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Cross-phase modulation (XPM) is commonly viewed as a nonlinear process that chirps a probe pulse and modifies
its spectrum when an intense pump pulse overlaps with it. Here we present an alternative view of XPM in which
the pump pulse creates a moving refractive-index boundary that splits the probe pulse into two parts with distinct
optical spectra through temporal reflection and refraction inside a dispersive nonlinear medium. The probe even
undergoes a temporal version of total internal reflection for sufficiently intense pump pulses, a phenomenon that
can be exploited for making temporal waveguides. We investigate the practical conditions under which XPM can
be exploited for temporal reflection and waveguiding. The width and shape of the pump pulses as well as the
nature of the medium dispersion at the pump and probe wavelengths (normal versus anomalous) play important
roles. The super-Gaussian shape of a pump pulse is particularly helpful because of the relatively sharp edges of the
super-Gaussian shape. When the pump wavelength lies in the anomalous-dispersion regime, the pump pulse can
form a soliton, whose unique properties can be exploited to our advantage. We also discuss a potential application
of XPM-induced temporal waveguides for compensating for timing jitter. © 2018 Optical Society of America

OCIS codes: (190.5530) Pulse propagation and temporal solitons; (320.7110) Ultrafast nonlinear optics.

https://doi.org/10.1364/JOSAB.35.000436

1. INTRODUCTION

Cross-phase modulation (XPM) is a nonlinear optical process
that has been studied extensively and is discussed in detail in
many optics texts [1–3]. In a typical pump-probe configura-
tion, XPM allows the intense pump pulse to impart a time-
dependent phase shift onto a much weaker probe pulse, leading
to changes in the spectrum of the probe pulse. Recently, there
has been growing interest in the role XPM plays during the
collision of a weak dispersive wave with a soliton, leading to the
so-called soliton scattering, where the dispersive wave changes
frequency as it bounces off the soliton [4–9]. The same process
is being studied as an optical analog of gravity and Hawking
radiation [10–14] as well as for pulse trapping [15–20].

Temporal analogs of reflection and refraction, which occur
when an optical pulse arrives at a temporal boundary across
which the refractive index changes suddenly in time, have been
the focus of several studies [21–26]. Earlier works on this topic
focused on the case of a nondispersive medium whose refractive
index changed across the entire medium at a single instant in
time [21–23], or when a counterpropagating boundary shifted
the refractive index of the medium [27,28]. Recently, we have
found the temporal analogs of reflection and refraction inside a
dispersive medium when an optical pulse crosses a moving

refractive-index boundary [26,29]. More specifically, as the
optical pulse crosses the boundary, it splits into two parts with
different spectra that behave like reflected and transmitted
pulses. Unlike the reflection occurring at a static spatial boun-
dary, the reflected pulse continues to propagate forward in
space, but its group velocity changes (owing to a spectral shift)
such that this part of the pulse appears to recede from the boun-
dary. If the index change across the pulse is large enough, the
pulse can even undergo a temporal analog of total internal
reflection (TIR) at a temporal boundary. Two of such moving
temporal boundaries can then be used to create a temporal
waveguide to confine an optical pulse to a narrow temporal
region [30,31].

One way to create a moving temporal boundary is to employ
the nonlinear phenomenon of XPM using a pump-probe
configuration. When a dispersive medium exhibits the Kerr
nonlinearity, the refractive index is higher in the temporal
region inside the pulse, and we can view the edge of the pump
pulse as a moving refractive-index boundary. From this point of
view, soliton scattering is simply the reflection of the probe (a
dispersive wave) from the moving boundary created by either
the leading or trailing edge of the pump (the soliton). This way
of looking at XPM is quite distinct from the traditional view in
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which the pump modulates the phase of the probe, resulting in
frequency chirping. In this paper, we explore the use of XPM to
create temporal boundaries and study how XPM can be em-
ployed to produce temporal reflection and to make temporal
waveguides.

This paper is organized as follows: Section 2 discusses what
properties the dispersive medium must have to observe XPM-
induced reflection and refraction by examining the cases of a
Gaussian-shaped pump pulse and a solitonic pump pulse. The
same pulse shapes are used in Section 3 to discuss how XPM
can be employed to make a temporal waveguide. Section 4
focuses on one potential application of such waveguides by
showing that XPM can be used to remove interpulse jitter
for two lasers with synchronized repetition rates. The main
results are summarized in Section 5.

2. PUMP-PROBE CONFIGURATION

We consider pump and probe pulses launched at different
wavelengths and propagating inside a dispersive nonlinear
waveguide such as an optical fiber. Assuming that both pulses
are polarized linearly along the same direction, their evolution
is governed by the two well-known coupled nonlinear
Schrödinger equations [3]:

∂A1

∂z
� iβ21

2

∂2A1

∂t2
−
α

2
A1 � iγ1�jA1j2 � 2jA2j2�A1; (1)

∂A2

∂z
� Δβ1

∂A2

∂t
� iβ22

2

∂2A2

∂t2
� iγ2�jA2j2 � 2jA1j2�A2; (2)

where A1�z; t� is the slowly varying envelope of the pump pulse
and A2�z; t� is that of the probe pulse. The time t � T − β11z
is measured in a reference frame moving with the pump pulse,
where Δβ1 � β12 − β11 accounts for the group-velocity
mismatch between the pump and probe pulses. Here, βmn �
dmβn∕dωm, with n � 1 and 2 for the pump and probe, respec-
tively, are various dispersion parameters. In particular, β21 and
β22 are the group-velocity dispersion (GVD) parameters at the
pump and probe wavelengths, respectively. Losses are included
only in the pump equation through α as the pump intensity
significantly impacts the probe evolution, while the probe in-
tensity plays a minor role. The nonlinear parameter is defined
as γj � 2πn2∕�λjAeff �, where λj is the wavelength, n2 is the
Kerr coefficient (units ofm2∕W ), and Aeff is the effective mode
area of the waveguide assumed to support a single mode [3].
Although different γ’s must be used when pump and probe
wavelengths are far apart, here we assume that the two
wavelengths are close enough that γ1 ≈ γ1 � γ. Several higher-
order effects are not included in Eqs. (1) and (2). For example,
we ignore the third- and higher-order dispersion terms. We also
neglect the shock and Raman terms that play important roles
for ultrashort pulses. We justify their omission by focusing
on relatively long pulses (>3 ps) with relatively low peak
powers (<5 W).

In a standard approach used in nearly all XPM studies,
Eqs. (1) and (2) are solved numerically with the split-step
Fourier method to study pump-induced spectral changes in
the shape and spectrum of a probe pulse. Here the same two
equations are used to study the phenomena of temporal reflec-
tion and refraction from a pump pulse; however, one must

choose the pulse parameters judiciously to observe these phe-
nomena. Our past work [26] has shown that the pump and
probe pulses have similar group velocities (i.e., Δβ1 should
not be too large) for significant reflection to occur. One way
to have similar group velocities is to ensure that the wavelength
difference Δλ between the pump and probe is relatively small.
However, since the pump spectrum broadens through self-
phase modulation (SPM), Δλ must be large enough that probe
spectrum does not overlap with it. Moreover, Δλ must be large
enough that the probe is outside the parametric gain bandwidth
of any four-wave mixing process. In the following we consider
two practical scenarios. In each case, we use parameter values
that are either realistic for commercial fibers or can be realized
using custom-designed fibers.

A. Super-Gaussian Pump Pulses

In a practically relevant case, we choose the center wavelength
of the pump pulse such that it coincides with the zero-
dispersion wavelength of the fiber (β22 � 0). In this case,
the shape of the pump pulse will not change during propaga-
tion, creating an unchanging boundary in time. To ensure a
sharp temporal boundary, we assume a super-Gaussian shape
for the pump pulse in the form

A1�0; t� �
ffiffiffiffiffi
P1

p
exp

�
−
1

2

�
t − T d

T 01

�
2m
�
; (3)

where P1 is the peak power, T d is a relative delay between the
pump and probe pulses, and T 01 is the 1/e width of the pump.
The integer m affects the rise and fall times of the pulse wings;
m � 4 was chosen to produce a relatively sharp temporal boun-
dary. The shape of the probe pulse is not critical for the results
presented here. We use a Gaussian shape of the form

A2�t� �
ffiffiffiffiffi
P2

p
exp

�
−
1

2

�
t

T 02

2
��

; (4)

where P2 is the peak power and T 02 is the 1/e width of the
probe. P2 is kept small enough that the probe does not influ-
ence its own spectrum through SPM.

Figure 1 shows the evolution of the pulse shape (left) and
spectrum (right) for the probe (top) and pump (bottom) pulses.
The parameter values used for the fiber were β21 � 0,
Δβ1 � 31.4 ps∕km, β22 � 25 ps2∕km, αdB � 0.3 dB∕km,
and γ � 2 W−1∕km. The pump and probe pulses had param-
eters T 01 � 20 ps, T 02 � 10 ps, T d � 50 ps, P1 � 5 W,
and P2 � 1 mW. For the long duration pulses used here, we
can safely neglect β3 for probe pulses as even a relatively high
value of β3 � 1 ps3∕km gives a third-order dispersion length of
LD;3 > 150 km, much larger than the 3-km length of the fiber
used for Fig. 1. The pump pulse may be affected by higher-
order dispersion because of its relatively sharp edges. However,
our pump pulses are so wide that even the fourth-order
dispersion plays a minor role for them.

The behavior of the pump pulse is easy to understand.
Because β21 � 0, it propagates without any change in its shape,
even though its spectrum broadens significantly as a result of
SPM. The behavior of the probe pulse exhibits unique features
both in time and frequency that can be understood as a tem-
poral reflection of the probe after it arrives at the temporal
boundary created by the pump pulse. As the probe pulse crosses
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the leading edge of the pump, it undergoes reflection and re-
fraction, splitting into two distinct parts whose spectra undergo
different amounts of spectral shifts. Note that the changing
pump spectrum has no influence on the reflection process.
The only important factor is the temporal profile of the pump
pulse. The reason is obvious once one realizes that the XPM
depends on the intensity of the pump and not on its phase.

One may ask how the results in Fig. 1 differ from our past
work where the temporal boundary was assumed to be infi-
nitely sharp [26]. An obvious difference is that the shifting
and splitting of the spectrum happens over a much longer dis-
tance. As seen in Fig. 1(b), the spectrum of the transmitted
pulse has redshifted after 1 km, but the reflected spectrum with
a much larger redshift appears only after 1.5 km. This is clearly
due to a finite rise time of the pump’s leading edge, which
causes the probe pulse to gradually pass through an increasing
refractive-index change before arriving at the final shift when
t � T d . At the early part of this process, changes in the refrac-
tive index are too small for reflection to occur. However, as the
pump power quickly ramps up, more of the probe energy is
reflected.

In the case of an infinitely sharp temporal boundary, the
spectral shifts for the reflected and refracted pulses can be found
analytically in the form [26]

Δωr � −Δωi ; Δωt � Δωi

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 −

4γP1β22
�Δβ1�2

s
; (5)

where all shifts are relative to the frequency ωc at which
vg�ωc� � vg1, i.e., Δω � ω − ωc . Here Δωr is the reflected
center frequency and Δωt is the transmitted center frequency.

It follows from the reflection condition that ωc �
�ωi � ωr�∕2, where ωr is the center frequency of the reflected
part. Similarly, ωt is the center frequency of the transmitted
part. Using the parameter values from Fig. 1, we conclude that
the predictions of Eq. (5) agree reasonably well with the
numerical results.

We stress that temporal reflection seen in Figs. 1 and 2 can-
not be explained as a four-wave mixing (FWM) process because
Eqs. (1) and (2) contain only the SPM and XPM terms and
forbid any energy exchange between the pump and probe
pulses. We are aware that reflection of a weak probe from a
soliton has been interpreted as a FWM-like process in the past
[32,33]. Recall that FWM is a four-photon process in which
pump energy is used to create the idler at a new frequency
and to amplify the probe simultaneously. In the case of the tem-
poral reflection studied here, no pump energy is lost and no
probe amplification occurs. Rather, the probe phase is modu-
lated by the pump through XPM, and a part of probe energy
undergoes spectral shift. SPM of the pump plays virtually no
role in this process. Indeed, if we remove the SPM terms in
Eq. (1) that are critical for solitons, the behavior of the probe
does not change in the top row of Fig. 1.

One can ask what happens if the peak power of the probe
pulses is increased. When XPM is used to create a temporal
boundary, the energy lost or gained from the probe must be
transferred to or from the pump. Indeed, if the peak power
P2 is increased, the probe pulse still undergoes reflection at
the edge of the pump, but the pump spectrum is blueshifted
to compensate for the redshift of the reflected and transmitted
pulses. Increasing the probe-pulse energy by increasing the
pulse width T 02 while maintaining the peak power also results
in a larger shift of the pump frequency. Of course, the blueshifts
of the pump can also be interpreted as phase modulation of the
pump by the probe pulse.
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Fig. 2. Same as Fig. 1 except the GVD of the pump was changed to
β21 � −25 ps2∕km.
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Fig. 1. Temporal (left column) and spectral (right column) evolu-
tions over a 3-km-long fiber for the probe [(a), (b)] and pump [(c), (d)]
pulses. The pump pulse has a super-Gaussian shape and propagates at
the zero-dispersion wavelength of the fiber. (See text for other param-
eter values.) The time axis is measured in a reference frame that is
moving with the pump pulse such that t − T − z∕vg1.

438 Vol. 35, No. 2 / February 2018 / Journal of the Optical Society of America B Research Article



Dispersive broadening of the pump pulse can also be
avoided if it propagates in the anomalous-dispersion regime
of the fiber. To keep the group velocities nearly the same, the
probe pulse must be on the opposite side of the zero-dispersion
wavelength of the fiber, i.e., the pump and the probe must have
opposite GVD signs. We assume that the wavelength difference
between the pump and probe is still not too large, but this
assumption can easily be relaxed. Figure 2 shows numerical
simulations under conditions identical to those of Fig. 1, except
that the pump GVD is not zero and is set to β21 �
−25 ps2∕km and the initial delay is reduced to T d � 40 ps.
A direct comparison shows that the behavior of both pulses
in Fig. 2 is markedly different from that in Fig. 1. The pump
pulse now breaks down into multiple shorter pulses, which
cause the probe to see a larger refractive-index change compared
to the nondispersive case. As a result, the probe pulse is now
entirely reflected at the edge of the pump, and nearly all probe
energy is transferred to a new redshifted spectral band.
Moreover, additional side bands appear because the pump pulse
narrows in time as it propagates, causing the refractive-index
boundary to recede toward the center of the pump pulse.
This causes the boundary to move at a different velocity, which
leads to different reflected and transmitted frequencies.

If the sign of the GVD parameter of the pump is reversed,
normal dispersion causes the pump pulse to spread out in time.
By the time the probe pulse catches up with the pump, the peak
power of the pump is significantly reduced, resulting in much
smaller changes in the refractive index. At the same time, the
temporal boundary created by the pump pulse loses its sharp-
ness. As a result, the reflected pulse is almost entirely suppressed
owing to the slow rise time of the refractive index boundary.
Experimentally, one could compensate for this by using a pump
pulse that has been initially chirped with the opposite dispersion.
This causes the pump to compress before the probe arrives,
leading to a sharp boundary and allowing reflection to occur.

B. Soliton-Shaped Pump Pulses

The reason that the pump pulse in Fig. 2(a) breaks down into
multiple shorter pulses with very high peak powers is related to
the onset of modulation instability occurring in the case of
anomalous dispersion [3]. Since optical solitons can also form
under such conditions, a simple solution to avoid the break-
down and broadening of the pump pulse is to launch the pump
pulse so that it propagates in the form of a fundamental soliton.
While this limits the pump to the anomalous-dispersion re-
gime, the shape and width of the pump pulse will not change
during propagation, providing a shape-invariant moving boun-
dary. To study reflections from such a boundary, the input field
of the pump pulse is taken to be

A1�0; t� �
ffiffiffiffiffi
P1

p
sech

�
t − T d

T 01

�
: (6)

Unlike the Gaussian pump, the peak power and width of the
soliton are linked through the relation

P1 �
jβ21j
γT 2

01

: (7)

Note that higher peak powers can be realized only by reduc-
ing the width of the soliton. In the following simulations, the

width of the pump pulse is chosen to be a fraction of that
associated with the probe pulse.

For the sake of comparison, we use the same simulation
parameters as in Fig. 2, except that the width of pump pulse
is reduced to T 01 � 1.58 ps to keep its peak power at 5 W.
The pulse separation is also reduced to T d � 30 ps so that the
two pulses overlap at about the same distance. Figure 3 shows
the evolution of the pump and probe pulses over 3 km of fiber
length in this situation. As expected, the pump pulse forms a
fundamental soliton and propagates without any change in its
shape or spectrum. The probe pulse still undergoes reflection
and refraction at the boundary. However, the spectrum of the
transmitted pulse quickly returns to the incident frequency.
This occurs because the transmitted pulse encounters a second
boundary on the trailing side of the soliton and is refracted
a second time. For this second refraction, the sign of the
refractive-index change is reversed, so we return to the original
frequency. Moreover, unlike the single refraction from the
super-Gaussian pump pulse where the transmitted pulse is
compressed in time, the width of the transmitted pulse remains
nearly the same and its group velocity is unchanged.

The quick change back to the original frequency of the
transmitted pulse has one final effect. During the reflection
process, a temporal analog of the evanescent wave occurs, where
a portion of the pulse energy extends past the boundary, even
during TIR [26]. The soliton is so narrow in time that the evan-
escent wave extends from one side of the soliton to the other,
allowing for a temporal analog of frustrated TIR. In other
words, the reflected pulse in Fig. 3 is weaker than it should
be. We verified this effect by increasing the peak power of
the pump pulse such that the index change was large enough
for TIR to occur in the case of a single ideal temporal boundary.
Although most of the probe pulse was reflected, as expected, a
small portion of probe energy tunneled through the trailing
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Fig. 3. Same as Fig. 2, except that the pump pulse propagates as a
fundamental soliton with T 01 � 1.58 ps.
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edge of the soliton that acted as a second boundary. The frus-
trated TIR effect can be removed by increasing the pump
width, which has a drastic effect on the tunneling probability.
This dependence on the duration of the pump pulse explains
why this effect was not seen for the 20-ps-wide super-Gaussian
pump pulse used in Fig. 1. Looking at Eq. (7), the frustrated
TIR effect can be reduced using a pump wavelength with a
higher GVD, which can accommodate a wider soliton while
still having the same peak power.

If we increase the peak power of the probe pulse, we expect
the frequency of the soliton to change because of the probe-
induced XPM effects on the pump pulse. Figure 4 shows
the results using the same parameters as in Fig. 3 but with the
probe power increased to P2 � 1 W. As seen in Fig. 4(d),
the soliton frequency shifts by ∼0.1 THz toward the blue side.
Because of the pump’s GVD, this frequency shift causes the
soliton to speed up, as indicated by the leftward tilt of the sol-
iton trajectory in Fig. 3(c). The blue shift of the soliton also
affects the probe pulse by changing the speed of the temporal
boundary. More specifically, the momentum conservation con-
dition at the boundary changes after the blueshift. This leads to
an additional redshift of the reflected pulse at a distance of
about 1 km, as seen clearly in Fig. 4(b).

3. TEMPORAL WAVEGUIDES

In our earlier work [30], we analyzed a temporal waveguide
made with two sharp temporal boundaries inside which the re-
fractive index was different from the outside region. We found
that such a waveguide supports one or more temporal modes in
close analogy with the spatial planar waveguides. We also
defined a dimensionless waveguide parameter as

V � 2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−�Δn�β0T 2

B

β2

s
; (8)

where Δn is the index change inside the core region, β0 is the
propagation constant, and TB is the width of the core region of
the waveguide. Just like its spatial counterpart, this parameter
governs the number of modes supported by the temporal
waveguide. A temporal mode is no longer supported when
V < mπ∕2, where m � 0; 1; 2;… is the mode order. In par-
ticular, only a single temporal mode can propagate inside the
waveguide when V < π∕2. Notice that V is real only ifΔn and
β2 have opposite signs. In particular, when β2 > 0 (normal
dispersion), the refractive index inside the core region should
be smaller than that outside of it. This situation does not occur
in spatial waveguides that always require Δn to be positive.

Because the Kerr nonlinearity causes only a positive change
in the refractive index (Δn > 0), the probe must experience a
GVD such that V is real. There are only two possible methods
for creating a temporal waveguide through XPM. The first is to
place the probe pulse at the center of a relatively wide pump
pulse such that the entire pump pulse acts as the core of a
temporal waveguide that confines the probe pulse inside of
it. To have a real V , this method requires that the probe wave-
length be located in the anomalous-dispersion region (β2 < 0).
The second method places the probe in the normal-dispersion
region (β2 > 0) and uses two short pump pulses that act as the
waveguide boundaries so that Δn is negative inside the core
region. In any other arrangement, the pump will actually act
as an anti-waveguide.

When a single pump pulse is used to create the core region,
the situation becomes qualitatively different because the wave-
guide is a graded-index type (rather than a step-index type).
Moreover, the shape and width of the core region will change
during propagation if the pump pulse spreads through the dis-
persive effects. We can avoid pump broadening if the pump
pulse forms a fundamental soliton, but this approach presents
its own unique challenges. As was done in Section 2, we con-
sider pump pulses whose shapes are either super-Gaussian (or
Gaussian) or correspond to that of a soliton.

A. Gaussian or Super-Gaussian Pump Pulses

We first use Gaussian shapes for both the pump and probe
pulses [m � 1 in Eq. (4)] but assume that the pump is no
longer delayed with respect to the probe (T d � 0). The probe
is chosen to be temporally narrower than the pump and is
placed in the middle of the pump at t � 0. Because XPM in-
creases the refractive index inside the pump region, Δn is pos-
itive inside the core region. It follows from Eq. (8) that the
probe pulse must experience anomalous GVD (β22 < 0). As
before, the behavior of the pump pulse depends on the sign
of GVD parameter β21 at its wavelength. In particular, the
pump pulse will remain nearly unchanged if its wavelength
coincides with the zero-dispersion wavelength of the fiber.

Figure 5 shows the evolution of the pump and probe in the
specific case of β21 � 0. The other parameter values were
Δβ1 � 0 ps∕km, β22 � −25 ps2∕km, γ � 2�W�−1∕km,
T 01 � 2.5 ps, T 02 � 1 ps, T d � 0 ps, P1 � 1 W, and P2 �
1 mW. We have verified that the higher-order dispersive and
nonlinear effects are negligible even for such pump pulses.
As before, the pump pulse does not change shape during
propagation, while its spectrum changes owing to SPM.
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Fig. 4. Same as Fig. 3, except that the probe power has been
increased to P2 � 1 W.
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The evolution of the probe pulse is much more interesting.
Even though it sheds some energy initially in the region outside
the pump pulse, it propagates without any changes in its shape
or width. This is remarkable since the probe pulse would
broaden by a factor of 100 over a length of 3 km in view
of its 40-m dispersion length calculated using LD � T 2

02∕jβ22j.
Since the probe pulse remains confined within the pump pulse,
we interpret it as XPM-induced temporal waveguiding of the
probe by the pump. Indeed, the evolution seen in Fig. 5(a) is
similar to what one would observe in a single-mode spatial
waveguide when the input beam shape does not coincide with
the spatial shape of the waveguide mode. In our case, the
Gaussian shape of the probe is different from the temporal
shape of the waveguide mode. As a result, the probe sheds some
energy initially as it adjusts its shape but then is guided by the
pump pulse and remains trapped inside it. If we use the rela-
tions β0Δn � 2γP1 and T B � T 01 in Eq. (8), we find that the
XPM-induced waveguide is in fact a single-mode waveguide
with V � 1.41.

If the probe pulse is in a region with normal dispersion, the
refractive index outside of the waveguide must be greater than
the refractive index inside of the waveguide. Therefore, the
waveguide must be formed by two pump pulses, with the wave-
guide occupying the region between them. Figure 6 shows
numerical simulations under the conditions of Fig. 5 but with
two super-Gaussian pump pulses separated by 12 ps. Even
though the two pulses overlap to some extent, the central re-
gion between them has a slightly smaller index change, making
effective Δn negative inside the core region. This scheme has
the added advantage that the number modes supported by the
waveguide can be altered simply by changing the spacing
between the two pump pulses.

If the pump pulse is not at the zero-dispersion wavelength,
the GVD will cause the pump shape to change, which, in turn,
will cause the waveguide to broaden in the case of the single-
pump configuration and to collapse entirely with the two-
pump configuration. While some GVD can be tolerated at
the pump wavelength, the corresponding probe GVD should
be higher to allow the probe pulse to fill the waveguide before
the pump disperses. This ends up creating essentially the same
behavior as the zero-GVD situation. In the case of normal
GVD at the pump wavelength (β21 > 0), we can compensate
for pump broadening by first chirping the pump with the
opposite dispersion before propagating it with the probe pulse.
This allows the pump to compress during propagation,
although the probe pulse will lose some of its energy initially
before the waveguide is formed. This method is less effective for
waveguides formed by two pump pulses since the two dispersed
pulses interfere with one another to form a more-complex tem-
poral profile when they are dispersed. However, it will work for
sufficiently wide temporal waveguides as long as the two dis-
persed pump pulses do not overlap in time.

A simpler solution exists when we have anomalous pump
dispersion since the pump pulse chirps itself through SPM
in such a way that the waveguide shape will be preserved
for a longer distance. Figure 7 shows the evolution for the same
parameters as Fig. 5 but with GVD β21 � −25 ps2∕km and the
pump power increased to P1 � 2 W. As shown in Fig. 7(c),
the pump pulse broadens initially, but SPM prevents further
broadening. This allows the XPM-induced waveguide to persist
over the entire propagation distance. A comparison with Fig. 5
shows that the probe pulse is trapped in nearly the same way as
the zero-GVD case. Note that the pump pulse in Fig. 7(c) can
be thought to be evolving toward a soliton. We next examine
the behavior when the pump is simply launched as a funda-
mental soliton.
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Fig. 5. Temporal (left column) and spectral (right column) evolu-
tions over a 3-km-long fiber for the probe [(a), (b)] and pump [(c), (d)]
pulses. The pump pulse has a Gaussian shape and is propagating at the
zero-dispersion wavelength of the fiber. (See text for other parameter
values.)
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Fig. 6. Same as Fig. 5, except that the temporal waveguide is formed
by using two super-Gaussian pump pulses separated by 12 ps.
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B. Soliton-Shaped Pump Pulses

As seen earlier, the width of a soliton and its peak power are
linked. If we use the relation β0Δn � 2γP1 together with
Eq. (7) for P1 to calculate the V parameter in Eq. (8), we find
that a soliton waveguide has a V parameter of the form

V � 2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
jβ21j
jβ22j

T 2
B

T 2
01

s
: (9)

We stress that this relation is not exact since the soliton has a
finite rise time. It is, however, a useful tool for approximating
how many modes the waveguide should support.

We will now examine the case where the waveguide is
formed by a single soliton pulse. In this case, the half-width of
the waveguide (T B) is approximately equal to T 01, and Eq. (9)
reduces to

V ≈ 2

ffiffiffiffiffiffiffiffiffi
jβ21j
jβ22j

s
: (10)

Consequently, the number of modes supported by the wave-
guide is almost entirely determined by the ratio of the GVD
parameters at the pump and probe frequencies. Note that
the width and peak power of the pump are not constrained,
so the waveguide can be constructed for any pulse width.
The modes will simply scale their widths and spectra up or
down to match the waveguide.

Figure 8 shows the evolution of probe pulses with T 02 �
5 ps and a GVD of β21 � β22 � −25 ps2∕km at two pump
powers of [(a), (b)] P1 � 1 W and [(c), (d)] P1 � 2 W. These
pump powers create waveguides that are about 7 ps and 15.8 ps
wide, respectively. Because the GVD values are the same at the
pump and probe, the V parameter is approximately 2 in both
cases. As the probe pulse evolves, however, it seems to excite

only one mode. This is not too surprising in view of the
approximate nature of Eq. (9). One more feature is noteworthy:
even though the waveguide width changes in the top and bot-
tom rows of Fig. 8, the peak power of the soliton also changes
in such a way that the waveguide mode is preserved. This also
makes intuitive sense since the soliton is essentially producing
its own waveguide.

If the temporal waveguide is formed by using two solitons,
we can set the waveguide width arbitrarily through spacing
between them and can therefore control the number of modes
supported by the waveguide. If we wish to have a highly multi-
mode waveguide, we can increase either the power of the sol-
itons or their separation. If we seek a single-mode waveguide,
however, we begin to run into the problem of soliton attraction
and repulsion. In this process, solitons that are close together in
time will either pull together or push apart depending on the
relative phase between the two pulses. In either case, the wave-
guide will eventually break down by either collapsing or wid-
ening until it once again supports multiple modes. As before,
we can avoid the interaction issue by using a pump wavelength
that has a low GVD relative to the probe GVD. This forces the
V parameter to be small, allowing for single-mode operation.
Another solution is to launch the two solitons with an initial
relative phase shift of π∕4. In this case, the solitons neither repel
nor attract one another, leading to a more stable waveguide.

As seen in Fig. 4, the energy in the probe pulse can have a
significant effect on the group velocity of the soliton. For a
waveguide formed by two solitons, the group velocity of the
leading soliton decreases as energy is transferred from the sol-
iton to the probe, while the group velocity of the trailing soliton
increases as energy is transferred from the probe to the soliton.
If the energy in the probe pulse is increased further, these two
solitons will collide and cause the waveguide to collapse. On the
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Fig. 7. Same as Fig. 5, except that the temporal waveguide is formed
by a single super-Gaussian pump propagating in the anomalous-GVD
region.
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a Gaussian probe pulse in a waveguide formed by a single soliton with
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other hand, for a waveguide formed by a single soliton,
the leading and trailing edges are formed by the same soliton.
Because the soliton gains energy at the trailing edge and loses
energy at the leading edge, the net effect is that the soliton
frequency stays the same and the temporal waveguide is
maintained.

4. PULSE JITTER COMPENSATION

If two pulsed laser sources have synchronized repetition rates,
some jitter may still remain in the timing of the two overlap-
ping pulses at different wavelengths. This interpulse jitter man-
ifests as a randomly varying delay between the centers of the
two pulses. The concept of XPM-induced temporal waveguid-
ing discussed in this paper provides a potential mechanism for
removing such timing jitter. One of the pulsed lasers acts as the
pump, while the other laser provides the probe pulses. The tem-
poral waveguide created by the pump pulse guides the probe
pulse inside it and reduces the interpulse jitter for the following
reason: if a probe pulse is displaced from the waveguide center
because of the jitter, it will shed some energy and reshape itself
to match the shape of the fundamental mode supported by
the temporal waveguide. A larger displacement leads to higher
energy loss, effectively converting the timing jitter into
amplitude jitter.

Our numerical simulations confirm the preceding scenario.
Figure 9 shows the evolution of three identical probe pulses
(T 02 � 5 ps), except that the probe is displaced from the wave-
guide center by (a) 0 ps, (b) 2 ps, and (c) 4 ps. In all three cases,
probe pulses are propagating inside an 8-ps-wide temporal
waveguide formed by two super-Gaussian pump pulses with
T 01 � 4 ps, m � 2, and P1 � 1.6 W. The pump pulses
propagate in the region of anomalous dispersion with β21 �
−10 ps2∕km, while the probe pulses see normal GVD with

β22 � 60 ps2∕km to ensure that they fill the waveguide
quickly. The output pulse shapes are shown in Fig. 9(d), where
it is evident that although the probe pulses start with different
offsets, they lose some energy outside of the waveguiding region
and eventually shift their peak position such that it is located in
the center of the temporal waveguide.

Examining the output pulse shapes in Fig. 9(d), we note that
larger time offsets lead to a larger reduction in the peak power
of the probe pulse since more energy is lost to the region out-
side of the waveguide as the pulse adjusts its shape to match the
shape of the waveguide mode. Clearly, the timing jitter of the
pulses has been traded with an amplitude jitter. Although not
desirable, amplitude jitter may be more acceptable than the
timing jitter for some applications. Note also that for offsets
of less than 2 ps, the reduction in peak power is relatively small.
This means that the XPM-induced waveguide can compensate
for jitter of nearly half the pulse width without significantly
altering the peak power of the probe pulses. We note that
the jitter compensation is not fully complete after the 8 km
of fiber, although the maximum offset from the waveguide
center is reduced by nearly a factor of 8 to <0.5 ps. A longer
fiber length should lead to better jitter compensation, though
fiber losses will begin to degrade the temporal waveguide.

The fiber length needed to reduce the jitter depends on the
pulse widths. If the two pulse trains contain shorter femtosec-
ond pulses, the required fiber length would be much smaller
than the one in Fig. 9. This is because shorter probe pulses
have a shorter dispersion length and therefore can fill the wave-
guide after a smaller distance. However, the higher-order dis-
persive and nonlinear effects, not included here, must be taken
into account for such pulses.

5. CONCLUSIONS

Cross-phase modulation is commonly viewed as a nonlinear
process that chirps a probe pulse and modifies its spectrum
when an intense pump pulse overlaps with it. Here we present
an alternative view of XPM in which the pump pulse creates a
moving refractive-index boundary that splits the probe pulse
into two parts with distinct optical spectra through temporal
reflection and refraction inside a dispersive nonlinear medium.
The probe even undergoes a temporal version of TIR for
sufficiently intense pump pulses, a phenomenon that can be
exploited for making temporal waveguides.

Through numerical simulations, we have investigated the
practical conditions under which the nonlinear phenomenon
of XPM, implemented with a pump-probe configuration,
can be used to observe temporal reflection and refraction as well
as to form a temporal waveguide. Since the moving temporal
boundaries are produced by the leading and trailing edges of the
pump pulse, its shape plays a critical role. Moreover, the boun-
daries can change during propagation because of the GVD at
the pump wavelength. One solution is to choose the pump
wavelength to coincide with the zero-dispersion wavelength of
the waveguide used and choose a super-Gaussian shape for
pump pulses that have relatively sharp edges. This configura-
tion has been discussed here in detail.

Another important configuration chooses the pump wave-
length such that the GVD is negative. In this case, a relatively
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Fig. 9. Evolution of three probe pulses that are offset from the wave-
guide center by (a) 0 ps, (b) 2 ps, and (c) 4 ps. Temporal waveguide is
created through XPM by two pump pulses separated by 8 ps. (d) The
output shapes of three probe pulses are shown.
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wide pump pulse can form a higher-order soliton that breaks
into multiple narrower and more-intense pulses and results in a
much larger refractive-index change than the original pulse
could provide. Our results show that the probe pulse experien-
ces a temporal version of TIR under such conditions. Of
course, the pump parameters can also be adjusted such that it
propagates as a fundamental soliton. We found that if the sol-
iton width is relatively narrow, the trailing edge of the soliton
can lead to frustrated TIR and some probe energy will leak to
the back side of the soliton.

In this paper we used relatively wide picosecond pulses to
examine the underlying physics as simply as possible. If shorter
femtosecond pulses are employed, Eqs. (1) and (2) should be
replaced with their generalized versions that include all higher-
order dispersive and nonlinear effects including intrapulse
Raman scattering, which shifts the pump spectrum toward
longer wavelengths [3]. This frequency shift would change
the speed of the pump pulse relative to the probe pulse and
therefore modify the reflected and transmitted frequencies.
If multiple pump pulses are used to form a temporal waveguide,
such spectral shifts could also lead to a collapse of the
waveguide. In addition, higher-order dispersion effects would
cause the pump pulse shape to change significantly. For all
these reasons, we feel that picosecond pulses are preferable
for experiments.

Our numerical simulations provide a basis for an experimen-
tal demonstration of temporal reflection using XPM. The
soliton-induced boundaries are perhaps the simplest to imple-
ment in practice. If a commercial, dispersion-shifted, telecom-
munication fiber is used with its zero-dispersion wavelength
near 1500 nm, one can employ intense pump pulses near
1550 nm and probe pulses near 1450 nm. The fiber length
of 3 km was chosen to allow the reflected and refracted pulses
to separate in time. This distance can be reduced to around
1.5 km, and could be reduced even further if somewhat shorter
pulses are employed. Another possibility is to launch pump
pulses at the zero-dispersion wavelength itself and probe pulses
near 1550 nm. In general, the use of XPM requires careful con-
sideration of the materials’ dispersive properties. If a photonic
crystal fiber is used for observing the effects discussed here,
Eqs. (1) and (2) should be modified to take into account
the actual dispersion characteristics of such fibers.
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