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We examine the 3D distribution of the degree of polarization (DOP) in the focal region of a thin paraxial lens.
Analytic expressions for the case of a focused Gaussian–Schell model beam are derived. These show that the DOP
satisfies certain spatial symmetry relations. Furthermore, its value varies strongly in the vicinity of the geometrical
focus, and its maximum, which need not occur at the focus, can be significantly higher than that of the incident
beam. © 2018 Optical Society of America
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1. INTRODUCTION

The state of polarization (SOP) of an electromagnetic beam [1]
is a fundamental quantity that determines how it behaves on
scattering [2] and how it propagates through a birefringent
medium. When the beam is partially polarized, the SOP is fur-
thermore quantified by the degree of polarization (DOP),
which is defined as the ratio of the spectral density of the por-
tion of the field that is fully polarized and the total spectral
density. Both the SOP and the DOP are local quantities that
may vary significantly from point to point. Furthermore, they
both typically change on propagation, even when that propa-
gation is through free space [3–5].

It is well known that the focusing action of a lens can dras-
tically change the properties of a stochastic wave field, such as
the intensity distribution [6], the spectral degree of coherence
[7], and its transverse coherence length [8]. Although the DOP
is widely applied, for example, as a gating technique in scatter-
ing [9], as a diagnostic tool in material science [10], in optical
coherence tomography [11], and in remote sensing [12], the
effect of a lens on the DOP of a random beam has until now
received scant attention. Notable exceptions are [13,14]. In the
latter study, it was found that focusing a completely unpolarized
3D field changes its polarization properties.

In a previous study by the present authors, it was predicted
that focusing a partially polarized beam (i.e., a 2D field)
can strongly increase the DOP in the focal plane, and that
spatial filtering in a 4f setup can be used to control this
effect [15].

In this paper, we chart the 3D distribution of the DOP in
the focal region of a thin lens. Within the validity of the paraxial
approximation, we derive explicit expressions for the DOP
of a Gaussian–Schell model beam and show that it satisfies cer-
tain spatial symmetry properties. The DOP has a nontrivial
structure, and its maximum need not occur at the geometrical
focus.

In our analysis, the DOP is calculated from knowledge of
the so-called cross-spectral density matrix, which describes the
second-order coherence properties of a beam-like field [16]. In
an experiment [17,18], the DOP, denoted as P�r,ω�, can be
inferred from the Stokes parameters through the relation [19]

P�r,ω� �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
S21�r,ω� � S22�r,ω� � S23�r,ω�

p
S0�r,ω�

: (1)

Here, the symbols Si�r,ω�, with i � 0,1, 2,3, represent the
spectral Stokes parameters at position r at frequency ω.
The DOP is bounded by 0 and 1. These limits correspond
to a completely unpolarized beam and a fully polarized beam,
respectively. For intermediate values, the beam is said to be
partially polarized.

2. PARAXIAL FOCUSING

Consider first a partially coherent scalar beam that propagates
close to the z axis and that is focused by a thin paraxial lens of
focal length f . Let U �in��ρ,ω� denote the field at the entrance
plane of the lens at a transverse position ρ � �x, y�. Then, the
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field distribution in the exit plane (ep) immediately behind the
lens is given by the expression (Sec. 5.1.3, [20])

U �ep��ρ,ω� � U �in��ρ,ω�A�ρ� exp�−jkρ2∕2f �: (2)

Here, the exponent represents the phase function of the lens,
with the wavenumber k � 2π∕λ � ω∕c, where λ denotes the
wavelength, and c is the speed of light. The pupil function A�ρ�
takes on the value 1 for points inside the aperture and 0
elsewhere. Within the framework of Fresnel diffraction, the
field at an arbitrary position �ρ, z� behind the lens becomes
(Sec. 4.2, [20])

U �ρ, z,ω� � exp�jkρ2∕2z�
jλz

ejkz
ZZ

∞

−∞
U �ep��ρ 0,ω�

× exp�jkρ 02∕2z� exp�−jkρ · ρ 0∕z�d2ρ 0: (3)

We assume that the effective beam width is less than the lens
radius. This means that we may replace the pupil function A�ρ�
by unity. On substituting Eq. (2) into Eq. (3), we then find that

U �ρ,z,ω�� exp�jkρ2∕2z�
jλz

ejkz
ZZ

∞

−∞
U �in��ρ 0,ω�exp�−jkρ 02∕2f �

×exp�jkρ 02∕2z�exp�−jkρ 0 ·ρ∕z�d2ρ 0: (4)

As is well known, in the special case that z � f , Eq. (4) reduces
to a Fourier transform relationship, indicating that the lens
produces a Fourier transform of the incident beam at its focal
plane.

Let us next consider the case where the incident field is an
electromagnetic beam. Because we are dealing with a paraxial
system, the two transverse Cartesian components of the electric
field, Ex and Ey, remain independent and both satisfy Eq. (4).
Meanwhile, the axial component Ez is negligibly small and can
be ignored.

The second-order statistical properties of a partially coherent
beam in a cross-sectional plane z are characterized by the cross-
spectral density matrix [16]

W�ρ1, ρ2, z,ω� �
�
W xx W xy
W yx W yy

�
: (5)

The elements of the matrix are given by the equations

W ij�ρ1, ρ2, z,ω� � hE�
i �ρ1, z,ω�Ej�ρ2, z,ω�i,

�i, j � x, y�, (6)

where the angular brackets denote the average taken over an
ensemble of statistical realizations of the beam. For brevity,
we will from now on no longer display the dependence of the
various quantities on the frequency ω. As both Ex and Ey can
be written in the form of Eq. (4), we find that the four elements
of the matrix W evolve with z as

W ij�ρ1, ρ2, z� �
exp�jk�ρ22 − ρ21�∕2z�

λ2z2
⨌∞

−∞W
�in�
ij �ρ 0

1, ρ
0
2�

× exp�−jk�ρ 02
2 − ρ 02

1 �∕2f � exp�jk�ρ 02
2 − ρ 02

1 �∕2z�
× exp�−jk�ρ 0

2 · ρ2 − ρ
0
1 · ρ1�∕z�d2ρ 0

1d
2ρ 0

2, (7)

where

W �in�
ij �ρ1, ρ2� � hE �in��

i �ρ1�E �in�
j �ρ2�i, (8)

denote the elements of the cross-spectral density matrix of the
incident field. Just as remarked below Eq. (4), when z � f ,
Eq. (7) describes a Fourier transform but now of the elements
of the cross-spectral density matrix instead of the field [8].

The degree of polarization depends on the cross-spectral
density elements at a single point [see Eq. (16)]. We are there-
fore concerned with the case ρ1 � ρ2 � ρ, for which Eq. (7)
reduces to

W ij�ρ, ρ, z� �
1

λ2z2

ZZZZ
∞

−∞
W �in�

ij �ρ 0
1, ρ

0
2� exp�−jk�ρ 02

2

− ρ 02
1 �∕2f � exp�jk�ρ 02

2 − ρ 02
1 �∕2z�

× exp�−jkρ · �ρ 0
2 − ρ

0
1�∕z�d2ρ 0

1d
2ρ 0

2: (9)

For a point of observation in the focal region, we use z � f �
Δ with jΔj ≪ f in Eq. (9). If we then use the Taylor-series
expansion

η�Δ� � 1

f
−

1

f � Δ
� Δ

f 2 −
Δ2

f 3 � O�Δ3�, (10)

we can approximate Eq. (9) by the expression

W ij�ρ, ρ, f � Δ�

� 1

λ2f 2

ZZZZ
∞

−∞
W �in�

ij �ρ 0
1, ρ

0
2� exp

�
−j
k
2
�ρ 02

2 − ρ 02
1 �η�Δ�

�

× exp
�
−j

k
f � Δ

ρ · �ρ 0
2 − ρ

0
1�
�
d2ρ 0

1d
2ρ 0

2: (11)

This equation can be used to calculate the elements of the cross-
spectral density matrix in the focal region. In the next section,
we apply it to a wide class of random beams, namely, those of
the Gaussian–Schell model [16,19].

3. GAUSSIAN–SCHELL MODEL BEAMS

The elements of the cross-spectral density matrix of the field in
the entrance plane can be written as

W �in�
ij �ρ 0

1, ρ
0
2� �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
S�in�i �ρ 0

1�S�in�j �ρ 0
2�

q
μ�in�ij �ρ 0

1, ρ
0
2�

�i, j � x, y�: (12)

Here, S�in�i �ρ 0� represents the spectral density of the ith com-
ponent of the electric-field vector, and μ�in�ij �ρ 0

1, ρ
0
2� is the cor-

relation coefficient between Ei at ρ 01 and Ej at ρ 0
2. We assume

that the lens is situated at the waist plane of a Gaussian–Schell
model beam [16]. In that case,

S�in�i �ρ 0� � A2
i exp�−ρ 02∕2σ2i �, (13)

μ�in�ij �ρ 0
1, ρ

0
2� � Bij exp�−�ρ 0

2 − ρ
0
1�2∕2δ2ij�: (14)

The parameters Ai, σi, Bij, and δij are independent of position
but may depend on the frequency. They cannot be chosen arbi-
trarily but have to satisfy several constraints (see Sec. 9.4.2, [16]
and [21]). For simplicity, we restrict ourselves to the case where
the two spatial widths are identical, i.e.,

σx � σy � σ: (15)

The degree of polarization, introduced by Eq. (1), can alterna-
tively be expressed as (Sec. 8.2, [16])
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P�ρ, z� �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 −

4DetW �ρ, ρ, z�
�TrW �ρ, ρ, z��2

s
, (16)

where Det and Tr denote the determinant and trace, respec-
tively. It is easily derived that, in this example, the DOP of
the incident beam is independent of position and given by
the formula

P�in� �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 −

4A2
xA2

y �1 − jBxyj2�
�A2

x � A2
y �2

s
: (17)

For the case of Ax � Ay, this expression reduces to

P�in� � jBxyj: (18)

The DOP in the focal region is obtained by calculating the
elements of the cross-spectral density matrix there. This is
achieved by substituting from Eqs. (13) and (14) into
Eq. (11) while introducing sum and difference variables

R� � ρ 0
1 � ρ 0

2

2
, R− � ρ 0

2 − ρ
0
1: (19)

We then find that the elementW xx of the cross-spectral density
matrix can be expressed as

W xx�ρ, ρf � Δ�

�
�
Ax

λf

�
2
ZZ

∞

−∞
exp

�
−
R2�
2σ2

��ZZ
∞

−∞
exp

�
−

R2
−

2Ω2
xx

�

× exp
�
−jkR− ·

�
η�Δ�R� � ρ

f � Δ

��
d2R−

�
d2R�, (20)

where we introduced the quantities

1

Ω2
ij
� 1

4σ2
� 1

δ2ij
, �i, j � x, y�: (21)

The integrations over R− can be carried out analytically to
obtain

W xx�ρ, ρ, f � Δ�

� 2π

�
ΩxxAx

λf

�
2

exp�−γ2xx�Δ�ρ2�

×
ZZ

∞

−∞
exp�−β2xx�Δ�R2�� exp�−α2xx�Δ�R� · ρ�d2R�, (22)

where the new parameters are given by

γ2ij�Δ� �
k2Ω2

ij

2�f � Δ�2 , β2ij�Δ� �
1

2σ2
� k2Ω2

ijη
2�Δ�

2
,

α2ij�Δ� �
k2Ω2

ijη�Δ�
f � Δ

: (23)

The last two integrals can be carried out by completing the
square in the exponents and making the change of variables

r� � βxx�Δ�R� � ξxx�Δ�ρ, (24)

where

ξ2ij�Δ� �
α4ij�Δ�
4β2ij�Δ�

: (25)

The final result is found to be

W xx�ρ, ρ, f � Δ�

� 2

�
πΩxxAx

λf βxx�Δ�

�
2

expf−�γ2xx�Δ� − ξ2xx�Δ��ρ2g: (26)

The other three elements of the cross-spectral density matrix
can be calculated in a similar fashion and are given by

W xy�ρ, ρ, f � Δ�

� 2AxAyBxy

�
πΩxy

λf βxy�Δ�

�
2

expf−�γ2xy�Δ� − ξ2xy�Δ��ρ2g, (27)

W yx�ρ, ρ, f � Δ�

� 2AxAyB�
xy

�
πΩxy

λf βxy�Δ�

�
2

expf−�γ2xy�Δ� − ξ2xy�Δ��ρ2g, (28)

W yy�ρ, ρ, f � Δ�

� 2

�
πΩyyAy

λf βyy�Δ�

�
2

expf−�γ2yy�Δ� − ξ2yy�Δ��ρ2g, (29)

where in Eq. (28) we made use of the fact that Byx � B�
xy

and δyx � δxy (see Sec. 9.4.2, [16]); hence, Ωyx � Ωxy,
γyx�Δ� � γxy�Δ�, βyx�Δ� � βxy�Δ�, αyx�Δ� � αxy�Δ�, and
ξyx�Δ� � ξxy�Δ�.

In close proximity of the focal plane Δ ≪ f , and the factor
η�Δ� in Eq. (10) may be well approximated by just a single
term of the Taylor series. It then follows that

W ij�ρ, ρ, f � Δ� � W ij�ρ, ρ, f − Δ�, �i, j � x, y�:
(30)

On making use of Eq. (30) in Eq. (16), one finds that

P�ρ, f � Δ� � P�ρ, f − Δ�: (31)

Hence, the degree of polarization in the focal region is symmet-
ric with respect to the focal plane. Furthermore, because the
matrix elements depend only on the modulus of the position
vector ρ, the DOP is also rotationally symmetric around the
z axis.

It is instructive to plot the DOP alongside the spectral
density

S�ρ, z� � W xx�ρ, ρ, z� �W yy�ρ, ρ, z�, (32)

because the focal region is the volume over which S�ρ, z� is
non-negligible. We mention in passing that the definition in
Eq. (32) implies that the symmetries of the DOP also apply
to the spectral density (c.f. [22,23]).

An example is given by Fig. 1 in which both the spectral
density (normalized to unity at the focus) and the DOP are
plotted in the focal plane �z � f �. It is seen that the former
decreases monotonically, whereas the latter first decreases and
then rises again. The oscillating behavior of the DOP is caused
by the different rates with which the different matrix elements
W xx , W yy, and W xy, fall off when ρ increases. For values of
ρ > 25 μm, the W xx element gradually becomes dominant.
This means that the field becomes more and more x polarized,
leading to an increasing DOP, albeit in a region with a decreas-
ing spectral density. It is important to note that the DOP at the
geometrical focus is significantly larger than that of the incident
beam, for which P�in� � 0.3 for all values of ρ.
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The DOP and the spectral density along the central axis
�ρ � 0� are plotted in Fig. 2. Whereas the spectral density de-
creases to zero when the distance jΔj increases, the DOP tends
to a constant value, namely, the DOP of the incident field (i.e.,
jBxyj). This value is indicated by the dashed red curve.

The 3D distributions of S�ρ, z� and the DOP in the focal
region are shown in Fig. 3. The two quantities show a strikingly
different behavior. Because we take the incident field to be a
narrow Gaussian beam, rather than a truncated beam with a
uniform intensity (as in Sec. 8.8, [1]), no Airy pattern with
secondary maxima is expected. Indeed, the spectral density de-
creases both in the transverse and the longitudinal directions.
The DOP, in contrast, has a more complex structure and does
not attain its maximum value at the geometrical focus.

It is seen from Eqs. (26)–(29) that the DOP depends on the
value of coherence radii δij via the parameter Ωij. This depend-
ence is illustrated in Fig. 4. There, the DOP in the focal plane is
plotted for selected values of δxx , with δxy and δyy being kept
fixed. Although the general behavior remains the same, it is
seen that the DOP at the geometrical focus is considerably
higher for the lowest value of δxx (blue curve). We note that,
in all three cases, the DOP at focus is larger than the DOP of
the incident field, as indicated by the dashed horizontal line.

4. CONCLUSIONS

We have used the concept of the cross-spectral density matrix
associated with a partially coherent optical beam to show that
the degree of polarization across the beam is affected consider-
ably when it is focused by a lens. We use our theory to examine
the 3D distribution of the degree of polarization in the focal
region of a thin paraxial lens. Our results show that the
DOP, a fundamental property of any stochastic wave field, ex-
hibits a complicated behavior. Unlike the spectral density, the
maximum value of the DOP need not occur at the geometrical
focus. Furthermore, this maximum can be significantly larger
than that of the incident beam. These findings may be applied
to situations in which the polarization properties of the wave
field play a significant role.
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Fig. 1. Normalized spectral density (blue curve) and the degree of
polarization (red) in the focal plane �z � f �. Also shown are W xx
(dashed green curve), W yy (dashed brown curve), and W xy (dashed
black curve). In this example, λ � 632.8 nm, f � 50 cm,
a � 2 cm, Ax � Ay � 1, Bxy � 0.3, σ � 10 mm, δxx � 3 mm,
δyy � 4 mm, and δxy � 5 mm.

Fig. 2. Normalized spectral density (blue curve) and the degree of
polarization (red) along the central axis �ρ � 0�. The dashed line in-
dicates the value of P�in�. Δ denotes the distance from the focal plane
z � f . The parameters are the same as in Fig. 1.

Fig. 3. 3D distribution in the focal region of the spectral density
(blue surface) and the degree of polarization (red surface). The param-
eters are the same as in Fig. 1.

Fig. 4. DOP in the focal plane for selected values of the coherence
radius δxx . Blue curve: δxx � 2.0 mm; red curve: δxx � 2.5 mm;
green curve: δxx � 3.0 mm. The DOP of the incident beam is indi-
cated by the dashed black line. All other parameters are as in Fig. 1.

Research Article Vol. 35, No. 9 / September 2018 / Journal of the Optical Society of America A 1521



Physical Sciences (MPS) (ECCS-1505636); China Scholarship
Council (CSC).

Acknowledgment. TDV’s research is supported by the
AFOSR; GPA’s research is supported by the MPS; X. Z. wishes
to thank the CSC.

REFERENCES

1. M. Born and E. Wolf, Principles of Optics, 7th ed. (Cambridge
University, 1999).

2. H. C. van de Hulst, Light Scattering by Small Particles (Dover,
1981).

3. D. F. V. James, “Change of polarization of light beams on propagation
in free space,” J. Opt. Soc. Am. A 11, 1641–1643 (1994).

4. O. Korotkova and E. Wolf, “Changes in the state of polarization of a
random electromagnetic beam on propagation,” Opt. Commun. 246,
35–43 (2005).

5. O. Korotkova, T. D. Visser, and E. Wolf, “Polarization properties of
stochastic electromagnetic beams,” Opt. Commun. 281, 515–520
(2008).

6. T. D. Visser, G. Gbur, and E. Wolf, “Effect of the state of coherence on
the three-dimensional spectral intensity distribution near focus,” Opt.
Commun. 213, 13–19 (2002).

7. D. G. Fischer and T. D. Visser, “Spatial correlation properties of
focused partially coherent light,” J. Opt. Soc. Am. A 21, 2097–2102
(2004).

8. T. D. Visser, G. P. Agrawal, and P. W. Milonni, “Fourier processing
with partially coherent fields,” Opt. Lett. 42, 4600–4602 (2017).

9. S. G. Demos and R. R. Alfano, “Temporal gating in highly scattering
media by the degree of optical polarization,” Opt. Lett. 21, 161–163
(1996).

10. D. T. Cassidy, S. K. K. Lam, B. Lakshmi, and D. M. Bruce, “Strain
mapping by measurement of the degree of polarization of photolumi-
nescence,” Appl. Opt. 43, 1811–1818 (2004).

11. B. Cense, T. C. Chen, B. H. Park, M. C. Pierce, and J. F. de Boer, “In
vivo depth-resolved birefringence measurements of the human retinal
nerve fiber layer by polarization-sensitive optical coherence tomogra-
phy,” Opt. Lett. 27, 1610–1612 (2002).

12. R. Shirvany, M. Chabert, and J.-Y. Tourneret, “Ship and oil-spill
detection using the degree of polarization in linear and hybrid/compact
dual-pol SAR,” IEEE J. Sel. Top. Appl. Earth Observ. Remote Sensing
5, 885–892 (2012).

13. J. Pu and B. Lü, “Focal shifts in focused nonuniformly polarized
beams,” J. Opt. Soc. Am. A 18, 2760–2766 (2001).

14. A. L. Sokolov, “Polarization structure of radiation in the focal region of
a lens,” Opt. Spectrosc. 107, 207–211 (2009).

15. X. Zhao, T. D. Visser, and G. P. Agrawal, “Controlling the degree of
polarization of partially coherent electromagnetic beams with lenses,”
Opt. Lett. 43, 2344–2347 (2018).

16. E. Wolf, Introduction to the Theory of Coherence and Polarization of
Light (Cambridge University, 2007).

17. D. Goldstein, Polarized Light, 2nd ed. (Marcel Dekker, 2003).
18. F. Afshinmanesh, J. S. White, W. Cai, and M. L. Brongersma,

“Measurement of the polarization state of light using an integrated
plasmonic polarimeter,” Nanophotonics 1, 125–129 (2012).

19. L. Mandel and E. Wolf, Optical Coherence and Quantum Optics
(Cambridge University, 1995).

20. J. W. Goodman, Introduction to Fourier Optics, 2nd ed. (McGraw Hill,
1996).

21. F. Gori, M. Santarsiero, R. Borghi, and V. Ramírez-Sánchez,
“Realizability condition for electromagnetic Schell-model sources,”
J. Opt. Soc. Am. A 25, 1016–1021 (2008).

22. J. J. Stamnes, Waves in Focal Regions (IOP, 1986).
23. Y. Chen, J. Gu, F. Wang, and Y. Cai, “Self-splitting properties of a

Hermite-Gaussian correlated Schell-model beam,” Phys. Rev. A
91, 013823 (2015).

1522 Vol. 35, No. 9 / September 2018 / Journal of the Optical Society of America A Research Article


	XML ID funding

