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Nonlinear interaction of vector solitons inside birefringent optical fibers
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The nonlinear interaction of two temporally separated solitons inside optical fibers has been studied in the
scalar case in which both solitons remain linearly polarized during their mutual interaction. Here we consider
two arbitrarily polarized vector solitons inside birefringent optical fibers where they interact nonlinearly. We
develop a general formalism based on two coupled nonlinear Schrödinger equations that include both the Raman
and the Kerr nonlinearities. We use it to study how the two vector solitons evolve in the temporal, spectral, and
polarization domains in optical fibers exhibiting no, medium, or large birefringence. The attractive force that leads
to collisions of two in-phase solitons in isotropic fibers is affected considerably by the fiber’s birefringence. In
particular, no collisions occur even in the case of medium birefringence. Rather, the two vector solitons exchange
energy as they approach each other and then move away from each other. Moreover, considerably energy is shed
in the form of dispersive waves. Polarization of the two solitons is found to be affected considerably by the fiber
nonlinearity in the case of medium birefringence but linear effects dominate its evolution in fibers with large
birefringence.
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I. INTRODUCTION

The nonlinear interaction of two neighboring solitons inside
optical fibers has been studied extensively since the 1980s
[1–5]. Depending on their relative amplitudes and phases, the
two solitons may attract or repel each other. More recently,
the effects of Raman scattering on two interacting optical
solitons have been studied [6–9]. In all of these studies, optical
pulses were assumed to remain linearly polarized during their
propagation inside the optical fiber, and a scalar nonlinear
Schrödinger (NLS) equation was used to describe the nonlinear
interaction between two temporally separated solitons.

The vectorial nature of an electromagnetic field cannot be
ignored in birefringent optical fibers that are known to support
vector solitons and whose description requires two coupled
NLS equations [5]. Here we use the term “vector soliton” in
its broad sense, recalling that such solitons are in fact solitary
waves that propagate undistorted over long fiber lengths but
are not guaranteed to survive mutual collisions. A vector
soliton consists of two orthogonally polarized components
that move at the same speed by shifting their spectra to
compensate for the polarization-mode dispersion of the fiber.
This is often referred to as soliton trapping, occurring when
the nonlinear phenomenon of cross-phase modulation (XPM)
produces spectral shifts in the opposite directions such that
both components move together in the time domain [10–13].

The coupled NLS equations have been used extensively in
several different contexts [5]. Many studies focus on a single
vector soliton [14–21], while others consider the interaction
of two orthogonally polarized but temporally separated pulses
along the slow and fast axes of a birefringent fiber [22–27]. The
more general case involving the interaction of two arbitrary
polarized vector solitons has attracted relatively little attention
[28,29]. Vector solitons have also been studied in the context
of fiber lasers where the fiber’s birefringence cannot always
be ignored [30–33]. The interaction between two such vector

solitons can lead to the formation of specific bound states called
soliton molecules [34–37].

In this paper, we focus on the case of two temporally
separated vector solitons, realized by launching two closely
spaced, identically polarized, optical pulses of the same wave-
length inside a birefringent optical fiber, where they interact
nonlinearly through the Kerr and the Raman effects. We
discuss in Sec. II the underlying physical model and describe
the numerical method employed. In Sec. III we consider
briefly the case of isotropic fibers. In Sec. IV we consider
fibers with medium birefringence with and without the Raman
contribution. Numerical simulations are used to see how the
interaction between two vector solitons is affected by the
fiber’s birefringence and its nonlinearity. Fibers with large
birefringence are discussed in Sec. V. The impact of the relative
phase of two solitons on the nonlinear interaction is studied in
Sec. VI and main conclusions are summarized in Sec. VII.

II. NUMERICAL MODEL

We consider a single-mode fiber with an elliptical or stressed
core such that it supports two orthogonally polarized modes
with the same spatial profile but different propagation constants
denoted by βx (ω) and βy (ω). Two closely spaced, identically
polarized, optical pulses of the same wavelength are launched
into this fiber. Their evolution can be studied by expanding
βj (ω) with j = x, y in a Taylor series around the pulse’s
central frequency ω0 as

βj (ω) = β0j + β1j (ω − ω0)

+ 1
2β2j (ω − ω0)2 + 1

6β3j (ω − ω0)3 + · · · . (1)

Following a standard procedure [5], we write the total electric
field as

E(r, t ) = Re[x̂Axe
i(β0x−iω0t ) + ŷAye

i(β0y−iω0t )] (2)
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and obtain the following two coupled NLS equations for the
slowly varying amplitudes Aj (z, t ):

∂Aj

∂z
+ β1j

∂Aj

∂t
+ iβ2

2

∂2Aj

∂t2
− β3

6

∂3Aj

∂t3
= Qj, (3)

where j = x, y and we retained the dispersive terms up to
third order and assumed that β2 and β3 are the same for
the two polarization components. Different values of β1x and
β1y lead to different group velocities for the two polarization
components, resulting in a differential group delay (DGD).

Before writing the nonlinear terms Qx and Qy , we convert
Eq. (3) into a dimensionless form by using the soliton units [5]:

τ = (t − β̄1z)/T0, ξ = z/LD,

Ax = u
√

P0e
−i�βz/2, Ay = v

√
P0e

i�βz/2, (4)

where T0 and P0 are related to the width and the peak power
of input pulses, LD = T 2

0 /|β2| is the dispersion length of the

fiber, and

β̄1 = (β1x + β1y )/2, �β = β0x − β0y, (5)

with �β representing fiber’s birefringence. The resulting
coupled NLS equations take the final form

i

(
∂u

∂ξ
+ δ

∂u

∂τ

)
+ bu + 1

2

∂2u

∂τ 2
+ iδ3

∂3u

∂τ 3
= QxLD, (6)

i

(
∂v

∂ξ
− δ

∂v

∂τ

)
− bv + 1

2

∂2v

∂τ 2
+ +iδ3

∂3v

∂τ 3
= QyLD, (7)

where we assumed β2 < 0 and introduced the three parameters

b = T 2
0 (�β )

2|β2| , δ = T0

2|β2| (β1x − β1y ), δ3 = β3

3|β2|T0
. (8)

Physically, b is related to the fiber’s birefringence, δ to its DGD,
and δ3 to its third-order dispersion (TOD).

The nonlinear terms on the right side of Eqs. (6) and (7)
include both the Kerr and Raman nonlinearities [5] and are
given by

Qx = iN2

LD

(
1 + i

ω0

∂

∂t

)[
(1 − fR )

(
|u|2u + 2

3
|v|2u + 1

3
v2u∗

)
+ fR{u[h1 ⊗ |u|2 + h2 ⊗ |v|2] + v[h3 ⊗ (uv∗ + vu∗)]}

]
, (9)

Qy = iN2

LD

(
1 + i

ω0

∂

∂t

)[
(1 − fR )

(
|v|2v + 2

3
|u|2v + 1

3
u2v∗

)
+ fR{v[h1 ⊗ |v|2 + h2 ⊗ |v|2] + v[h3 ⊗ (uv∗ + vu∗)]}

]
, (10)

where a ⊗ represents convolution, N = (γP0LD )1/2 is the
soliton number, and fR represents the fractional contribution of
the delayed Raman response governed by the time-dependent
functions h1(t ), h2(t ), and h3(t ). These functions are related
to the isotropic and anisotropic parts ha (t ) and hb(t ) of the
nuclear response as [38,39]

h1(t ) = (fa + fc )ha (t ) + fbhb(t ), h2(t ) = faha (t ), (11)

h3(t ) = [fcha (t ) + fbhb(t )]/2, (12)

where fa = 0.75, fb = 0.21, and fc = 0.04. The explicit form
of the Raman response functions for silica fibers is [40]

ha (t ) = τ 2
1 + τ 2

2

τ1τ
2
2

exp

(
− t

τ2

)
sin

(
t

τ1

)
, (13)

hb(t ) = [
(2τb − t )/τ 2

b

]
exp (−t/τb ), (14)

with τ1 = 12.2 fs, τ2 = 32 fs, τb = 96 fs, and fR = 0.245 for
silica fibers.

We solve the coupled NLS equations (6) and (7) numerically
with an input field of the form

u(0, τ ) = cos θ [sech(τ + q0) + eiφsech(τ − q0)], (15)

v(0, τ ) = sin θeiψ [sech(τ + q0) + eiφsech(τ − q0)], (16)

where θ and ψ are the angles used to indicate the polarization of
two input pulses separated by Ts = 2q0T0 initially. We choose
T0 = 100 fs (full width at half maximum about 180 fs). This
input corresponds to two arbitrarily polarized pulses that are
separated in time but have the same temporal shape and optical

spectra. We assume that both pulses are linearly polarized (ψ =
0) and choose θ = 45◦ for which the x and y components have
the same amplitude. Any arbitrary state of polarization (SOP)
on the Poincaré sphere can be chosen by varying these two
angles. We choose q0 = 3.5 in our numerical simulations to
ensure that tails of two pulses overlap to some extent for them
to interact nonlinearly. The relative phase φ between two pulses
is set to zero to focus on the in-phase case that leads to an
initial attraction between two vector solitons. Other values of
φ are considered in Sec. VI. For the numerical simulations, we
use a method known as RK4IP, standing for the fourth-order
Runge–Kutta method in the interaction picture [41]. The basic
idea is to first write Eqs. (6) and (7) in the form

∂u

∂ξ
= D1u + N1,

∂v

∂ξ
= D2u + N2, (17)

where Dj is a linear differential operator and Nj (u, v) is
a nonlinear function with j = 1, 2. By taking the Fourier
transform with respect to τ , these can be written as

∂ũ

∂ξ
= D1(ω)ũ + Ñ1,

∂ṽ

∂ξ
= D2(ω)ṽ + Ñ2, (18)

where a tilde denotes the Fourier-transform operation. As Dj

becomes a known function Dj (ω) in the frequency domain, we
can eliminate it by writing Eq. (18) in the interaction picture
used often in quantum mechanics:

∂ũ′

∂ξ
= Ñ1e

−D1ξ ,
∂ṽ′

∂ξ
= Ñ2e

−D2ξ , (19)

where u′ and v′ in the interaction picture are related to u and v

as u = u′eD1ξ and v = v′eD2ξ . This set of ordinary differential
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equations is solved in the RK4IP method on a frequency grid
chosen to cover the entire spectral bandwidth of solitons. The
nonlinear terms Nj are first calculated in the time domain
and then converted to the frequency domain by using the
fast-Fourier-transform (FFT) algorithm.

Most numerical simulations were performed with a tempo-
ral window in the range −200 < τ < 200 with N = 214 FFT
points. A wider window (−1000 < τ < 1000) was needed in
the high-birefringence case. In all cases, temporal window
was wide enough that no radiation reached the boundaries
of the computational window over the simulated fiber length.
The choice of N was dictated by the requirement that the
corresponding frequency window is wide enough and has
sufficient resolution to provide accurate results. We choose
the peak power of input pulses such that N = 1 so that both
pulses correspond to fundamental solitons. The birefringence
parameters b and δ are fiber specific and can vary over a wide
range. We decided to focus on two fibers with medium and
large birefringence. In the former case, we take b = 0.1 and
δ = 0.1 but increase these values to b = 10 and δ = 1 in the
high-birefringence case. It is often argued that b can be set to
zero in the case of high birefringence because of an averaging
effect produced by rapid changes in the relative phase of the
two polarization components [5]. We decided not to do so to
reveal the residual effects when b is not too large. The only
other parameter we need to specify is δ3. We choose δ3 = 0.1
as a representative value for silica fibers.

To characterize the SOP evolution, it is common to trace
the trajectory of the Stokes vector on the Poincaré sphere.
However, in our case the SOP can be nonuniform in time at
a given distance while also varying along the fiber length. To
isolate length variations, SOP evolution is shown at the the
intensity peak of the two vector solitons. The magnitude S0

and components of the Stokes vector are calculated from Ax

and Ay by using

S0 = |Ax |2 + |Ay |2, S1 = |Ax |2 − |Ay |2, (20)

S2 = 2Re(AxA
∗
y ), S3 = −2Im(AxA

∗
y ). (21)

We map the sphere onto a two-dimensional plane by using
the Hammer projection. We use this projection to visualize
the entire Poincaré sphere in a single plot, avoiding two
separate plots displaying the front and the back of this sphere.
The longitude λ and the latitude χ are calculated first by
using tan(2λ) = S2/S1 and sin(2χ ) = S3/S0. These are used
to calculate the coordinates for the Hammer projection as [42]

xh = 2
√

2 cos (2χ ) sin (λ)√
1 + cos (2χ ) cos (λ)

,

yh =
√

2 sin (2χ )√
1 + cos (2χ ) cos (λ)

. (22)

III. FIBERS WITH NO BIREFRINGENCE

Before considering the general case of birefringent fibers, it
is useful to consider the ideal case of isotropic fibers for which
b = 0 and δ = 0. The TOD effects are also ignored initially by
setting δ3 = 0 so that solitons can evolve in an ideal fashion
without any perturbation. This case serves as a reference and
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FIG. 1. Evolution of two temporally separated vector solitons in
isotropic fibers with the Kerr nonlinearity alone (top row) and with
Raman nonlinearity included (middle row). The TOD is also included
in the bottom row. Temporal profiles of the x (left) and y (right)
components are shown with the intensity on a decibel scale using
dimensionless variables.

can be used to isolate the effects of birefringence and TOD
studied in later sections.

The top row in Fig. 1 shows the temporal evolution of two
vector solitons over 60 dispersion lengths (ξ = 0–60) as a
function τ and ξ . The Raman effects have been turned off
by setting fR = 0 so that the interaction of two vector solitons
is governed by only the fast-responding Kerr nonlinearity. The
main feature is that the two vector solitons attract each other
and collide at a distance of about ξ = 25, after which they
separate and recover their original spacing around ξ = 50.
This process repeats periodically just as it does for two scalar
in-phase solitons [5]. The spectra (not shown) of two vector
solitons also exhibit an oscillatory evolution and become
considerably broader when two solitons overlap and become
narrower during each collision. It is remarkable that both vector
solitons survive multiple collisions in spite of the fact that the
underlying propagations equations are not integrable (in the
sense of inverse scattering theory).

Inclusion of the the Raman nonlinearity (middle row)
changes this interaction scenario drastically. First, each pulse
slows down because of the Raman-induced redshift of its
spectrum [5]. This redshift is related to intrapulse Raman
scattering and is also called the soliton self-frequency shift
(SSFS). It bends the soliton trajectory toward the right in Fig. 1.
The Kerr nonlinearity still provides an attractive force that
brings the two solitons closer initially. However, two pulses
never collide and begin to separate from each other at a distance
of about 40LD . Moreover, energy transfer (of about 18%) takes
place from the leading pulse (on left) to the trailing pulse (on
right). Since a soliton must conserve N = 1 and since N is
related to pulse energy Ep = 2P0T0 as

N2 = γP0LD = γP0T
2

0 /|β2| = γEpT0/(2|β2|), (23)

it follows that a soliton gaining energy must become narrower
as the one losing energy broadens. The same behavior also
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FIG. 2. Temporal (top) and spectral (bottom) evolutions over
60LD for the x-polarized (left) and y-polarized (right) components
of the two interacting vector solitons inside a medium-birefringence
fiber with only Kerr nonlinearity. The intensity is coded on a decibel
scale using dimensionless variables.

occurs for scalar solitons and is a consequence of the delayed
nature of the Raman nonlinearity [9]. As discussed later, energy
transfer depends on the relative phase φ in Eq. (15) of the two
solitons.

The bottom row of Fig. 1 shows what happens when the
TOD is included using δ3 = 0.1. As is well known, TOD
perturbs each soliton and forces it to shed some energy in
the form of a dispersive wave [5]. Rapid spreading of such
dispersive waves is evident in Fig. 1. The spectra (not shown)
also develop a new spectral peak located at a specific frequency
that satisfied the corresponding phase-matching condition. The
amount of energy lost through dispersive waves is relatively
small (<2%). However, our results reveal that the presence of
TOD also reduces the extent of energy transfer between two
vector solitons (from 18% to 11%). This can be deduced from
the bottom row of Fig. 1 by noting that the right soliton is
not as narrow as in the middle row. We include TOD by using
δ3 = 0.1 in the following discussion.

IV. FIBERS WITH MEDIUM BIREFRINGENCE

In this section we focus on an optical fiber with medium
birefringence and choose b = 0.1 and δ = 0.1. To gain phys-
ical insight that helps us in interpreting the effects of Raman
nonlinearity, we first ignore it by setting fR = 0. The impact
of Raman nonlinearity on the interaction of two scalar solitons
inside isotropic fibers has been studied in Ref. [9]. The results
here extend this study to the case of vector solitons forming in
birefringent fibers.

A. Kerr nonlinearity alone

The question we ask is how a fiber’s birefringence affects the
interaction of two vector solitons. Figure 2 answers this ques-
tion in the case of medium birefringence (δ = 0.1, b = 0.1).
The temporal (top row) and spectral (bottom row) intensity
profiles are displayed in this figure over 60LD for the x (left
column) and y polarized components of the two interacting

FIG. 3. Evolution of SOP for the leading (S1, blue, near center)
and trailing (S2, gray or red) solitons over 400LD inside a fiber with
medium birefringence. In this Hammer projection of the Poincaré
sphere, the dashed longitude and latitude lines are 15◦ apart, with
H and V marking horizontal and vertical linear SOPs. The poles
represent right-circular (RC) and left-circular (LC) SOPs.

vector solitons considering only the Kerr nonlinearity. The top
row of Fig. 2 should be compared with the top row of Fig. 1
showing the case of a fiber without any birefringence. The main
feature is the absence of any mutual collision. The two solitons
do move closer but they never collide. As expected, the two
components of each vector soliton move at the same speed,
in spite of a group-velocity mismatch resulting from the DGD
(included through the parameter δ). This is a consequence of
the cross-phase modulation, which shifts the pulse spectra in
the opposite directions such that the two components trap each
other and move at a common speed [11].

Tilting of the soliton trajectory toward the right in Fig. 2
is due to the effects of TOD included through δ3 = 0.1. We
have verified that a left tilt occurs for δ3 = −0.1, and no tilt
occurs for δ3 = 0. Solitons also shed some energy in the form
of dispersive waves. The spectral peak in the pulse spectra near
(ν − ν0)T0 = 0.8 (bottom row) indicates that, although some
energy is shed within the first few dispersion lengths, much
more energy is fed to this dispersive wave at a distance of about
25LD . Recall from Fig. 1 that this is the distance at which two
solitons collide in the absence of birefringence. A collision
does not occur in the presence of birefringence, but pulses
come closer, become narrower, and their spectra broaden at
this distance. Also, the left soliton transfers energy to the right
soliton. We estimated numerically that the left soliton losses
38% of its energy at a distance of 90LD , while the right soliton
gains only 14%. The difference of 24% is shed to dispersive
waves. The temporal and spectral oscillations with ξ seen in
Fig. 2 are related to changes in the SOP of the two interacting
vector solitons, which we discuss next.

Figure 3 shows the evolution of the SOP of the leading
soliton S1 (blue curve) and the trailing soliton S2 (red curve)
along the length of a fiber with medium birefringence. The
input SOP of both solitons is linearly polarized at 45◦ from the
x axis (marked by an arrow). The SOP changes initially in an
identical fashion for both solitons but, after a few dispersion
lengths, the SOPs of two solitons follow different trajectories
on the Poincaré sphere. It turns out that the SOP evolution can
be understood qualitatively by using the theory developed for
continuous-wave (cw) beams. In this theory the Stokes vector
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FIG. 4. Temporal (top) and spectral (bottom) evolutions over
80LD for the x-polarized (left) and y-polarized (right) components
of the two interacting vector solitons inside a fiber with medium
birefringence. All parameters are the same as in Fig. 2 except that
the Raman contribution has been turned on.

evolves as [5]

dS/dz = W × S, W = �βx̂ − 2γ (S3/3)ẑ. (24)

Physically speaking, the Stokes vector rotates on the Poincaré
sphere around an axis oriented along the vector W, which has
a linear part and a nonlinear part. The linear birefringence
forces S to rotate around the x axis, while the nonlinear
birefringence forces it to rotate around the z axis. In the case of
medium birefringence, the two rotations compete, leading to
the patterns seen in Fig. 3. Since S3 = 0 initially, the linear
birefringence dominates first and makes the SOP of each
soliton slightly elliptical. A finite value of the resulting S3

then induces nonlinear polarization rotation around the z axis.
Since S3 becomes larger farther away, the SOP is from the
equator, the nonlinear term dominates as the soliton’s SOP
moves toward the poles. The reason that two trajectories are so
different is related to the Kerr-induced energy transfer from S1
to S2. Since no transfer occurs in the absence of birefringence,
it is a new birefringence effect. It can be understood by noting
that the Kerr nonlinearity can lead to energy transfer when the
two solitons have different phases [9]. Since a relative phase
difference is always induced by the birefringence, its presence
leads to energy transfer. Notice that energy transfer breaks
the symmetry between two solitons and makes the situation
asymmetric with respect to the two polarization components.

B. Raman nonlinearity included

Figure 4 shows how the interaction behavior shown in Fig. 2
is modified when the Raman contribution to the fiber nonlinear-
ity is included. Both the temporal and spectral intensity profiles
of the two polarization components look similar qualitatively
but have substantial quantitative differences. For example,
the vector nature of each soliton is maintained even when
the Raman contribution is included in the sense that the two
polarization components move at the same speed, in spite of the
birefringence-induced DGD, through XPM-induced spectral
shifts in the opposite directions. In addition, both spectra

FIG. 5. Same as Fig. 3, except that the Raman contribution has
been turned on.

shift toward the red because of SSFS. As a result, although
temporal trajectories tilt toward the right for both solitons,
this tilt is larger for the trailing soliton because the XPM and
Raman shifts are in the same direction for this soliton. For this
reason, the spectra are not identical for the two polarization
components.

Another noticeable effect of the delayed Raman nonlinear-
ity is a reduction in the energy lost to dispersive waves. Even
though dispersive radiation is clearly evident in both Figs. 2 and
4, its energy content is much smaller in the Raman case (down
to about 10% from 24%). This is evident from the spectral
peak located near (ν − ν0)T0 = 0.8 whose strength is much
reduced in Fig. 4. It can also be seen in the temporal evolution
in Fig. 2, where a relatively large amount of energy is lost to
dispersive waves near ξ = 25; the corresponding radiation is
absent in Fig. 4. We estimated numerically the energy loss for
the leading soliton at a distance of 90LD to be 23% and 38%,
with and without the Raman contribution, respectively.

One should ask how the Raman contribution affects the
SOP of two vector solitons. Figure 5 shows the SOP evolution
along the fiber when both the Kerr and Raman contributions are
included. It should be compared with Fig. 3 where the Raman
contribution was ignored. It is evident that the SOPs of the two
solitons evolve quite differently when the Raman effects are
included. The initial evolution is similar to that in Fig. 3 in
the sense that the SOPs of two solitons remain identical while
becoming elliptical and moving toward the center. However,
after a few dispersion lengths, the SSFS changes the SOP in
such a fashion that trajectory S1 of the leading soliton moves
toward the center (near H), while that of the trailing soliton S2
moves away from center (near V), in sharp contrast with the
case of purely Kerr nonlinearity. The SOPs of both solitons
still rotates in a circular fashion, as dictated by the linear
birefringence that is not affected by the Raman effects. We
note that one cannot use cw theory to understand these SOP
changes because SSFS occurs only for short optical pulses.

V. FIBERS WITH LARGE BIREFRINGENCE

In this section we consider the case of fibers with a relatively
large birefringence by choosing b = 10 and δ = 1. As we did
for the medium-birefringence case, we first ignore the Raman
effect by setting fR = 0 before including it. The impact of
Raman nonlinearity on the interaction of two scalar solitons
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FIG. 6. Temporal (top) and spectral (bottom) evolutions over
200LD of the x-polarized (left) and y-polarized (right) components
of the two interacting vector solitons inside a fiber with large
birefringence with only Kerr nonlinearity.

in isotropic fibers has been considered before [9]. The results
here extend this study to the case of vector solitons.

A. Kerr nonlinearity alone

Figure 6 shows the temporal and spectral evolutions of
the two polarization components over 200LD for a fiber with
high birefringence. It should be compared with Fig. 2 where
the case of medium birefringence is shown for the same
parameter values. The differences in the two cases are quite
remarkable and stem mostly from a larger DGD between the x

and y polarization components. More specifically, a relatively
large difference in the group velocities of the two components
(resulting from δ = 1) destroys their mutual trapping. The x

component of each pulse captures a small fraction of energy
of the y component and forms a vector soliton (two dark lines
tilted to the right in Fig. 6). The remaining energy of the y

component remains polarized along the y axis and forms a
scalar soliton that moves faster than the two vector solitons
(single dark line tilted to the left in Fig. 6). All solitons emit
their own dispersive waves, resulting in multiple spectral lines
near (ν − ν0)T0 = 0.8 in the bottom row.

The SOP evolution in fibers with large birefringence is
shown in Fig. 7, and it should be compared with the medium-
birefringence case shown in Fig. 3. Clearly, dramatic changes
are induced in the SOP of each soliton by larger values of the
parameters b and δ. The initial SOP of the two solitons (marked
by an arrow) changes quickly but in very different ways. The
SOP of the vector soliton S2 moves toward the center and
rotates in a circular fashion around it (red trace). The second
vector soliton has a SOP (black dots) that nearly matches that of
S2. In contrast, the SOP of the scalar soliton S1 jumps toward
the edges. Since S1 has no x-polarized partner, it must remain
polarized along the y axis. This is why the SOP of the scalar
soliton does not change and lies at the location marked V in
Fig. 7. These features can be understood qualitatively from
Eq. (21). In the case of high birefringence, the linear part of
the vector W dominates compared with the nonlinear part and
forces the SOP to rotate around the x axis (normal to the plane

H VV

RC

LC

Output Soliton S1

Input Solitons 
S1 and S2

Output Soliton S3 Output Soliton S2

FIG. 7. Same as Fig. 3 except that fiber has a relatively large
birefringence. Black dots correspond to a third soliton discussed in
the text.

of the figure). This is the reason why the two vector solitons
follow a circular path around the center in Fig. 7.

B. Raman nonlinearity included

Finally, we consider the impact of Raman nonlinearity in
fibers exhibiting high birefringence. Figure 8 shows the tempo-
ral and spectral evolutions of the two polarization components
over 200LD in this case. It should be compared with Fig. 6,
where the case of high birefringence is shown without the
Raman contribution. In both cases, a relatively large difference
in the group velocities of the two components destroys their
mutual trapping. Once again two pulses forms two vector
solitons but only a small fraction of the y-component energy is
captured. The remaining energy in the y component propagates
as a scalar soliton moving faster than the vector solitons. The
Raman nonlinearity plays a minor role and does not introduce
new qualitative features. It redshifts the spectrum of each
soliton through SSFS and slows it down. As a result, the tilt
of the soliton trajectories are different and spectra are slightly
shifted toward the red side in Fig. 8 compared with Fig. 6.
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FIG. 8. Temporal (top row) and spectral (bottom row) evolu-
tion over 200LD of the x-polarized (left) and y-polarized (right)
components of the two interacting vector solitons inside an high
birefringence fiber. All parameters are the same as in Fig. 6 except
that the Raman contribution has been turned on.
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FIG. 9. Relative energy loss or gain of each soliton at a distance
of 110LD for a fiber with medium birefringence. All other parameters
are the same as in Fig. 2. The DW curve shows the energy shed in the
form of dispersive waves.

Otherwise, the Raman-induced SSFS has a relatively minor
effect on the overall evolution process.

The SOP of the two solitons whose evolution is shown in
Fig. 8 was also simulated numerically. However, the resulting
plot is virtually identical to that shown in Fig. 7. Although
high birefringence affects the SOP evolution drastically, the
inclusion of the Raman contribution does not introduce any
further changes. The reason is that the SOP evolution is totally
dominated by the large linear birefringence of the fiber (or by
the relatively large vales of the parameters b and δ). The initial
SOP of the vector soliton S2 changes very quickly (blue curve)
and rotates in a circular fashion around the center, as dictated
by this linear birefringence. The SOP of the scalar soliton does
not change at all because it contains only the y-polarized light.
We conclude that intrapulse Raman scattering does not have
a significant impact on the soliton dynamics in the case of
high birefringence. It causes a redshift in the spectra of both
solitons, but the impact of that redshift on the SOPs of the two
solitons is relatively minor.

VI. IMPACT OF RELATIVE PHASE

It is well known that the relative phase φ of two solitons
affects drastically their interaction inside isotropic fibers [1].
The attractive force that leads to collisions in Fig. 1 for
φ = 0 becomes a repulsive force even for φ = 45◦. Also, even
though no energy exchange occurs when φ = 0, some energy
is exchanged between two solitons even for relatively small
values of φ. Moreover, inclusion of the Raman nonlinearity
leads to energy transfer even for two in-phase solitons [9]. As
discussed in Sec. III, such an exchange also occurs for two
in-phase vector solitons.

In this section we consider the dependence of energy
transfer on the relative initial phase of two vector solitons. More
specifically, we focus on the case of Sec. IV where two in-phase
vector solitons were considered inside a medium-birefringence
fiber. For simplicity, we neglect the Raman contribution to the
fiber nonlinearity and vary the relative phase φ of two input

pulses. For each value of φ we solve Eqs. (6) and (7) over a
distance exceeding ξ = 100 to ensure that a kind of steady state
is reached. We calculate the energy loss or gain of each soliton
at that distance relative to its input energy. Figure 9 shows this
loss or gain as a function of φ.

Several points are noteworthy. First the energy is always
transferred from the leading soliton S1 to the trailing soliton
S2. Second, not all energy lost from S1 goes to S2 because
both solitons also shed energy in the form of dispersive waves.
The DW curve in Fig. 2 shows the fraction of total energy lost
to dispersive waves. Third, energy transfer is relatively large
for values of the relative phase between 0 and π/4, with a
maximum occurring near φ = 30◦ where the S1 soliton loses
almost 70% of its energy. Fourth, the energy lost to dispersive
waves is relatively large (about 25%). As mentioned earlier,
most of this loss can be attributed to fiber’s birefringence. If
we set birefringence to zero, only the TOD transfers energy to
a dispersive wave whose energy level is reduced to below 2%.

As a specific example, consider the case of two in-phase
solitons. The S1 soliton loses 38% of its energy, of which
14% is transferred to the S2 soliton. When we also include the
Raman nonlinearity, the S1 soliton loses 23% of its energy but
only 12% of it goes to the trailing soliton; the remaining 11% is
lost to dispersive waves. It appears from these lower numbers
that the Raman nonlinearity actually helps in stabilizing the
two vector solitons. However, this advantage disappears for
fibers with a large birefringence. Our numerical results show
that both solitons lose a large fraction of their energy (38%)
to dispersive waves in a fiber with large birefringence. We
conclude that large values of birefringence perturbs vector
solitons drastically and eventually lead to their destruction.

VII. CONCLUDING REMARKS

In this paper we have considered the nonlinear interaction
of two arbitrarily polarized vector solitons inside birefringent
optical fibers. We develop a general formalism based on two
coupled NLS equations that include both the Raman and the
Kerr nonlinearities. We use them to study how the two vector
solitons evolve in the temporal, spectral, and polarization
domains in optical fibers exhibiting no, medium, or large
birefringence. The main results can be summarized as follows:

The attractive force that leads to collisions of two in-phase
solitons in isotropic fibers is affected considerably by fiber’s
birefringence. In particular, no collisions occur even in the
case of medium birefringence. Rather, the two vector solitons
exchange energy as they approach each other and then move
away from each other. If the Raman nonlinearity is included,
energy is always transferred from the leading soliton to the
trailing soliton [9]. The fraction of energy transfer depends on
the relative phase of the two solitons and on whether the Raman
contribution is included. Moreover, considerably energy is
shed in the form of dispersive waves during this energy transfer.

Polarization of the solitons is also found to be affected
considerably by the fiber’s birefringence. Even if the two
solitons are identically polarized initially, their SOP evolves
along different trajectories on the Poincaré sphere as they
interact nonlinearly. Polarization of both solitons is found to
be affected considerably by the fiber nonlinearity in the case of
medium birefringence, but linear effects dominate its evolution
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in fibers with large birefringence. We also varied the initial
SOP of the two solitons by changing the angles θ and ψ in
Eqs. (15) and (16); the qualitative behavior seen in Figs. (1) to
(9) remains nearly the same in all cases.

Finally, we varied the relative phase of two input solitons
because the soliton interaction is known to be phase sensitive.
We found that the leading soliton always loses energy and
transfers some of it to the trailing soliton. A good fraction of
both soliton’s energy is also shed in the form of dispersive
waves. The situation becomes worse as the magnitude of
birefringence increases. In some specific cases, a vector soliton
loses as much as 70% of its energy to dispersive waves.

It should be stressed that we used a specific form of the two
input solitons given in Eqs. (15) and (16). As seen in the top row
of Fig. 1, no radiation is emitted for such vector solitons in the
absence of the TOD, Raman, and birefringence effects. When
these effects are present, two vector solitons shed radiation in
the form of dispersive waves. It may be possible to reduce this
radiation by changing the form of the two input pulses.
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