0 and P0 are the width and the peak power of input
pulses, β̄1 � �β1x � β1y�∕2 is the average group delay, LD �
T 2

0∕jβ2j is the dispersion length of the fiber, and Δβ � β0x −
β0y � �ω0∕c�Δn is related to fiber’s birefringence. The result-
ing coupled NLS equations take the form
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where we have introduced three dimensionless parameters
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and the two nonlinear terms are given by [7–9]
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where ⊗ represents the convolution operation, and N �ffiffiffiffiffiffiffiffiffiffiffiffiffi
γP0LD

p
is the soliton number. The last Raman term in

Eqs. (7) and (8) involving h3 represents the contribution of
cross-polarization (intermodal) Raman scattering.

The Raman model used for vector solitons is different from
the Blow–Wood model commonly used in a scalar theory [11].
The main difference is that we include both the isotropic and
anisotropic parts of the nuclear response through three
time-dependent functions defined as [12,13]

h1�t� � �f a � f c�ha�t� � f bhb�t�, h2�t� � f aha�t�,
(9)

h3�t� � �f cha�t� � f bhb�t��∕2, (10)

where ha�t� and hb�t� represent the isotropic and anisotropic
parts of the nuclear response and are given by [11–13]

ha�t� �
τ21 � τ22
τ1τ

2
2

exp

�
−
t
τ2

�
sin

�
t
τ1

�
, (11)

hb�t� � ��2τb − t�∕τ2b � exp�−t∕τb�; (12)

with f a � 0.75, f b � 0.21, and f c � 0.04. The three time
scales are τ1 � 12.2 fs, τ2 � 32 fs, and τb � 96 fs for silica
fibers. The parameter f R provides the fractional contribution
of the delayed Raman response. Its value f R � 0.245 for silica
is different from that used in the Blow–Wood model and was
found in Ref. [13] by fitting the Raman gain curve.

Before solving Eqs. (4) and (5) numerically, we discuss their
soliton-like solutions briefly. Since these equations are not
integrable by the inverse scattering method, steady-state vector
solitons do not exist. Even when one neglects all higher-order
terms (related to self-steepening, TOD, and the Raman non-
linearity) and retains only the Kerr nonlinearity, the soliton-like
solutions of Eqs. (4) and (5) have not been found. A specific
soliton solution has been reported in the special case of a pulse
polarized linearly at 45° from the slow axis and propagating
inside a high-birefringence fiber [14], but only after neglecting
the four-wave mixing (FWM) term in Eqs. (7) and (8). For this
reason, we focus on the situation first considered by Menyuk
[15], in which an optical pulse is polarized linearly at a finite
angle from the slow axis and is launched into a birefringent
fiber with sufficient energy that the soliton order N is close
to 1. It was found that the x and y components of such a pulse
shift their spectra such that they trap each other and move at a
common speed. Our objective is to study how this trapping is
affected by the higher-order terms in Eqs. (4) and (5) related to
the TOD and Raman nonlinearity.

More specifically, we solve the coupled NLS Eqs. (4) and (5)
numerically with an input in the form

u�0, τ� � cos θsech�τ�, v�0, τ� � sin θsech�τ�eiψ , (13)

where the angles θ and ψ characterize the SOP of the vector
soliton. We choose the initial SOP of the input pulse to be
linear �ψ � 0� and take θ � 45° so that the x and y compo-
nents of the soliton are equally intense. Parameter N is related
to the peak power of input pulses; a fundamental soliton forms
for N in the range of 0.5 to 1.5. We decided to use N � 1.4
because the amplitude of the DWs is enhanced for this value
without complications arising from soliton fission [5]. For
numerical simulations, we use a relatively wide temporal
window �−200 < τ < 200� with 214 points in the time
domain. However, the coupled NLS equations are solved in
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the frequency domain using the Runge–Kutta method with an
adjustable step size along the fiber length [16].

The birefringence parameters b and δ are fiber specific and
can vary over a wide range. We decided to focus on two cases of
medium and high birefringence. In the former case, we take
b � 0.1 and δ � 0.1, but increase these values to b � 10
and δ � 1 in the high-birefringence case. It is often argued that
b can be set to zero in the case of high birefringence because of
an averaging effect produced by rapid changes in the relative
phase of the two polarization components [5]. We decided
not to do so to reveal the residual effects when b is not too
large. The only other parameter we need is δ3, taken to be
δ3 � 0.1. The numerical values of all parameters used in
the our numerical work are appropriate for silica fibers when
∼100 fs pulses are launched at a wavelength near 1550 nm.

To characterize the SOP evolution, we trace the trajectory of
the Stokes vector on the Poincaré sphere. However, the SOP
can be nonuniform in time at a given distance while also vary-
ing along the fiber length. To focus on length variations, the
SOP at the intensity peak is used for both the DW and the
vector soliton after isolating them through spectral filtering.
The magnitude S0 and the components of the Stokes vector
are calculated using the definitions [5]

S0 � jAxj2 � jAyj2, S1 � jAxj2 − jAyj2, (14)

S2 � 2Re�AxA�
y �, S3 � −2 Im�AxA�

y �: (15)

We map the sphere onto a two-dimensional plane using the
Hammer projection. We first find the longitude ϕ and latitude
χ using tan�2ϕ� � S2∕S1 and sin�2χ� � S3∕S0 and then cal-
culate the coordinates for the Hammer projection using [17]

xh �
2

ffiffiffi
2

p
cos�2χ� sin�ϕ�ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1� cos�2χ� cos�ϕ�
p , yh �

ffiffiffi
2

p
sin�2χ�ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1� cos�2χ� cos�ϕ�
p :

(16)

We use this projection to visualize the entire Poincaré sphere in
a single plot, thus avoiding two separate plots displaying the
front and back of the Poincaré sphere.

3. EVOLUTION WITHOUT RAMAN
NONLINEARITY

In this section, we simplify the problem by setting f R � 0 so
that the Raman contribution to the nonlinear response is not
included. This case allows us to gain physical insight into the
soliton dynamics in the presence of the Kerr nonlinearity alone.
This helps us in interpreting the results of the next section
where the Raman contribution is included.

A. Fibers with Medium Birefringence

The top row of Fig. 1 shows the temporal evolution of the vec-
tor soliton inside the fiber by plotting ju�ξ, τ�j2 and jv�ξ, τ�j2
[on a color-coded decibel (dB) scale] over 25 dispersion lengths
�ξ � 0–25�. The middle row shows the spectral evolution
under the same conditions, and the bottom row shows the spec-
trograms of the two polarization components at a distance
ξ � 20. As expected, the two components of the vector soliton
move at the same speed in spite of a group-velocity mismatch
resulting from the DGD (included through the parameter δ).

This is a consequence of the cross-phase modulation (XPM)
that shifts the pulse spectra in the opposite directions such that
the two components trap each other and move at a common
speed [15]. Tilting of the soliton trajectory toward the right is
due to the TOD effects included through δ3 � 0.1. We have
verified that a left tilt occurs for δ3 � −0.1, and no tilt occurs
for δ3 � 0. The temporal and spectral oscillations seen in Fig. 1
are related to changes in the SOP of the vector soliton dis-
cussed later.

Our numerical simulations include TOD, which perturbs
the vector soliton and forces it to shed some energy in the form
of DWs. As seen in Fig. 1, DWs are generated within the first
few dispersion lengths at a blue-shifted frequency correspond-
ing to the spectral peaks located near �ν − ν0�T 0 � 1. Even
though the spectra of the two DWs overlap to a large extent,
their central frequencies differ by a small amount, indicating
that the x and y components of the vector soliton emit their
own DWs. However, one can think of them as the two polari-
zation components of a single DW. As seen in Fig. 1, the two
components have different amplitudes (the y component is less
intense compared to the x component), indicating that the
SOP of the DW is different from that of the vector soliton.

Similar to the case of scalar solitons, perturbation theory and
a phase-matching condition can be used to predict the frequen-
cies of the orthogonally polarized DWs [10,18]. We derive
approximate analytical expressions of these frequencies in
Appendix A. They show that the frequencies of the two
DW components are different because of the DGD induced
by the fiber’s birefringence, and the magnitude of the frequency
difference is governed by the parameter δ defined in Eq. (6).
Our numerical results agree with the analytical predictions.

Figure 1 also shows that a small fraction of pulse energy is
left at the original location of the input pulse. This part cannot
form a soliton and spreads temporally appearing on the left side
of the soliton in the top row. Its presence is clearly evident in

Fig. 1. Temporal (top row) and spectral (middle row) evolution
over 25LD for the x (left) and y components of a vector soliton �N �
1.4� excited by launching a linearly polarized pulse �θ � 45°� into a
medium-birefringence fiber (b � 0.1, δ � 0.1). The bottom row
shows the spectrograms of the two polarization components at a dis-
tance ξ � 20. The color bar shows the relative intensity on a decibel
scale.
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the spectrograms where we see tails on both sides of the soliton.
In the following, we refer to this part at the original frequency
as pulse remnants. It should be distinguished from the DW
generated through TOD that is blue-shifted and appears on
the right side of the soliton.

An interesting question is how the SOP of the vector soliton
and that of the DW associated with it evolves inside the fiber.
Even though the spectral peaks of the x and y components for
the soliton and the DW do not coincide exactly, their spectra
overlap. As a result, in the time domain, both the soliton
and the DW are vectorial in nature, and their temporal peaks
have a well-defined SOP that evolves along the fiber length.
Figure 2(a) shows how the SOP evolves along the fiber for
the vector soliton, DW, and pulse remnants. Even though
the SOP of all three entities changes with propagation, the re-
sulting evolution patterns are quite distinct for them. It turns
out that the SOP evolution can be understood qualitatively
using the theory developed for a continuous wave (CW) beam.
In this theory, the Stokes vector evolves as [5,19]

dS∕dz � W × S, W � Δβx̂ − 2γ�S3∕3�ẑ : (17)

The preceding equation shows that the Stokes vector rotates on
the Poincaré sphere around an axis oriented along the vectorW
that has a linear part and a nonlinear part. The linear
birefringence forces S to rotate around the x axis, while the
nonlinear birefringence forces it to rotate around the z axis.
In the case of medium birefringence, the two rotations
compete, leading to the patterns seen in Fig. 2(a).

Consider first SOP of the vector soliton that starts linearly
polarized at θ � 45° (marked by an arrow in Fig. 2). The SOP
soon becomes slightly elliptical and moves toward the center as
energy is transferred from Ay to Ax . In the absence of the non-
linear effects, it will move in a circular pattern around the
center. However, the linear and nonlinear rotations are compa-
rable in magnitude in the case of medium birefringence, leading
to the pattern seen in Fig. 2(a). Physically, nonlinear polariza-
tion rotations are induced by the XPM and FWM effects that
couple to the two polarization components in a nonlinear fash-
ion [5]. The SOPs of both the DW and pulse remnants move
in a circular fashion around the center, as expected from linear
birefringence. The SOP of the DW does not coincide initially
with that of the soliton (because the amplitude of its y com-
ponent is smaller compared to the x component) and lies close
to the center in Fig. 2(a).

B. Fibers with High Birefringence

Figure 3 shows the temporal (top row) and spectral (middle
row) evolutions of the two polarization components in the case
of a fiber with high birefringence by choosing b � 10 and
δ � 1. All other parameters remain the same. It should be com-
pared with the case of medium birefringence shown in Fig. 1.
The differences in the two cases are quite remarkable and stem
mostly from the larger DGD between the x and y components.
More specifically, a relatively large difference in the group veloc-
ities of the two components destroys their mutual trapping.
Only a small fraction of energy of the y component is trapped
by the x component to form a vector soliton. The remaining
part forms a scalar soliton that remains polarized along the y

axis, moves faster than the vector soliton, and appears on
the left side in the temporal trace in Fig. 3. The two faint ver-
tical spectral lines on the right side in Fig. 3 correspond to the
two DWs emitted by the two temporal parts of the y compo-
nent (the V pattern seen on the top). The spectrograms at a
distance ξ � 20 in the bottom row of Fig. 3 make these
features even more explicit. On the left side, one sees a single
soliton with a relatively intense DW; in contrast, on the right
side, we see two solitons and two much weaker DWs emitted
by them and moving at different speeds.

The SOP evolution in the high-birefringence case is shown
in Fig. 2(b), and it should be compared to the low-birefringence
case shown in Fig. 2(a). Once again, note the dramatic changes
induced by the larger vales of the parameters b and δ. The
initial SOP of the vector soliton (marked by an arrow) changes
very quickly as it moves toward the center and rotates in a
circular fashion around it (blue curve). The SOP of the
DW (red dots) also evolves in a nearly circular fashion close
to that of the vector soliton. The SOP of the scalar soliton
does not change and lies at the location marked V, because
this soliton remains polarized along the y axis. All of these
features can be understood qualitatively from Eq. (17). In
the case of high birefringence, the linear part of the vector
W dominates compared to the nonlinear part and forces
the SOP to rotate around the x axis (normal to the plane
of the figure). This is the reason why both the vector
soliton and DWs follow a circular path around the center in
Fig. 2(b).

Fig. 2. SOP evolution for the vector soliton (solid blue), DW (dot-
ted red), and pulse remnants (gray) in a fiber with (a) medium or
(b) high birefringence. In the Hammer projection, the longitude
and latitude lines are 15° apart, with H and V marking horizontal
and vertical linear SOPs and the poles representing circular SOPs.
In the high-birefringence case, S2 is the scalar soliton polarized along
the y axis.
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4. EVOLUTION WITH RAMAN NONLINEARITY

In this section, we consider the full problem and include both
the Kerr and Raman contributions to the nonlinear response.
While the Raman contribution is relatively small when the in-
put pulse width exceeds 1 ps, it must be included for shorter
femtosecond pulses. We have chosen T 0 � 100 fs, which
corresponds to a full width at half-maximum of 176 fs for
the input pulse.

A. Fibers with Medium Birefringence

Figure 4 shows the temporal (top row) and spectral (middle
row) evolutions over 25 dispersion lengths �ξ � 0–25� inside
a fiber with medium birefringence together with the spectro-
grams at ξ � 20 for the x (left column) and y (right column)
components of the pulse. It should be compared with Fig. 1. In
both cases, the two polarization components trap each other
through XPM and move at a common speed as a vector soliton.
Indeed, temporal evolutions look quite similar when the
Raman effects are included, except for a larger tilt of the soliton
trajectories toward the right, indicating a slow down of the vec-
tor soliton. This is expected, since the main effect of the Raman
contribution is to shift the pulse spectrum toward the red side,
the so-called soliton self-frequency shift (SSFS), that leads to a
reduced group velocity. Indeed, the pulse spectra in the middle
row exhibit such a red shift. Notice that the SSFS is in addition
to the XPM-induced spectral shifts of the two polarization
components on the red and blue sides required for soliton trap-
ping to occur. For this reason, the spectra are not identical for
the two polarization components.

Figure 5 compares the shapes and spectra of output pulses at
ξ � 25 for the x (left column) and y (right column) compo-
nents with (blue) and without (red) the Raman contribution.
In the temporal traces, the narrow central peak corresponds to
the vector soliton, and the broad peak on the right corresponds
to the DW emitted by it. One sees clearly that the vector sol-
iton moves slower when the Raman effects are included. The
corresponding spectral traces show that this is due to a red shift
(SSFS) through intrapulse Raman scattering. The spectra of
DWs (narrower peaks on the right side) are not affected by

SSFS, but their different amplitudes indicate that the x
component of the DW is more intense compared to the y
component.

One may ask whether the Raman contribution affects the
SOP of the vector soliton. Figure 6(a) shows how the SOP
evolves along the fiber for the vector soliton, DW, and pulse
remnants when both the Kerr and Raman contributions are
included. It should be compared with Fig. 2(a) where the
Raman contribution was ignored. It is evident that the SOP
of the vector soliton exhibits an evolution pattern that is quite
different when the Raman effects are included. The initial evo-
lution of the vector soliton’s SOP is similar in the sense that the
SOP becomes elliptically polarized and moves toward the
center, but the SSFS changes the SOP in such a fashion that
its trajectory covers the entire Poincaré sphere, in sharp contrast
with the case of purely Kerr nonlinearity. The SOPs of the pulse
remnants and that of the DW still move in a circular fashion
around the center. This is expected because these two evolve
linearly, as dictated by the linear birefringence, and are not
affected by the Raman effects. We remark that one cannot

Fig. 3. Same as Fig. 1 except for a fiber with high birefringence
(b � 10 and δ � 1).

Fig. 4. Same as Fig. 1 except for including the Raman contribution.
The optical fiber has medium birefringence (b � 0.1 and δ � 0.1).

Fig. 5. Temporal (top) and spectral (bottom) intensity profiles at a
distance of ξ � 25 for the x (left column) and y (right column) polari-
zation components with (solid blue) and without (dashed red) the
Raman contribution. Both spectra are red-shifted but differ from each
other because of different XPM-induced spectral shifts.
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use the CW theory to understand these SOP changes because
the SSFS occurs only for short optical pulses.

B. Fibers with High Birefringence

As the last case, we consider the impact of Raman nonlinearity
in fibers exhibiting high birefringence. Figure 7 shows the tem-
poral (top row) and spectral (middle row) evolutions of the two
polarization components by choosing b � 10 and δ � 1. It
should be compared with Fig. 3, where the case of high
birefringence is shown without the Raman contribution. In con-
trast with the medium-birefringence case, only minor changes
occur when the Raman term is included. In both cases, a rel-
atively large difference in the group velocities of the two com-
ponents destroys their mutual trapping. Only a small fraction of
energy of the y component is trapped by the x component to
form a vector soliton. The remaining energy forms a scalar sol-
iton that moves faster than the vector soliton. Both temporal
components still emit DWs, as seen in the middle row of
Fig. 3, where two vertical lines show the frequencies of two
DWs emitted by these two temporal parts of the y component
moving at different speeds. The Raman-induced SSFS still oc-
curs, but it has a relatively minor effect on the evolution process.

The SOP evolution in the high-birefringence case is shown
in Fig. 6(b), and it should be compared to the low-birefringence
case shown in Fig. 6(a), but also to the high-birefringence case
in Fig. 2(b), where the Raman effects were excluded. The high
birefringence affects the SOP evolution drastically, but the
Raman effects do not introduce dramatic changes. Indeed,
the SOP evolutions appears to be dominated by the large linear
birefringence of the fiber (or by the relatively large vales of the
parameters b and delta). The initial SOP of the vector soliton
(blue curves) changes very quickly and rotates in a circular
fashion around the center. The SOP of the DW (red dots) also

evolves in a nearly circular fashion. We conclude that the intra-
pulse Raman scattering does not have a significant effect in the
presence of high birefringence. It causes a red shift in the spec-
tra of both components, but the impact of that red shift on the
SOP evolution of the soliton is relatively minor.

5. POLARIZATION INSTABILITY

One may ask how the results change when the initial SOP of
the input pulse is different from the 45° orientation considered
so far. We carried out a large number of simulations for differ-
ent initial SOPs of the input pulse on the Poincaré sphere. The
results remain qualitatively similar as long as the input SOP is
not oriented close to the fast axis of the fiber. When θ exceeds
80° such that most of the pulse energy is along the fast axis of
the fiber, new qualitative features appear that are related to an
instability known as polarization instability [5,20]. In our
study, this instability occurs only in the medium-birefringence
case because it requires the nonlinear length to be comparable
to the beat length of the fiber. Our numerical results performed
with δ � 0.1 show that a large fraction of input energy is trans-
ferred from the y component to the x component and then
back to the y component of the pulse in a periodic fashion.
Figure 8(a) shows changes in the fraction of input energy in
the two polarization components over a distance of 100LD
for θ � 85° (dashed curves) and 89° (solid curves) without in-
cluding the Raman effects. Figure 8(b) shows the impact of
including the Raman terms. As seen there, periodic energy
transfer is reduced considerably for θ � 85° and almost ceases
to occur for θ � 89° when the Raman effects are included. It
appears that the spectral red shift of the soliton eliminates
polarization instability to a large extent.

Another hallmark of polarization instability is that it leads to
large variations in the soliton’s SOP with small changes in the
input and fiber parameters [5]. Figure 9 shows the polarization
evolution of the DW and the soliton over 100LD for θ � 85° in
a fiber with medium birefringence �b � 0.1� with the Kerr non-
linearity alone. It should be compared with Fig. 2(a), where
θ � 45° so that the energy is divided equally between the

Fig. 6. Same as Fig. 2 except the Raman contribution is included in
the cases of both (a) medium and (b) high birefringence.

Fig. 7. Same as Fig. 3 except that the Raman contribution is in-
cluded. The fiber’s high birefringence is included by choosing b �
10 and δ � 1.
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x and y components of the pulse. Whereas the DW remains po-
larized close to the fast axis (red dots), the SOP of the soliton
(blue dots) moves over the entire Poincaré sphere with distance,
in sharp contrast to the θ � 45° case. The same behavior occurs
for θ � 89° and its other values close to the fast axis. As expected
from the earlier discussion, the SOP evolution changes drastically
when the Raman effects are included. We found that the soliton’s
SOP varied little and remained close to the fast axis of the fiber.
The same behavior occurred for fiber with high birefringence.

6. CONCLUDING REMARKS

In this paper, we have developed a formalism for investigating
the evolution of arbitrarily polarized short pulses inside a bire-
fringent optical fiber. The theory includes both the Raman and
Kerr nonlinearities, as well as higher-order dispersion terms, so
that it can be used even when femtosecond pulses are launched
inside the fiber. More specifically, the coupled nonlinear
equations that we solve include the cross-polarization Raman
scattering terms that couple the orthogonally polarized compo-
nents of the pulse in addition to the XPM-induced coupling
terms through the Kerr nonlinearity.

As a specific example, we used the coupled NLS equations to
study evolution of a short optical pulse that is polarized linearly
at 45° from the slow axis. When this pulse is launched in the

anomalous dispersion region of a medium-birefringence fiber,
the XPM-induced nonlinear coupling between the x and y
components creates a vector soliton that overcomes DGD
through spectral shifts. Its SOP starts changing through a com-
bination of linear and nonlinear birefringence, while it sheds
radiation in the form of a DW because of TOD-induced per-
turbations. The x and y components of the DW have spectra
that overlap substantially but peak at slightly different frequen-
cies because of different dispersion relations associated with
them. We numerically investigate the polarization evolution
of both the vector soliton and the DW generated by it. The re-
sults show that while the DW polarization is controlled by the
linear birefringence of the fiber, the SOP of the vector soliton is
affected considerably by the nonlinear birefringence. Indeed,
when we repeat the simulations for a high-birefringence fiber,
it is the linear birefringence that controls the SOP of both
the DW and the vector soliton. The Raman effects, important
for short pulses, lead to an additional red shift of the spectra for
both the x and y components, but they do not affect the forma-
tion of a vector soliton and the generation of DWs. The SOP of
the vector soliton is found to be affected considerably by the
Raman nonlinearity.

We also studied the impact of initial SOP of the soliton.
Although quantitative details do differ, the qualitative behavior
remains the same for nearly all SOPs of the input pulse, except
when the pulse is polarized close to the fast axis. In this case,
when the Raman effects are ignored (only Kerr nonlinearity is
included) and the fiber has low-to-medium birefringence,
almost the entire pulse energy is exchanged between the x
and y components in a periodic fashion along the fiber length,
and the SOP of the soliton moves over the entire Poincaré
sphere in a wild fashion. Both of these effects are related to
the onset of polarization instability. However, this instability
almost disappears when the Raman effects are included or a
fiber with high birefringence is considered. The main point
to note is that the formalism developed in this paper can be
used for an arbitrary SOP of the input pulse.

APPENDIX A: FREQUENCY OF DISPERSIVE
WAVES

The frequency shift Ω of the DW emitted by a scalar soliton
with the central frequency ωs is set by the phase-matching

(a)

(b)

Fig. 8. Periodic energy transfer over a distance of 100LD for θ �
85° (dashed) and 89° (solid) (a) without and (b) with the Raman ef-
fects. The red and blue curves represent, respectively, the fraction of
energy in the x and y components of the pulse. The fiber has medium
birefringence with the same parameters as in Fig. 1.

Fig. 9. Same as Fig. 2(a) except that θ � 85° so that the input pulse
is polarized linearly close to the fast axis of a fiber with medium bi-
refringence �b � 0.1�.
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condition β�ωs �Ω� � β�ωs� � kn, where kn � 1
2 γP0 repre-

sents the nonlinear contribution to the soliton’s propagation
constant [4,5]. A similar condition determines the frequency
in the case of a vector soliton in birefringent fibers, except that
we must apply this condition separately to the x and y polari-
zation components of the vector soliton. The corresponding
frequency shifts are governed by

βx�ωsx �Ωx� � βx�ωsx� � knx , (A1)

βy�ωsy �Ωy� � βy�ωsy� � kny: (A2)

The nonlinear contributions knx and kny are ignored in what
follows, since they play a relatively minor role in the scalar case
[5] and may do so even in the vector case.

To calculate Ωx and Ωy, we expand βj�ωsj �Ωj� with j �
x, y in a Taylor series and take into account that the vector
soliton moves at a common group velocity set by
v−1g � β1s � 1

2 �β1x � β1y�. Keeping terms up to the third order
in the Taylor expansion, the DW frequencies are obtained from
the equations

1

6
β3Ω2

x �
1

2
β2Ωx �

1

2
Δβ1 � 0, (A3)

1

6
β3Ω2

y �
1

2
β2Ωy −

1

2
Δβ1 � 0, (A4)

where Δβ1 � β1x − β1y is the DGD between the two polariza-
tion components. These quadratic equations can easily be
solved to obtain Ωx and Ωy, and the result is

Ωx,y � −
3β2
2β3

0
@1�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1	 4β3Δβ1

3β22

s 1
A: (A5)

This result is similar to that obtained by Conforti and Trillo in
the case of optical wave breaking in normal group-velocity
dispersion (GVD) fibers [21].

To make a comparison with the numerical simulations, it is
useful to write Eq. (A5) in a normalized form in terms of the
parameters defined in Eq. (6). Recalling that β2 < 0 for a
soliton, the result is

Ωx,yT 0 �
1

4δ3

�
1�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1	 16δδ3

p �
: (A6)

In the case of fibers with low to medium birefringence, typically
16δδ3 ≪ 1, and the frequencies can be approximated as

Ωx,yT 0 �
1

2δ3
	 2δ: (A7)

However, this approximation may not work for fibers with high
birefringence. For example, when δ3 � 0.1 and δ � 1, the
quantity 16δδ3 exceeds one, and the frequency shift becomes
complex when negative sign is chosen in Eq. (A6). This issue
may be resolved when the nonlinear contribution to the
soliton’s propagation constant is included.

Equation (A7) is applicable for medium-birefringence
fibers. The first term provides the dominant contribution to
the frequency shift and is identical to the scalar result. The sec-
ond term in this equation shows that the DGD changes

frequencies slightly in the opposite directions for the x and
y components. To compare with the numerical simulations,
we use δ3 � 0.1 and δ � 0.1. Since Ωx,yT 0 � 5	 0.2, it is
easy to conclude that birefringence-induced changes in the
DW frequencies are relatively small. For comparing these val-
ues with numerics, we recall that Ωj with j � x · y is the shift
relative to the soliton frequency ωsj, which is itself shifted from
the input central frequency ω0 by an amount that depends on
δ. Accounting for it and dividing Ωj by 2π, the predicted values
are �νj − ν0�T 0 � 0.800	 0.016 for j � x and y, respectively.
Numerical values must be obtained from the DW spectra
shown in Fig. 5 by the dashed curve. Since both of these spectra
are relatively broad and asymmetric, it is not obvious what fre-
quency should be compared with the theoretical value. if we use
the center frequency of each spectrum, the predictions of
Eq. (A7) are in reasonable agreement with the numerical sim-
ulations when the Raman effects are ignored. In the high-
birefringence case, the DW spectrum is narrower, and its center
frequency is indeed close to �ν − ν0�T 0 � 0.8 for the x
component in Fig. 4.

The situation becomes more complicated when intrapulse
Raman scattering induces an additional red shift of the soliton
spectrum. Since the group velocity of the soliton changes, the
frequency of the DW also shifts. The solid curves in Fig. 4 show
the DW spectra in this situation. Comparing it with the dashed
curves obtained without the Raman terms, we conclude that
Raman-induced spectral changes to the DW are rela-
tively minor.

Funding. National Science Foundation (NSF) (ECCS-
1505636).
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