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Soliton dynamics in photonic-crystal fibers with frequency-dependent Kerr nonlinearity
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We study numerically the evolution of ultrashort pulses in passive uniform photonic-crystal fibers designed such
that their nonlinear Kerr coefficient γ varies considerably with wavelength. Such fibers exhibit a zero-nonlinearity
wavelength in addition to the zero-dispersion wavelength. We show that soliton evolution is affected considerably
by the relative locations of the zero-nonlinearity and zero-dispersion wavelengths with respect to the input
wavelength. Among the features observed numerically are as follows: the enhancement or suppression of the
Raman-induced redshift of fundamental solitons, amplification or suppression of a dispersive wave shed by the
soliton, and the splitting of a fundamental soliton into two co-propagating solitons through a dispersive wave that
forms a soliton in the normal-dispersion region because of a negative value of γ in this region.
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I. INTRODUCTION

It is well known that a short optical pulse can propagate
as solitons inside a nonlinear dispersive medium, such as an
optical fiber [1]. Fission of higher-order solitons into multiple
fundamental (first order, N = 1) solitons has been found
useful for supercontinuum generation in optical fibers [2–4].
However, fundamental solitons themselves are resistant to
fission or any kind of splitting [1,5]. Generally, splitting of
a fundamental soliton is only possible if the fiber is tapered
[6–8] or is doped and pumped to provide amplification [9–12].
Both of these methods rely on increasing the soliton order to
beyond N = 1.5 so that a second-order soliton is formed that
splits into two fundamental solitons.

In this article we study numerically the evolution of ultra-
short pulses in passive uniform photonic crystal fibers (PCFs)
designed such that their nonlinear Kerr coefficient γ varies
considerably with wavelength. This kind of strong frequency
dependence of the nonlinearity as well as negative nonlinearity
[γ (ω) < 0] have been demonstrated in fibers doped with silver
nanoparticles [13,14]. Indeed, in such fibers γ (ω) vanishes at
a specific wavelength, called the zero-nonlinearity wavelength
(ZNW) and changes its sign beyond that. A negative value of
γ gives rise to nonlinear phenomena not commonly observed
in conventional fibers. As an example, optical solitons can
form even when a pulse experiences normal group-velocity
dispersion (GVD). Here we study the evolution of fundamental
solitons in PCFs exhibiting a ZNW in addition to the zero-
dispersion wavelength (ZDW) and show that soliton dynamics
are affected considerably by the relative locations of the
ZNW and ZDW with respect to the input wavelength. In
conventional PCFs with positive γ at all wavelengths, the
ZDW separates a solitonic region from a nonsolitonic one.
As a result, any dispersive wave (DW) emitted by a soliton
continues to disperse after crossing the ZDW boundary. The
situation is different when the PCF has a ZNW close to the
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ZDW. In that case, the DW can form a soliton after crossing
the ZDW boundary. The net effect is that energy of a single
fundamental soliton appears to split into two parts propagating
as solitons in different spectral regions. This process is different
from soliton fission and bears resemblance to cellular mitosis
in biology.

The paper is organized as follows. In Sec. II we introduce the
propagation equation used for studying the soliton evolution
and provide details of the numerical procedure used for this
purpose. Section III shows how the frequency dependence of
γ can enhance the spectral redshift of solitons and suppress
transfer of energy from it to a DW. Section IV focuses on the
dramatic changes in the soliton dynamics when the PCF has
its ZDW and ZLW relatively close to the input wavelength.
Splitting of a fundamental soliton into two solitons through a
DW is studied in Sec. V. The main conclusions are summarized
in Sec. VI.

II. NUMERICAL MODEL

The propagation of short optical pulses is modeled well by
the generalized nonlinear Schrödinger equation (GNLSE) used
commonly for simulating supercontinuum generation [1]. We
convert this equation to the spectral domain and write it in the
form

∂Ã

∂z
− i[β(ω) − β(ω0) − β1(ω − ω0)]Ã

= iγ (ω)(1 − fR )F̂ (|A|2A) + γ0fR

× F̂
(

A

∫ +∞

−∞
hR (t ′)|A(z, t − t ′)|2dt ′

)
, (1)

where Ã(z, ω) is the Fourier transform of the pulse envelope
and F̂ denotes the Fourier-transform operation. Also, hR is
the Raman response function of silica with fR = 0.18 [1]. The
frequency dependence of the nonlinear parameter is taken into
account using

γ (ω) = γ0 + γ1(ω − ω0), (2)
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FIG. 1. γ1 versus the ZNW for our PCFs (solid black line). The
black vertical dashed line indicates the ZDW, and the red vertical
dashed line shows the pump wavelength. The red dot marks the point
at which ZNW and ZDW coincide. The light gray areas indicate the
solitonic region (SR), and the nonsolitonic region (NSR) is shown in
dark gray. The letters N and A refer to normal and anomalous GVDs,
respectively.

where γ1 = dγ /dω is evaluated at the pump frequency
ω0. We assume γ1 to be negative and vary it from 0 to
−0.8 (fs m−1/W). We assume that the Raman contribution
is not affected by the mechanism used to modify the Kerr
nonlinearity. The other parameters of the PCF are identical
to those used in Ref. [15]. In particular γ0 = 0.11 W−1/m.
The nonlinear parameter γ is inherently frequency dependent
in all optical fibers due to its dependence on the effective
mode area Aeff {γ = ω0n2/[cAeff (ω)]}, and the dependence is
characterized by the so-called shock time-scale τshock = 1/ω0

such that γ (ω) = γ (ω0) + (ω − ω0)/ω0 [1]. This frequency
dependence leads to the well-known effects of soliton fission
and self-steepening. The dependence of γ on the effective
mode area can be used to tailor the frequency dependence
of γ to a certain extent through careful engineering of the
fiber refractive index profile. In practice this can mean novel
photonic crystal fibers [3] or tapered fibers [16]. However,
the effective area is not the only frequency-dependent quan-
tity in the expression for γ . The nonlinear refractive index
n2, although weakly frequency dependent for silica, can be
strongly frequency dependent for other materials. Hollow-core
photonic crystal fibers offer a platform to utilize different gases
for the fiber core material [17] and even a pressure gradient
along the fiber [18], hence, significantly changing the nonlinear
properties of the fiber compared to silica. The most drastic
changes, such as negative values of γ , can be induced by
doping the fiber with metal nanoparticles, which is how the
fibers studied here could be manufactured in practice [13,14].
Such strong frequency dependence is mathematically similar
to the ordinary silica fiber nonlinearity that is responsible
for self-steepening and optical shock effects, but it will be
demonstrated here that altering the magnitude of the frequency
dependence [the value of γ1 in Eq. (2)] will cause significant
changes in the propagation dynamics of ultrashort pulses.

When γ1 < 0, the Kerr nonlinearity vanishes at a specific
frequency ω = ω0 − γ0/γ1; ZNW is the wavelength corre-
sponding to this frequency. The relation between γ1 and
ZNW is shown in Fig. 1 where the vertical black line shows
the location of the PCF’s ZDW and the dashed red line
shows the pump wavelength of 835 nm. Solitons can exist at
wavelengths for which γ (ω) and β2(ω) have opposite signs.
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FIG. 2. Spectral evolutions of the 10-fs fundamental soliton inside
a 50-cm-long PCF for (a) γ1 = 0 and (b) γ1 = −0.225 (fs m−1/W).
The black dashed lines show the ZDW. The bars above the plots
indicate the solitonic (lighter gray) and nonsolitonic (darker gray)
regions.

The wavelengths for which this condition is met are referred
to as the SR; the other wavelengths then belong to the NSR.
Depending on the value of γ1, the SR might be disjoint, and
parts of the SR may have normal dispersion as seen in Fig. 1.

To study pulse propagation in fibers with frequency-
dependent nonlinearity, we solve Eq. (1) numerically using
the fourth-order Runge-Kutta method. The 50-cm-long PCF
has its ZDW at 780 nm. The input pulse at a wavelength
of 835 nm with A(0, t ) = √

P0sech(t/T0) has a full width
at half maximum of 10 fs. The peak power of the input
pulse P0 = 3.48 kW is chosen such that the soliton order is
N = T0

√
γ0P0/|β2| = 1 at the input end of the fiber. Contrary

to a prevalent misconception, the GNLSE does not assume
a slowly varying pulse envelope and is accurate down to the
single-cycle regime far from material resonance frequencies
[3,19].

III. INTRAPULSE RAMAN SCATTERING

It is well known that the spectrum of short solitons shifts
to the red side because of intrapulse Raman scattering [1],
a phenomenon referred to as the soliton self-frequency shift
(SSFS). For positive values of the nonlinearity slope γ1, this
shift becomes smaller, resulting in the suppression of SSFS
[20]. Since γ1 is negative in our simulations, the nonlinear ef-
fects become enhanced as the soliton’s spectrum is redshifted.
This leads to a variety of interesting effects, depending on the
value of γ1.

As an example, Fig. 2 compares the spectral evolu-
tions of a 10-fs soliton inside two PCFs with γ1 = 0 and
−0.225 (fs m−1/W). The γ1 = 0 case shown in part (a) dis-
plays typical soliton dynamics. One sees the formation of a
DW near 680 nm within the first few centimeters, followed
by a continuous shift of the soliton spectrum toward the red
side with some pump energy left at the input wavelength. This
scenario is modified considerably in part (b) where γ1 < 0. The
soliton’s redshift is enhanced considerably. But, most remark-
ably, the DW is almost completely suppressed. The most likely
explanation for the DW suppression is that the soliton moves
out of the phase-matching spectral region so quickly that little
energy can be transferred to the DW. The SSFS enhancement
and DW suppression certainly appear to be connected. In fact,
the specific value of γ1 = −0.225 (fs m−1/W) was chosen
because it leads to both the largest redshift and the least
intense DW. Furthermore, for γ1 = −0.225 (fs m−1/W) the
DW frequencies are very close to the ZNW meaning that these
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FIG. 3. Temporal (left) and spectral (middle) evolutions of a 10-fs soliton inside a 50-cm-long PCF for γ1 = −0.325 (upper row), −0.35
(middle row), and −0.375 (fs m−1/W) (lower row). The normalization is with respect to the input peak power that corresponds to 0 dB.
Spectrograms at the PCF output are shown in the right column for each case. The solid and dashed black lines mark the ZNW and the ZDW,
respectively. Note the smaller wavelength range in the last spectrogram. The side bars in the spectrograms indicate the solitonic (lighter gray)
and nonsolitonic (darker gray) regions.

frequencies experience smaller nonlinear effects which might
hinder power transfer to them.

IV. AMPLIFICATION OF DISPERSIVE WAVES

The pulse evolution becomes drastically different when γ1

has values between −0.325 and −0.375 (fs m−1/W). Figure 3
shows the temporal and spectral evolutions for three different
fibers having γ1 = −0.325 (top row), −0.35 (middle row), and
−0.375 (fs m−1/W) (bottom row). The spectrograms at the
output of the fiber in each case are shown is the last column. For
γ1 = −0.325 (fs m−1/W) (top row), a DW is formed within
the first few centimeters once the phase-matching condition
is fulfilled, and it is located in the NSR region. This DW is
trapped by the soliton, and both decelerate together as also
evident in the spectrogram. The constant blueshift of the DW
is the result of its deceleration in the normal-GVD regime so
that its speed matches with that of the soliton. Note that the
DW also gains energy from the soliton as it propagates down
the fiber.

The preceding scenario changes considerably for γ1 =
−0.35 (fs m−1/W) (middle row in Fig. 3). During the first half
of the PCF length, we observe the redshift of the soliton and
the blueshift of the DW, similar to the top row. However, in the
second half of the PCF the redshift of the soliton turns into a
blueshift. The DW is still trapped, and it redshifts its spectrum,
but the two move closer in time. Moreover, the intensity of
the DW becomes considerably higher, and it becomes even
more intense than the soliton after 30 cm of propagation. These
features are a manifestation of several different effects acting
together. First, it is known that self-steepening can amplify a
DW [21]. Second, energy can be transferred from the soliton to
the DW through temporal reflections [22], which are especially
evident around 25 cm of propagation in the middle row of
Fig. 3. Third, the more the soliton redshifts, the larger the value
of γ it experiences. This means that the soliton must decrease
its width, or peak power, or both to maintain N = 1, which

can force the soliton to shed off some of its energy in the form
of a DW. This only happens for strongly frequency-dependent
nonlinearity for which the change in γ at the soliton’s central
frequency is too rapid for the soliton to adjust to adiabatically.

The last row of Fig. 3 shows what happens when γ1 is made
even more negative by choosing γ1 = −0.375 (fs m−1/W).
Both the amplification of the DW and the blueshift of the
soliton after 20 cm become stronger to the extent that their
spectra appear to merge together at the PCF output. For this
value of γ1, a considerable part of the soliton’s energy is
transferred to the DW such that its spectrum becomes narrower
and is blueshifted as the DW becomes more intense. Indeed, the
DW now consists of two different frequency bands separated by
the ZNW as seen in the spectrogram. This further indicates that
the energy transfer from the soliton to frequencies where the
nonlinear parameter γ close to zero is not efficient even when
the phase-matching condition is fulfilled. The vast majority
of the DW energy is still on the blue side of the ZNW. The
temporal evolution on the left shows that the soliton has
returned to its original position and is considerably wider
because of its energy loss. Although the DW has more energy,
this energy is spread out over a much wider temporal window
compared to the soliton. These features are also evident in the
spectrogram where we also see a second DW emitted by the
soliton on the red side.

V. FORMATION OF TWO SOLITONS

We have seen in Fig. 3 how a fundamental soliton emits
a DW and subsequently amplifies for negative values of γ1

near γ1 = −0.35 (fs m−1/W). The question we ask is whether
this amplified DW can form a second soliton if γ1 is made even
more negative. The DW needs to be in the solitonic region of the
spectrum where both γ and β2 have opposite signs. The size of
the solitonic spectral region can be increased by makingγ1 even
smaller (larger in magnitude). In this case, the input soliton
can transfer a large portion of its energy to new frequencies
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FIG. 4. Temporal (first column), and spectral (second column) evolutions of the fundamental soliton inside a 50-cm-long PCF for γ1 = −0.6
(upper row), and −0.7 (lower row) (fs m−1/W) (the last chosen such that the ZNW coincides with the ZDW). The input peak power corresponds
to 0 dB. The spectrograms at the PCF output are shown in third column for each case. The solid and dashed lines represent the ZNW and
the ZDW, respectively. Note that the dispersive waves around 600 and 1100 nm have been delayed by 7 ps and hence are not visible in the
spectrogram.

in the solitonic region on the blue side of both the ZDW
and the ZNW. Figure 4 compares the temporal and spectral
evolutions of the 10-fs input pulse for γ1 = −0.6 (top row), and
−0.7 (fs m−1/W) (bottom row). The spectrograms at the out-
put of the fiber are shown in the right column. For both values
of γ1, the input spectrum lies on both sides of the ZNW and the
ZDW, and the splitting of the initial pulse leads to two solitons
and multiple dispersive waves. For γ1 = −0.6 (fs m−1/W)
(top row) one of the solitons is in the anomalous-GVD regime,
and the other one is in the normal-GVD region. However, it
is noteworthy and even counterintuitive that, when the ZDW
and ZNW coincide (bottom row of Fig. 4), both solitons at the
fiber output are on the same side of the ZNW where the GVD
is anomalous.

The reason for the differences in the spectra of the two
forming solitons in the two cases shown in Fig. 4 has to do
with the temporal dynamics of the solitons. In the temporal
trace for γ1 = −0.7 (fs m−1/W), the two solitons pass through
one another during their first collision, whereas for γ1 =
0.6 (fs m−1/W) the solitons interact and collide multiple times
before one of the solitons gains most of the power and breaks
free. The outcomes of such solitonic interactions can be very
different depending on the relative phases of the solitons [23],
and this phase sensitivity can explain some of the differences
seen in the two cases in Fig. 4. In-phase collisions lead

to narrow high-intensity pulses and the associated spectral
broadening. A DW is emitted during each collision, and more
intense DWs lead to higher spectral recoil which can push the
solitons in the opposite direction in the spectrum [24,25]. An
intense DW on the red side then means that the soliton gets
pushed towards the blue.

Decreasing γ1 below −0.7 (fs m−1/W) brings the ZNW to
the red side of the ZDW and brings it closer to the pump. The
top row in Fig. 5 shows the temporal and spectral evolutions for
a PCF with γ1 = −0.8 (fs m−1/W). The nonsolitonic region
between the ZNW and the ZDW is now 7-nm wide. The bottom
row shows the same case without including the Raman contri-
bution. This helps in isolating the role of the Raman effects.

Similar to Fig. 4, the soliton splits into two temporally
separated pulses of different group velocities. The inset in
Fig. 5 shows how the solitons separate from one another
right at the input. The spectra of the individual pulses remain
almost unchanged after the initial transient evolution, and
changes in the spectrum with distance are a manifestation of
the increasing temporal separation between the solitons and the
corresponding DWs. When the Raman effect is off (lower row
of Fig. 5) the DWs between the solitons disappear, but other
than that and a slight change in the solitons’ group velocities,
the cases with and without the Raman effect look quite similar.
In a conventional fiber, SSFS bends the solitons’ trajectories,
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which straighten if the Raman effect is turned off. Here, the
trajectories are straight lines whether or not the Raman effect
is included, which indicates that the frequency dependence of
the nonlinearity has suppressed the SSFS almost completely.

VI. CONCLUSIONS

We have studied numerically the evolution of ultrashort
optical pulses in passive uniform PCFs designed such that
their nonlinear Kerr coefficient γ varies considerably with
wavelength. In particular, we focused on the case in which
γ decreases linearly with increasing frequency such that the
Kerr nonlinearity changed its nature from self-focusing to self-
defocusing beyond a certain frequency. Such fibers exhibit a
zero-nonlinearity wavelength in addition to the zero-dispersion
wavelength. We found that soliton evolution is affected con-
siderably by the relative locations of the zero-nonlinearity
and zero-dispersion wavelengths with respect to the input
wavelength.

Our numerical results include both the Kerr and the Raman
nonlinearities together with self-steepening because of the
femtosecond nature of the input pulse. We also include a
realistic dispersion profile for the PCF. As a result, the spectrum
of a fundamental soliton shifts to the red side through SSFS
as the soliton also sheds some energy in the form of a DW.
One interesting feature we observe is the enhancement of
the Raman-induced redshift of fundamental solitons. This is
understood by noting that the Kerr nonlinearity is enhanced
in our PCF at longer wavelengths. However, our numerical
results show that the SSFS enhancement nearly suppresses the
DW when the dispersion slope is negative but not too large in
magnitude. With a further increase in its magnitude, the SSFS
enhancement turns into SSFS suppression that is accompanied
by an amplification of the DW shed by the soliton. Moreover,

the DW is trapped by the soliton, and its spectrum moves closer
to that of the soliton, resulting in spectral compression at the
PCF output. These features are found to be quite sensitive to
the exact numerical value of the nonlinearity slope γ1; even a
10% change in its value can produce dramatic changes in both
the time and the spectral domains.

When the magnitude of dispersion slope is increased further
(keeping it negative), a further change occurs in the soliton
dynamics. The amplified DW now becomes so strong that it
forms a fundamental soliton and creates its own DW, even
though it lies in the normal-GVD region. The region behind
it becomes clear by noting that the nonlinear γ has become
negative in this spectral region, allowing for a soliton to form.
This is interesting from a fundamental perspective because the
energy of a fundamental soliton appears to split into two wider
solitons. Of course, the splitting is not direct because it occurs
through a DW that forms a soliton in the normal-dispersion
region because of a negative value of γ1 in this region.
The important takeaway is that soliton dynamics becomes
quite complex when the Kerr nonlinearity becomes strongly
dispersive and leads to the presence of a ZNW in addition to
the ZDW. Since the relative positions of these two wavelengths
can be tailored through suitable design changes, such PCFs are
suitable for a variety of practical applications.
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