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Generation of high-repetition-rate, femtosecond, soliton pulse trains through dual-wavelength pumping of a
dispersion-decreasing fiber is studied numerically. The achievable shortest pulse width is found to be limited
by third-order dispersion that has a significant effect on the pulse-compression dynamics. The output wavelength
is redshifted because of intrapulse Raman scattering and depends heavily on third-order dispersion, whose pos-
itive values lead to the most redshifted solitons (>25% of the input pump center wavelength). The proposed
scheme allows the generation of ultrashort pulse trains at tunable high repetition rates with a wide range of output
wavelengths and pulse durations through dispersion engineering. The resulting frequency combs extend over a

wide bandwidth with a tunable spacing between the comb lines.
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1. INTRODUCTION

Soliton compression in active fibers [1,2] and dispersion-
decreasing fibers (DDFs) [3-8] is a well-understood effect
[9,10]. It is known that the characteristics of compressed sol-
itons can be controlled by tailoring fiber dispersion. In the ex-
treme, this process can lead to the generation of intense solitons
with durations of only a few optical cycles [11]. Moreover, due
to the tendency of pulses of suitable peak powers to re-adjust
inside the fiber to form solitons, soliton compression does not
necessarily have to be seeded by solitonic pulses. Indeed, pulses
of Gaussian or other shapes can be used as input to the DDF.
When the input is in the form of a continuous wave (CW) or a
long pulse, modulation instability (MI) can lead to the sponta-
neous generation of fundamental solitons that can then be
compressed.

An effective way to enhance soliton formation from a CW
input is to seed the MI process through amplitude modulation
[12]. Induced MI in a fiber with constant (anomalous)
dispersion leads to compression of low-amplitude temporal
modulations, eventually resulting in a train of solitons. The
formation of solitons, as well as their further compression,
manifests as spectral broadening in the frequency domain that
is useful for supercontinuum generation [13—15]. However,
pulse compression is not the only spectral broadening mecha-
nism in the dual- or multi-pumping case [16]. Amplitude
modulation can lead to significantly broader spectra in the
normal dispersion regime as well due to enhanced self-phase
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modulation and optical wave breaking [17-19], and temporal
reflections of dispersive waves off nonlinear waves can extend
the spectrum to the blue side [20-22]. Modulation can be done
either through direct amplitude modulation of a single CW
laser [8] or through dual-wavelength pumping using two
CW lasers [23-26].

The frequency of direct amplitude modulation is limited by
electronics, since amplitude modulators cannot operate effi-
ciently beyond 40 GHz. Dual-wavelength pumping suffers
from no such constraints and is only limited by the availability
of CW lasers of suitable wavelengths. Moreover, modulation
depths depend only on the relative powers of the two pumps.
Therefore, ultrahigh-repetition-rate (800 GHz in this study)
pulse trains can be generated through dual pumping of an
optical fiber. Such pulse trains have a variety of applications
ranging from controlling the motion of molecules [27] to gen-
erating plasma waves [28] and terahertz radiation [29]. The
objective of this paper is twofold. First, we show that the
lower limit for pulse duration in dual-pump soliton train gen-
eration is determined by higher-order dispersion; in the absence
of third-order dispersion (TOD), the pulses could be com-
pressed down to a few cycles in duration in a suitable DDF.
Second, we show that the sign and magnitude of the TOD play
a crucial role in determining the wavelength of the generated
train of solitons and that the output pulses can be redshifted by
more than 25% from the initial pump center wavelength.
Sub-100 fs soliton trains can thus be generated at a wide range
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of wavelengths by properly engineering the dispersion profile of
the fiber. Our findings should help in designing fiber-based,
high-repetition-rate, femtosecond-pulse sources and wide-band
optical frequency combs with a tunable spacing between their
comb lines.

2. PULSE PROPAGATION MODEL

To simulate propagation of electromagnetic waves in optical
fibers, we use the generalized nonlinear Schrodinger equation
(GNLSE) [13,30]. In a reference frame moving at the envelope
group velocity, the equation for the electric field envelope
A(z, T') can be written as
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where 7" is the retarded time given by 7" = 7 - z/v, and v, is
the group velocity at the input central wavelength. The left side
of Eq. (1) includes linear effects, with a corresponding to losses
and the fs being the different-order dispersion coefficients of
the fiber at the central input frequency. The right side models
the nonlinearities through the response function R(7") that in-
cludes the Kerr contribution, which is assumed instantaneous
[13], and the delayed Raman contribution, which is modeled
through the experimental Raman-gain profile of silica fibers
[31]. Note that, contrary to a common misconception, the
GNLSE for fibers does not assume a slowly varying envelope
for the electric field in the time domain and is in fact valid down
to the few- and even single-cycle regime, as long as the wave-
lengths in question are far from material resonances so that
the slowly evolving wave approximation |0,E| < fy|E| is satis-
fied, as shown by Brabec and Krausz [32]. The validity of the
model down to the few-cycle regime requires the inclusion of the
shock term characterized by the time scale 74,4 [30].

We solve Eq. (1) numerically with an input corresponding
to launching two CW pumps simultaneously with a frequency
difference Aw,

A(O, T) — \/]Tlez‘(Am/z)T + \/]Tze—z‘(Am/z)T + anise(T)’
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where Aw is the pump frequency separation, P; and P, are the
input powers of the two pumps, and £ ;..(7') is quantum shot
noise included as one photon with a random phase per longi-
tudinal mode [30]. Since A(0, 7') is the envelope for the field
with a central frequency of @y, the physical pump fields oscil-
late at optical frequencies @y + Aw/2 and wy - Aw/2. In our
simulations, the group-velocity dispersion (GVD) parameter /3,
increases linearly from its initial negative (anomalous) value of
-10 ps*/km over the entire fiber length that varies in the
range 100-200 m. The final values of f, range from -10
to +10 ps®/km, the former corresponding to a constant-
dispersion fiber. The TOD parameter S5 is kept constant for
each fiber, with values ranging from -0.1 to 0.1 ps®/km.
It should be noted that usually DDFs are manufactured by

tapering the fibers, in which case the taper can induce signifi-
cant losses and thus impose limitations on pulse compression
[7]. However, dispersion can also be modified through doping,
allowing for the losses to be curbed. The nonlinear parameter in
our simulations is y = 0.0916 (Wm)~!, and the pump powers
are taken to be equal with P} = P, =1 W. The center fre-
quency @ corresponds to a wavelength of 1060 nm. The shock
time Ty, is taken to be 1/@y. Throughout this paper, the
frequency separation is Aw/(27) = 800 GHz (3 nm) unless
otherwise stated, but we have also verified that frequency
separations of 600 GHz and 1000 GHz yielded qualitatively
similar results.

3. THEORETICAL LIMITS ON PULSE WIDTH

Fundamental solitons are solutions of the GNLSE in the
absence of third- and higher-order dispersion, optical shock
effects, and delayed nonlinearities. When these effects are
present, they manifest as perturbations to an ideal soliton.
Third-order dispersion (TOD) governed by f#5 introduces spec-
tral and temporal asymmetry and forces the soliton to shed ra-
diation in the form of a dispersive wave. Shock effects produce
self-steepening, again making the soliton asymmetric. Delayed
nonlinearities lead to the well-known phenomenon of soliton
self-frequency shift (SSFS) through intrapulse Raman scatter-
ing, causing the soliton to redshift in the spectral domain.
Nevertheless, the robust solitonic nature of the pulse remains.
Solitons are robust to the extent that any pulse of suitable shape
and energy in the anomalous dispersion regime of a nonlinear
fiber will reshape itself to become one [13]. In the context of a
beating dual-pump signal, the sinusoidal oscillations at the beat
frequency become compressed and evolve to form solitons if
their duration and energy roughly matches those of a fundamen-
tal soliton. If the fiber is long enough, the beating intensity pat-
tern eventually evolves to become a train of equidistant solitons.
By changing the dispersion along the length of a DDF, the sol-
itons can be compressed further in the temporal domain [3].

The dispersion parameters 5, in Eq. (1) can be easily tail-
ored through proper design of the refractive index profile,
which in the case of photonic crystal fibers means appropriately
choosing the size and spacing of the air holes surrounding the
core. The only limitations regarding the structure of silica-
based photonic crystal fibers are associated with manufacturing
precision. In general, different photonic crystal fiber structures
would also lead to different nonlinear coefficients for the fibers.
However, since it is the relative strength of dispersion and non-
linearity that determines the propagation of light, we assume
here that the nonlinear parameter is constant while 8, changes
linearly along the fiber. We also note that ultraflac highly
anomalous dispersion profiles can be achieved over a wide
wavelength range with novel designs [33]. The TOD and other
higher-order dispersion terms play a relatively minor role for
such fibers.

To understand the dynamics of a dual-wavelength signal in-
side a DDF, we first neglect the TOD and other higher-order
dispersion terms so that the effects of a longitudinally varying
P, can be identified clearly. Figure 1 shows the evolution of a
dual-pump signal when f, increases linearly from -10 to
0 ps®/km over 100 m. The power of both pumps is 1 W.
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Fig. 1. Temporal (middle) and spectral (bottom) evolution of a
dual-pump signal over 100 m of a DDF with f, increasing from
-10 ps?/km to 0 ps?/km. The gray intensity scales are logarithmic.
The top two traces show the duration (thick blue) and peak power
(thin red) of the forming pulses as a function of distance. The vertical
black dashed lines indicate the distance at which the soliton width has
been reduced to three optical cycles.

The two traces on top show changes in the pulse width and
peak powers over the 100 m length of the fiber. The initial
sinusoidal pattern gradually reshapes into a train of solitons
whose width decreases and peak power increases continuously
until the numerical model itself breaks down. The spectrum of
the resulting pulse train is in the form of a frequency comb
whose bandwidth is inversely related to the width of the sol-
itons and exceeds 100 THz.

The compression dynamics in Fig. 1 have interesting fea-
tures. The initial sinusoidal pattern with a period of 1.25 ps
evolves into a pulse train within the first 10 m such that indi-
vidual pulses are about 200 fs wide (full width at half-maxi-
mum or FWHM). These soliton-like pulses then broaden
with further propagation before being compressed a second
time. This process repeats a few times, but the pulse duration
keeps a downward trend while exhibiting transient oscillations.
During the first 50 m or so, the beat input displays a form
of Fermi—Pasta—Ulam—Tsingou recurrence perturbed by the
changing dispersion and evolves essentially like a breather
before the intensity peaks become solitons. The simulation
shown in Fig. 1 does not include third-order dispersion, but
breathers are sensitive to all kinds of asymmetric perturbations,
such as Raman scattering, which can [34] and will [35] turn the
breather into a train of solitons. The subsequent evolution of
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the solitons is affected by two mechanisms. First, varying fiber
dispersion forces them to compress. Second, at the same time,
their speed is reduced as their spectrum redshifts because of
SSES (leading to bending of the trajectories in Fig. 1). The indi-
vidual solitons grow in intensity because of the increasing f,,
but also because they feed off the darker regions (energy in the
low-intensity parts) when they shift in time and overlap tem-
porally with them. This mode of energy transfer to the solitons
is evident in Fig. 1, where the regions between the neighboring
solitons become darker as the solitons slow down and pass
through these regions. This energy transfer perturbs the soli-
tons, causing their widths and peak powers to oscillate around
their respective trends (decreasing duration, increasing peak
power). One way to look at the evolution of the beating input
signal is to interpret the duration and peak power oscillations
as a manifestation of the gradually disappearing breather
nature, whereas the general trend of decreasing duration and
increasing power can be considered to represent soliton
compression.

The GNLSE model given in Eq. (1) accurately describes
pulse propagation down to the single-cycle regime [30,32],
and in this study the three-cycle point is used as the cutoff
for the validity of the GNLSE model. The distance at which
the solitons in Fig. 1 have compressed to three optical cycles in
duration (about 10 fs) is approximately 98 m, and this has been
indicated by the vertical dashed lines in Fig. 1. The important
takeaway from Fig. 1 is that the initial beating intensity pattern
with a period of 1.25 ps (corresponding to 800 GHz) could
ideally be reshaped into a train of solitons that are only three
optical cycles long. The input FWHM of the cosine-shaped
pulses is 625 fs, implying that the compression factor is larger
than 50.

The power of both pumps in Fig. 1 was 1 W, but other
average powers yield similar results as long as the energy con-
tained within each beat period is comparable to the energy of a
soliton of similar or shorter duration than the beat period. The
energy within each period is 1.25 pJ for an 800 GHz repetition
rate signal with an average power of 1 W. A soliton with
such energy would have a duration (FWHM) of 308 fs given
the parameters at the fiber input [nonlinear parameter of y =
0.0916 (Wm)~! and the initial GVD of , = -10 ps®/km],
which means that each beat period has enough energy to re-
shape into one soliton by compressing slightly. Decreasing
the input power weakens the nonlinear effects, and thus the
formation of temporally separated solitons takes longer.
Their formation is also affected by how the GVD parameter
P, changes, since f#, determines the relation between the sol-
itons’ duration and energy. Lower input powers could be at least
partially compensated for by changing the input end value
of f,.

When the average power is increased, two solitons can form
within each period, and two soliton trains with different group
velocities are formed. The more intense soliton train redshifts
faster and feeds off the weaker train through Raman-induced
power transfer every time the trains overlap temporally. The
weaker soliton train eventually disappears after all the power
has been transferred to the other train. The result is a more
intense train of solitons that are also shorter in duration, as
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dictated by the soliton condition. The solitons in the remaining
train are not uniform and differ slightly in peak power and
duration due to having undergone noise- and phase-sensitive
soliton interactions [36]. Some solitons in the train then move
faster than others, and the pulse train loses its periodicity. Even
higher average powers lead to more solitons per period, as each
beat pulse breaks into multiple solitons. The dynamics become
more and more chaotic with increasing power, and periodicity
is lost faster. A similar loss of periodicity can be observed for
very high repetition rates (input pump separations), such as
2 THz. The input power should be increased approximately
quadratically with the input pump separation to maintain
the required amount of energy for a soliton within each beat
period, which makes the forming short solitons susceptible to
slight differences in their durations and peak powers due to
noise. Again, these differences eventually break the periodicity
of the pulse train. The spectra of these terahertz-range repeti-
tion rate pulse trains could be Raman shifted by nearly an
octave in the simulations, but their periodicity and quality
deteriorated significantly. There are general trade-offs between
repetition rate, output wavelength, pulse duration, and the
quality of the generated pulse train. The simulations indicate
that the limitations are fundamental, as the pulse train quality
degradation was caused by shot noise.

The simulation shown in Fig. 1 includes all the relevant
effects that would be present in reality, with the exception
of higher-order dispersion and losses. The fiber was assumed
to be lossless and to have perfectly flat dispersion (constant
p,) over all wavelengths at any given point of the fiber.
Therefore, Fig. 1 represents the best-case scenario in terms
of how short the solitons can become: under ideal conditions,
pulse durations of three optical cycles or less could be achieved.
Nonlinearities beyond the third-order Kerr and Raman effects
were not considered. The fifth-order nonlinearity would re-
quire such high peak intensities that its effects have not been
extensively studied in the past. We do not anticipate that our
results would change much if it were to be included, as it would
essentially act as a perturbation to the solitons and solitons are
very robust against them.

Several different effects might prevent such drastic compres-
sion shown in Fig. 1 in practice, but the extent of compression
is not limited by GVD, intrapulse Raman scattering, or optical
shock effects. Losses would cause the peak power Py of the
forming solitons to be smaller, which in turn would lead to
larger soliton durations 77y such that the soliton condition
of yPyT?%/B,(z) = 1 continues to be satisfied. However, at
the end of the fiber, #, = 0, and the soliton condition can only
be satisfied for infinitely narrow solitons no matter what the
peak power might be. Compensation for losses through de-
creasing dispersion (increasing f3,) to keep the soliton duration
unchanged upon propagation in lossy fibers has been demon-
strated in the past [37]. Decreasing dispersion even faster than
in Fig. 1 would be required to compensate for any possible fiber
losses. However, TOD could be expected to change the com-
pression dynamics more drastically than losses because it affects
solitons in at least three different ways: it leads to dispersive-
wave emission, it asymmetrically distorts the shape of a soliton,
and it makes f#, frequency dependent.

4. EFFECTS OF THIRD-ORDER DISPERSION

The first thing to note is that the sign of TOD plays an
important role in the evolution of short solitons undergoing
intrapulse Raman scattering. The SSES causes the soliton spec-
trum to redshift, and it is the sign of #; that then determines
whether the soliton will experience a larger or smaller f, as a
consequence. Since soliton compression is based on increasing
p, from an initially negative value through dispersion engineer-
ing, any TOD-induced change to f, will affect the compres-
sion of solitons. The presence of TOD also introduces a
spectral region of normal dispersion in which solitons cannot
exist but also guarantees the existence of a spectral region of
anomalous dispersion even when f, > 0 at the pump fre-
quency. The signs of f#; and 5 determine whether the normal
dispersion regime is on the red or the blue side of the soliton.
The frequency at which GVD changes sign is given by
Wzpw = g - P/ P3, where 5, and 35 are evaluated at the cen-
tral frequency @,. The wavelength corresponding to @wzpy is
the zero-dispersion wavelength (ZDW). When f, is a linear

function of distance z, we have
) oz
Paleo) = B3+ (B - D) @

where L is the length of the fiber and " and f5*" are the input
and output values of f, at w,. Consequently, the ZDW
becomes a function of z through

— ﬁ 12" out in 2
Wzpw = Wy Bs (B -3 Bl (4)

To illustrate the effects of TOD in a DDF, Fig. 2 shows the
evolution in a fiber where 8, changes from -10 ps?/km to
5 ps®/km over 150 m and where 3 = -0.03 ps®/km. Note
that the rate of change of #, with z is the same as for the fiber
in Fig. 1, and the ZDW coincides with the pump center
wavelength at exactly 100 m, just like in Fig. 1.

The evolution of the dual pump shown in Fig. 2 differs from
that of Fig. 1. The most noticeable difference between the two
cases is that the pulses do not become infinitely narrow when
P3 # 0, and the minimum pulse duration in Fig. 2 is approx-
imately 180 fs. The formation of few-cycle pulses would require
a very broad pulse spectrum, and since the pulses are solitons,
this spectrum would have to lie in the anomalous dispersion
regime. When ;5 # 0 and the ZDW approaches the soliton
spectrum, the tail of the pulse spectrum will eventually end
up in the normal dispersion regime, thus limiting the spectral
extent and, consequently, the pulse duration of the solitons.
The first effects can be observed after 80 m of propagation
when the ZDW starts to touch the tail of the soliton spectrum
and power is transferred from the solitons to a dispersive wave
on the red side of the ZDW. The moving ZDW gradually puts
more and more energy to the normal dispersion regime, and the
soliton peak powers start to decrease. The ZDW crosses the
center of the soliton spectrum around 110 m, and after this
the solitons cease to exist and disperse into a chaotic-looking
yet nearly periodic pattern of interfering waves in the normal
dispersion regime. After this point it is no longer meaningful to
talk about soliton peak powers or durations or consider the
intensity profile a train of pulses.
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Fig. 2. Evolution of an 800 GHz dual-pump signal in a fiber in
which 8, grows from -10 ps®>/km to 5 ps*/km along its 150 m
length. Third-order dispersion is 3 = -0.03 ps*/km.

In the example shown in Fig. 2, the frequency slope of 3,
was negative (/3 < 0), and hence the normal dispersion regime
was on the red side of the pump. Solitons have a tendency to try
to stay away from the ZDW and remain in the anomalous
regime, which can be seen in the spectrum of Fig. 2 where
the spectral trajectory of the soliton bends slightly downwards
between 90 m and 110 m and the solitons blueshift. The blue-
shift is always accompanied by significant transfer of energy to
the red side of the ZDW to conserve total energy. Normally
solitons, especially short ones, have a tendency to redshift upon
propagation because of intrapulse Raman scattering. This raises
the question whether having the ZDW approach the soliton
spectrum from the blue side instead would help the solitons
remain in the anomalous regime for longer distances.
Figure 3 shows the evolution of an 800 GHz dual pump in
a fiber with #; = 0.03 ps®/km. Other than the fiber length
and the TOD, the fiber is similar to the ones in Figs. 1 and 2,
and again the ZDW is at the pump center at 100 m. Note that
the temporal trace in Fig. 3 is now in the reference frame of the
solitons instead of moving at the group velocity at the pump
frequency.

The evolution of the soliton power and duration is similar to
that of Fig. 2, but the solitons last longer, and the spectral evo-
lution looks very different. The ZDW is now on the blue side
of the solitons, and the ZDW approaching the soliton spectrum
greatly enhances the natural SSFS, pushing the soliton spec-
trum all the way to 1.25 pm from the initial 1.06 pm. Still,
the moving ZDW eventually overtakes the soliton spectrum,
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Fig. 3. Evolution of an 800 GHz dual-pump signal in a fiber in
which f, grows from -10 ps®/km to 10 ps*/km along its 200 m
length. Third-order dispersion is S5 = 0.03 ps’/km. Unlike in
Figs. 1 and 2, the temporal frame of reference is now with respect
to the solitons, as their trajectories would look heavily curved in
the pump frame of reference.

and in the end, the pulses end up in the normal dispersion re-
gime and disperse. The minimum soliton duration is 125 fs
around 185 m.

To quantitatively understand the impact of 35, we carried
out a large number of numerical simulations for different DDF
designs. Figure 4 shows the color-coded duration of solitons
(range 0-250 fs) for f; values varying from -0.1 to
0.1 ps®/km along the x axis and different values of 8,(L) at
the end of a 200 m long fiber with $,(0) = -10 ps*/km.
In each case, f3; is kept constant along the fiber. The four plots
show the soliton widths at distances of (a) 80, (b) 120, (c) 160,
and (d) 200 m.

If the solitons forming from the beating input signal are able
to keep up with the gradually changing GVD parameter f3,,
then larger final values of f#, lead to shorter solitons. The gen-
eral trend in Fig. 4 is that increasing the final value of #, makes
the output pulses shorter, which means that solitons are mostly
able to keep up with the longitudinally changing GVD, even
when GVD becomes normal near the fiber end. This is also
corroborated by Fig. 1, where pulse duration has a downward
linear trend approaching zero with decaying transient oscilla-
tions. The transient oscillations die out by the end of a
200 m long fiber when the final value of f3, is larger than
-5 ps*/km, as seen in Fig. 4. The temporal compression
continues even after the oscillations disappear.
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The effects of TOD are clearly visible in Fig. 4. Larger values
of |33 hinder pulse compression, whereas smaller values lead to
shorter pulses at shorter distances. The explanation for this lies
in how f; affects the f3, that the soliton experiences and in the
Raman effect that causes the soliton spectrum to redshift
through SSES with propagation. The TOD parameter is given
by p3 = dp,(w)/dw evaluated at the central frequency w,.
Negative values of f; thus mean that f, decreases with optical
frequency and hence increases with wavelength. SSFS then
causes the solitons to experience larger GVD compared to
the initial pump center frequency. Negative values of f;
together with SSES imply that f, at the solitons’ central
frequency increases even faster than f, at the pump center
frequency, thus causing the solitons to compress rapidly.
The opposite occurs for positive values of f3. As seen in
Fig. 1, solitons could be compressed down the three optical
cycles in the absence of TOD, but in practice pulse compres-
sion is limited by it. We note that fibers with 3 = 0 can also
be manufactured (so-called dispersion-flattened fibers); pulse
compression would be limited by fourth-order dispersion.
There is no way to make the group-velocity dispersion
completely flat across the whole soliton spectrum, and pulse
compression will always be limited by higher-order dispersion.

It is evident from Fig. 4 that soliton trains with pulse widths
<100 fs can be achieved with many different parameter com-
binations. Even a 100 m fiber can be long enough to produce
such an ultrashort pulse train if #, of the DDF increases rapidly
enough with distance [see Fig. 4(b)]. Both negative and positive
values of 3 work, and two different sets of fiber parameters can
lead to very similar-looking pulse trains. Figure 5 shows por-
tions of two pulse trains generated using two different fibers
with the same input. Both fibers have the same GVD at the
input end, but their lengths and final values of §, are different.
Their TOD parameters are equal in magnitude but opposite in
sign. The solitons generated in each fiber are nearly identical:
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Fig. 5. Comparison of pulse trains generated with the same dual-
pump input in two different fibers. Fiber A is 100 m long, and its
GVD increases linearly from -10 ps?/km to 0 over this length with
B3 = 0.05 ps® /km. Fiber B is 97 m long but its GVD increases from
-10 to -2.725 ps®/km with 5 = -0.05 ps®/km. The total input
power is 2 W and initial pump separation is 800 GHz. The two traces
on the right show the pulse around 7" = 0 showing how closely their
shapes match.

their energies and pulse durations are within 2% of one an-
other. The only notable difference is that the pulses in the fiber
with 3 > 0 (Fiber A) exhibit a small bump near the trailing
end. The differences between the pulse trains are subtle in the
time domain but become quite evident in the spectral domain,
to which we turn in the next section.

Before moving on to the spectral domain, it should be reiter-
ated that dispersion orders higher than three were neglected
altogether. Whereas accurately modeling the dispersion of a real
fiber over a large spectral range would require the inclusion of
fourth- (40D) and higher-order dispersion, the key point here
is not the actual shape of the dispersion profile but that that a
non-solitonic normal dispersion spectral region that changes
along the length of the fiber will limit the spectral extent
and hence the duration of the forming solitons and also push
them towards longer or shorter wavelengths. The existence of
such a region of normal dispersion is always guaranteed when
the highest order of dispersion is odd, but a positive 40D
parameter 3, would also guarantee a normally dispersive regime
that would repel solitons. On the other hand, a negative f;4
would just perturb the shape of the solitons symmetrically
[38]. It is worth mentioning, however, that the inclusion of
40D and/or higher-order dispersion makes it possible to have
two ZDWs approach the soliton spectrum from both the red
and the blue side, and such a narrowing of the anomalous
spectral regime might be useful in controlling the soliton shape
or trapping the solitons more robustly within a narrow part
of the spectrum. Furthermore, it was demonstrated that flat
dispersion leads to the shortest pulses, and 40D and
higher-order dispersion can make the dispersion locally flat
for certain wavelengths even in the presence of TOD, which
might have practical implications for few-cycle soliton train
generation using a dual-pump input.

5. OUTPUT FREQUENCY COMB AND ITS
CENTRAL WAVELENGTH

The output spectrum of any periodic ultrashort pulse train gen-
erated through dual pumping is in the form of a frequency
comb whose comb lines are separated by the initial spacing
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Fig. 6. Spectra of the two pulse trains shown in Fig. 5 at the output
of fibers A and B.

between the frequencies of the two input pumps. Figure 6
shows the spectra corresponding to the two identical-looking
pulse trains shown in Fig. 5. The spectra resemble mirror im-
ages of one another because of the opposite signs of the TOD
parameter f3. The soliton part of the spectrum (dominant
peak) of fiber A is centered at 1086.1 nm, while that of fiber
B is at 1067.5 nm, a difference of 18.6 nm (4.81 THz). As a
reminder, the input center wavelength of the two pumps is at
1060 nm.

The central frequency at each point in the fiber is deter-
mined by several processes. The first one is SSFS, which causes
the solitons to redshift. The second one is the tendency of sol-
itons to stay away from the ZDW in the spectral domain [39],
and a moving ZDW can manifest as an effective push for the
soliton spectrum. Depending on whether this push comes from
the red side or the blue side, it can respectively hinder or en-
hance the redshift (see Figs. 2 and 3, respectively). For 5 > 0
we have wzpw > g, and wzpyw approaches @, from the blue
side, enhancing the redshift and pushing the solitons further
into the red. When ;3 < 0, wzpw approaches @, from the
red side, and SSFS is thus hindered. This is the reason the spec-
trum out of fiber A in Fig. 6 is more redshifted than that of
fiber B.
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Fig. 7. Central wavelengths A, of the forming solitons for the
parameters used in Fig. 4 after (a) 80 m, (b) 120 m, (c) 160 m, and
(d) 200 m of propagation. The striped regions indicate that the pulses
have lost their solitonic nature and have dispersed. The upper color bar
is for the top row and the lower one for the bottom row; note the
different scales.
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If f3" > 0, wzpw always surpasses @, no matter how fast or
slow its rate of change. The rate of change is proportional to
1/P5, as seen in Eq. (4), which means that when f; is close
to zero, Wzpy changes rapidly with distance z. Based on this
argument, it seems likely that solitons could be pushed towards
even longer wavelengths by making f; smaller while keeping it
positive. Figure 7 shows the central wavelength of the pulse trains
generated through dual pumping at distances of 80, 120, 160,
and 200 m under conditions identical to those of Fig. 4. The
initially forming solitons are wide at first and, as a result, redshifts
of <5 nm occur up to a distance of 50 m. Much larger shifts
occur at distances beyond 100 m, especially for large values of

9U, for which adiabatic soliton compression kicks in and makes
the solitons shorter, thus enhancing their SSES. The largest red-
shifts occur in the regime where 5" > 0 and f; is small but
positive. The soliton central frequency can be redshifted by more
than 25% to 1.35 nm before @y pyw moves beyond the soliton
central frequency and disperses the solitons.

6. CONCLUSIONS

It was numerically demonstrated that the technique of dual-
wavelength pumping can be used to generate soliton pulse
trains at ultrahigh repetition rates (up to 1 THz or more)
and that the solitons could be compressed temporally inside
a dispersion-decreasing fiber down to the few-cycle regime
(pulse widths as short as 10 fs at wavelengths near 1 pm).
The repetition rate used in this study was 800 GHz, but since
it is set by the frequency separation of two CW pumps, it can
be tuned over a wide range by choosing the input pump wave-
lengths suitably. It was further pointed out that the soliton
compression is limited by higher-order dispersion with small
values of the GVD slope f3 = dfj,/dw leading to shortest
pulses. It was also shown that third-order dispersion is crucial
in determining the output wavelength of the pulses. We found
that small positive values of the GVD slope lead to the largest
redshifts and the longest output wavelengths. Sub-100 fs soli-
tonic pulses with a wavelength anywhere between 1060 nm and
1350 nm could be achieved in our numerical simulations, mak-
ing dual-wavelength pumped optical fibers a versatile platform
for generating femtosecond pulses at high repetition rates that
have a variety of applications ranging from biomedical imaging
to the manipulation of motion of individual molecules.

The spectral features of the generated pulse trains are also
remarkable. Our results clearly show that the dual-pumping
scheme is capable of generating frequency combs that extend
over 50 THz and whose center frequency is tunable over
60 THz in the vicinity of 1150 nm. Moreover, the comb spac-
ing in itself can be tuned over a wide range (~0.1 to ~1 THz or
even higher at the expense of the quality of the comb) by choos-
ing the pump wavelengths suitably. As a final remark, the same
technique should work for generating optical frequency combs
from the visible to mid-infrared region using different fiber
designs and materials.
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