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We investigate stability of optical solitons in graded-index
(GRIN) fibers by solving an effective nonlinear Schrödinger
equation that includes spatial self-imaging effects through
a length-dependent nonlinear parameter. We show that
this equation can be reduced to the standard NLS equation
for optical pulses whose dispersion length is much longer
than the self-imaging period of the GRIN fiber. Numerical
simulations are used to reveal that fundamental GRIN sol-
itons as short as 100 fs can form and remain stable over
distances exceeding 1 km. Higher-order solitons can also
form, but they propagate stably over shorter distances.
We also discuss the impact of third-order dispersion on
a GRIN soliton. © 2018 Optical Society of America

OCIS codes: (190.4370) Nonlinear optics, fibers; (190.5530) Pulse

propagation and temporal solitons.
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Temporal solitons have been studied extensively in the context
of single-mode optical fibers [1–3]. The question of whether
solitons can form inside multimode fibers attracted attention
as early as 1980 [4,5]. It was realized that different group delays
associated with different modes were likely to hinder the for-
mation of such solitons. Since intermodal group delays are
much smaller inside a graded-index (GRIN) nonlinear medium,
it was natural to consider the formation of multimode solitons
in a GRIN medium. Indeed, theoretical work during the
1990 s indicated that a GRIN medium may even support the
formation of spatiotemporal solitons that are confined in both
space and time [6,7]. Although such bullet-like solitons have
not yet been observed, a multimode temporal soliton composed
of three modes was observed in 2013 inside a GRIN fiber [8].
Since then, multimode solitons have remained of continuing
interest [9–11].

Two approaches have been used to model multimode sol-
itons. In a brute-force technique, the full four-dimensional
��3� 1�D� problem is solved numerically, with different ap-
proximations made to manage the computing time [8,9].
Alternatively, a modal expansion is made, and a large set of
coupled �1� 1�D nonlinear Schrödinger (NLS) equations
are solved numerically [9,12]. Both techniques require sub-
stantial computational resources. Here we employ a much sim-
pler approach in which a single NLS equation is used to study
the formation of GRIN solitons. This equation was derived

recently [13] using the variational solution obtained in 1992
for a Gaussian beam propagating inside a GRIN medium [14].
The periodic self-imaging of a Gaussian beam results in a NLS
equation whose nonlinear term varies periodically along the
length of a GRIN fiber. The same periodic behavior applies
to all beams that represent nonlinear eigenmodes of the spatial
problem [15]. We use the �1� 1�D NLS equation to inves-
tigate the conditions under which temporal solitons can form
inside a GRIN fiber.

Since the full problem is quite involved, it is important to
make some simplifications. We assume that a pulsed Gaussian
beam is propagating along a GRIN fiber whose refractive index
varies inside the core as

n�r, I� � n0�ω��1 − Δ�ρ∕a�2� � n2I�ρ ≤ a�, (1)

where n0 is the core index, a is the core radius, Δ � �n0 − nc�∕
n0, nc being the cladding index. The last term represents self-
focusing, and it depends on the local intensity I and the Kerr
coefficient n2. We ignore the cladding completely and assume
that the beam remains confined to the fiber core because of the
graded nature of the refractive index and the Kerr self-focusing.
We also neglect all polarization effects and assume that the elec-
tric field is polarized along the x axis and that this state of
polarization does not change with propagation.

Using E�r, t� � x̂E�r�eiβ0z−iω0t with β0 � n0ω0∕c at the
carrier frequency ω0, and assuming E�r� to be a slowly varying
function of z, the full �3� 1�D propagation equation is [13]
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where ∇2
T is the transverse Laplacian operator and D̂ is the

dispersion operator in the form D̂�ω� � P
m�2βmω

m∕m! [3].
If only group-velocity dispersion (GVD) is included, D̂�ω� �
β2ω

2∕2, where β2 is the GVD parameter. A numerical solution
of the preceding equation is time-consuming because of its
�3� 1�D nature.

Conforti et al. [13] used the known Gaussian beam solution
obtained in 1992 in the form [14]

F �r� � w0

w
exp

�
−
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2w2 � iϕ�r�
�
, (3)

to write the solution of Eq. (2) as E�r, t� � A�z, t�F �r� and
showed that A�z, t� satisfies the �1� 1�D NLS equation
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where the nonlinear parameter γ � ω0n2∕�cAeff � is defined
using the effective area of the input Gaussian beam and the
periodically varying function f �z� is given by

f �z� � w2�z�∕w2
0 � cos2�πz∕zp� � C sin2�πz∕zp�: (5)

Here w0 is the input beam width, and the parameters zp and
C are defined as

zp �
πaffiffiffiffiffiffi
2Δ

p , C � �1 − p�z2p
�πβ0w2

0�2
, (6)

where p is related to the input peak power P0 as p �
n2�β0w0�2P0∕2n0. Physically, zp is the self-imaging period
of a GRIN fiber, indicating that the beam width w oscillates
such that it recovers its input value w0 at distances that are
multiples of zp. At distances z � m�zp∕2�, w∕w0 takes its min-
imum value

ffiffiffiffi
C

p
, i.e., C governs the extent of beam compres-

sion during each cycle. The Kerr nonlinearity affects C through
the dimensionless number p that is related to the beam collapse
known to occur in any nonlinear Kerr medium for p � 1.
Multimode solitons discussed here require much lower peak
powers (p ≪ 1). The phase ϕ�r� appearing in Eq. (3) is given
in Ref. [14], but its explicit form is not needed in this work.

Equation (4) includes the impact of spatial beam width os-
cillations of a Gaussian beam resulting from GRIN-induced
self-imaging through the function f �z�. It reduces a complex
�3� 1�D problem to a single NLS equation that is much faster
to solve and can be used to gain physical insight.

We now investigate under what conditions Eq. (4) can sup-
port GRIN solitons whose temporal shape does not change
along the fiber length. It is clear from the presence of f �z� in
this equation that standard temporal solitons studied in the
context of single-mode fibers [3] cannot form in GRIN fibers.
More precisely, this equation is not integrable by the inverse
scattering method, which rules out the formation of ideal sol-
itons. However, an equation similar to Eq. (4) has been found
before in the context of long fiber links employing amplifiers
periodically for compensating fiber losses. It was found in 1990
that a new kind of soliton, known as the guiding-center soliton,
can propagate inside such fiber links [16]. It is also known as
the loss-managed soliton [17]. Under appropriate conditions,
such a soliton should also exist in GRIN fibers. We refer to
it as the GRIN soliton to emphasize that a parabolic index pro-
file is essential for its existence.

It is useful to normalize Eq. (4) in soliton units using [3]

τ � t∕T 0, ξ � z∕LD, U � A∕
ffiffiffiffiffi
P0

p
, (7)

where T 0 and P0 are the width and the peak power of input
pulses, and LD � T 2

0∕jβ2j is the dispersion length. The nor-
malized NLS equation then takes the form
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where we assumed anomalous GVD (β2 < 0) and introduced
the soliton order N through N 2 � γP0LD. Using Eq. (4), the
periodic function f �ξ� can be written as

f �ξ� � cos2�πqξ� � C sin2�πqξ�, q � LD∕zp: (9)

For typical GRIN fibers with a � 25 μm and Δ � 0.01, the
self-imaging period zp is a fraction of 1 mm. In contrast, the
dispersion length LD for a fiber exceeds 50 cm for T 0 > 0.1 ps
(using β2 � −20 ps2∕km at wavelengths near 1550 nm). As a
result, q is a large number with values q > 100 even for rela-
tively short 200 fs input pulses. Thus, the beam width inside a
GRIN fiber oscillates hundreds of times within one dispersion
length in most practical situations.

As discussed in Ref. [16], the dispersion length provides the
scale over which solitons evolve. Since solitons cannot respond
to beam width changes taking place on a scale of 1 mm or less,
their temporal width does not change much even when the spa-
tial width changes by a large fraction. This feature suggests that
a soliton-like evolution of optical pulses is possible inside
GRIN fibers, in agreement with recent observations [8]. We
can find the input power needed for launching such GRIN sol-
itons by writing the solution of Eq. (8) in the form U �
Ū � u, where Ū represents average over one period zp. The
fast-scale perturbations can be shown to satisfy juj ≪ jŪ j as
long as q ≫ 1 [16]. The average soliton dynamics are captured
by the NLS equation
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� iN̄ 2jŪ j2Ū � 0, (10)

where N̄ is defined by averaging the nonlinear term average
over the self-imaging period zp as

N̄ 2 � N 2 1

zp

Z
zp

0

f −1�z�dz � N 2ffiffiffiffi
C

p , (11)

where the integration was carried out using f �z� given in
Eq. (5). This is our main result. It shows that the peak power
of input pulses must be adjusted to ensure N̄ � 1 for the fun-
damental GRIN solitons. From the preceding equation, this
can be realized if we choose N 2 � ffiffiffiffi

C
p

. Since N 2 � γP0LD,
the peak power P0 of input pulses must be reduced by the fac-
tor of

ffiffiffiffi
C

p
to realize GRIN solitons. This makes sense physi-

cally by noting that a reduction in the spatial beam width
during each self-imaging cycle enhances the peak power of
pulses. This enhancement must be balanced, on average, by
reducing the input power by an appropriate factor.

Since Eq. (8) is not exactly integrable, it follows that the
GRIN solitons, representing solutions of Eq. (10), may not be
absolutely stable. The important question is over what distan-
ces such solitons propagate stably. To answer this question, we
solve Eq. (8) numerically so that all perturbations induced by
beam width oscillations are automatically included. We choose
C � 0.2 for which beam width is reduced by a factor of about
2.2 during each cycle. The input field is taken in the form
u�0, τ� � sech�τ� and N � C1∕4 to ensure it forms a funda-
mental GRIN soliton. Figure 1 shows the evolution in two
cases of (a) q � 100 and (b) q � 1. As expected, the soliton
maintains both its shape and spectrum over 100LD for a large
value of q. We compare the shape and spectrum at 100LD to
those at the input end in Fig. 2(a). All perturbations induced by
beam width oscillations remain negligible (below a 50 dB level)
even after 100 dispersion lengths. Since dispersion length can
exceed 50 m for pulses longer than 1 ps, such solitons should
remain intact over fiber lengths exceeding 10 km. By the same
token, 100 fs GRIN soliton can survive over 100 m.

The q � 1 case shown in Fig. 1(b) corresponds to the
worst-case scenario since the dispersion length is equal to the
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self-imaging distance. This may happen in practice for ultra-
short pulses (LD � 5 mm for T 0 � 10 fs). Although GRIN
solitons are not stable in this limiting case, their evolution over
10LD still remains acceptable. As seen in Fig. 2(b), the pulse
shape remains sech-like, and perturbations induced by beam
width oscillations remain at the 40 dB level after 10LD. The
spectrum now exhibits sidebands, but their amplitude is still
below 1%.

The preceding results assumed C � 0.2, and one may won-
der how they change if C is different. We have carried out
numerical simulations for values of C in the range 0.1–10
and found no qualitative differences. Notice that C � 1 is a
special case in which the beam width remains constant with

z and maintains its initial value. In this situation, GRIN sol-
itons reduce to “bullet-like” spatiotemporal solitons whose size
and shape remain fixed both in space and time as they propa-
gate along the fiber. When C is close to 1, GRIN solitons are
not perturbed much by weak spatial oscillations and can remain
stable over very long lengths if q ≫ 1. When C deviates from 1
by a factor of up to 5, we recover the situation shown in Figs. 1
and 2. When C deviates from 1 by a larger factor, perturbations
induced by beam width oscillations become larger and limit the
fiber length over which GRIN solitons remain stable.

The standard NLS equation supports a whole family of sol-
itons [3] classified through their soliton orderN . Since Eq. (10)
has the same mathematical form, we expect the modified
parameter N̄ to play the same role. Thus, higher order GRIN
solitons must form for integer values of N̄ > 1. Here, we
investigate the stability of such solitons by solving Eq. (8)
numerically. Figure 3 shows the evolution of a third-order sol-
iton over 10LD by keeping all parameters the same as in Fig. 1
and setting N̄ � 3 in Eq. (11). In the case of q � 100, higher
order GRIN solitons exhibit a periodic evolution pattern such
that the original shape and spectrum are recovered at distances
ξ � mπ∕2, indicating that the soliton period is �π∕2�LD. This
is expected from standard soliton theory [3]. From our earlier
discussion, we expect this periodic evolution to become unsta-
ble as q becomes close to 1. Indeed, as seen in Fig. 3(b), the
periodic evolution breaks down just after one dispersion length
in the case of q � 1.

Since short pulses are often used in experiments, we briefly
examine the impact of third-order dispersion (TOD) on a fun-
damental GRIN soliton. Similar to the case of standard solitons,
we keep one additional term in the expansion of the dispersion
operator such that D̂�ω� � β2ω

2∕2� β3ω
3∕6, where β3 is the

TOD parameter. As a result, the normalized NLS Eq. (8) has an
additional third derivative term and takes the form

i
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− iδ
∂3U
∂τ3

� N 2f −1�ξ�jU j2U � 0, (12)

where the dimensionless parameter δ � β3∕�6jβ2jT 0� ac-
counts for the TOD. As before, we solve this equation numeri-
cally using N̄ � 1 and 3 with δ � 0.1. Figure 4 shows the
evolution over 5LD by keeping all other parameters the same
as in Fig. 1(a). In the case of N̄ � 1, the soliton develops an

Fig. 2. Comparison of temporal (top) and spectral (bottom) inten-
sity profiles for a fundamental GRIN soliton in the two cases shown
in Fig. 1.

Fig. 3. Same as Fig. 1 except that evolution of a third-order GRIN
soliton (N̄ � 3) is shown for the same two values of q.

Fig. 1. Temporal (top) and spectral (bottom) evolutions of the fun-
damental GRIN soliton using C � 0.2. (a) Evolution over 100LD for
q � 100; (b) evolution over 10LD for q � 1. In both cases, intensity is
color coded on a 40 dB scale.
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oscillating tail on the trailing side. This can be interpreted as the
radiation shed by a fundamental GRIN soliton in the form of a
dispersive wave because of TOD-induced perturbations [18].
The appearance of a new spectral peak with a frequency shift
near �ν − ν0�T 0 � 0.8 supports this interpretation. Indeed,
the position of this peaks agrees with the well-known phase-
matching condition [3] ν − ν0 � �4πδT 0�−1. In the case of
N̄ � 3, the evolution seen in Fig. 4(b) can be interpreted as the
fission of a third-order soliton, resulting in three shorter fun-
damental solitons that also shed radiation as dispersive waves.
This scenario is identical to that of standard perturbed solitons
and leads to supercontinuum generation.

In conclusion, we have presented a new method, to the best
of our knowledge, that can be used to study the stability of
multimode solitons in GRIN fibers. Rather than employing
a modal approach, a variational method is used to find an
approximate solution of the full problem in the form of a
pulsed Gaussian beam. The periodic self-imaging of the
Gaussian beam results in a single NLS equation whose nonlin-
ear term varies periodically along the length of a GRIN fiber.
We used this equation to investigate the conditions under
which temporal GRIN solitons can form inside such a fiber.
Using the soliton units, we have identified a temporal length
scale Ld and a spatial length scale zp, whose ratio q provides a
dimensionless quantity that can be used to find the conditions
under which fundamental and higher order solitons can form
and propagate stably inside a GRIN fiber. The most important
condition is that q � LD∕zp should be a large number exceed-
ing 10. We showed that when this condition is satisfied, the
nonlinear term can be averaged over one spatial period zP ,
and the problem reduces to a standard NLS equation with a
modified soliton parameter N̄ . The fundamental GRIN soli-
tons form for N̄ � 1, and higher order solitons exist for other
integer value of N̄ .

We investigated stability of optical solitons in GRIN fibers
by solving numerically the underlying �1� 1�D NLS equation
that included spatial self-imaging effects through a periodically
varying nonlinear parameter. The results show that fundamen-
tal GRIN solitons can propagate stably over 100LD or more
when q exceeds 100. In real units, pulses as short as 100 fs
can form fundamental GRIN solitons that propagate stably
over distances exceeding 1 km.

One may ask how the GRIN soliton studied here is related
to the multimode soliton studied in Ref. [8], where different
modes shift their spectra to move in such a way that all modes
forming the soliton move at a common speed. Since we do not
use a modal approach, we cannot decompose the soliton’s spec-
trum into its multiple parts associated with individual modes.
However, we note that our approach is valid when the input
pulse excites a large number of modes. Solitons studied in
Ref. [8] using multimode equations [12] were composed of
a few low-order modes; our approach cannot be used for such
solitons.

One may also ask whether our solution agrees with the full
�3� 1�D problem. Even though we have not done such a
comparison in this Letter, we fully expect our result to agree
with the full problem if the condition zp ≪ LD is satisfied.
This is the condition for which spatial variations affect the
temporal dynamics but the reverse does not occur, i.e., spatial
oscillations of the beam are not affected much by temporal
changes. It is well known that space-time coupling inherent
in Eq. (2) can occur and has been observed in several experi-
ments [19–21]. However, the �1� 1�D NLS equation used
here is quite successful in predicting the observed features in
its validity regime [13]. Clearly, much more work remains to
be done to fully understand the regimes in which such a simple
approach can be used with success.

Funding. National Science Foundation (NSF) (ECCS
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