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Determination of modes of elliptical waveguides
with ellipse transformation perturbation theory
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All optical fibers, including single-mode, multimode, and multi-
core fibers, exhibit some degree of birefringence, either purposely,
such as in polarization-maintaining fibers, or inadvertently due to
material or fabrication imperfections. Finding a low-complexity
method to accurately calculate the modal characteristics of ellip-
tical fibers has been a long-standing problem. We present a novel
accurate perturbative method that avoids the difficulties associ-
ated with the traditional Mathieu function treatment. The
method is also applicable to a broader class of oscillating systems
with elliptical geometry.  © 2017 Optical Society of America
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The accurate determination of transverse modes of elliptical wave-
guides is important for both deliberately elliptical waveguides, such
as polarization-maintaining fibers, but also in the context of circular
fibers due to core shape fluctuations caused by manufacturing
imperfections [1]. Recently, multicore fibers with elliptical cores
have been shown to be promising candidates for next-generation
space-division multiplexing applications in optical communication
networks [2]. Traditionally, elliptical waveguides have been treated
using the elliptical coordinate system that invariably leads to
Mathieu differential equations [3]. The normal modes are then
expressed as linear combinations of products of angular and radial
Mathieu functions, both of which are notoriously difficult to
compute numerically [4,5]. The angular Mathieu functions are ex-
pressed as Fourier series and the radial functions as series of prod-
ucts of Bessel functions, and the coefficients for the terms are
obtained by calculating the eigenvectors of an infinite matrix.
The determination of transverse modes of step-index wave-
guides requires the matching of tangential fields at the core—
cladding interface. For circular waveguides, this is quite trivial
and boils down to matching an oscillating Bessel function /,,
in the core with a decaying modified Bessel function X, in
the cladding to ensure continuity of the tangential fields. For
elliptical waveguides, this procedure is significantly more cumber-
some as it requires the matching of an infinite series of products of
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Mathieu functions in the core with an infinite series of products of
different Mathieu functions in the cladding. For this reason, nu-
merous alternative approaches have been suggested. Schneider and
Marquardt [6] used a power series to compute Mathieu functions,
but the series becomes slowly converging for near-circular geo-
metry. Nor does this approach avoid the tedious matching of
two infinite series. Other methods [7—15] rely on heavy approxi-
mations and assumptions, such as weak guidance, and are therefore
incapable of providing arbitrarily accurate results.

In this Letter we outline a method, dubbed the ellipse trans-
Jormation perturbation method (ETPM) [16], to determine the
modes of elliptical waveguides. ETPM is based on treating ellip-
ticity as a perturbation from the circular case and therefore works
especially well for near-circular geometry. The method is signifi-
cantly simpler than the Mathieu function treatment, more versa-
tile than previous approximate methods, and even in its coarsest
form equally or more accurate than any past approximate method.
Unlike previous approximate methods, ETPM is not restricted to
small relative refractive index difference between the core and the
cladding. Furthermore, ETPM is generally applicable to any
oscillating physical system with elliptical geometry [17-20].

The refractive index profile of a waveguide with an elliptical
cross section oriented along the z axis can be written as

_m (/2 + (/b <1
n@J%—{@,(W@2+@My>1. (1)

Now, instead of switching to the conventional elliptical cylin-
drical coordinates [3], we apply ETPM and re-scale the x axis by
defining w = (&/a)x. In the new coordinates (w, , z), the ellip-
tical core—cladding interface becomes circular-like as it takes the
form w? + y* = .

To determine the waveguide modes, we solve for the
longitudinal electric and magnetic field components E, =
F(w, y)e?#®) and H, = G(w, y)¢'#* ). In the new coordi-
nates (, , z), The Helmholtz equation satisfied by £, becomes

[(1 4+ 8)0% + 0 + (K - fH)]F(w,y) = 0, @

where we have defined § = (4/4)? - 1. The parameter & serves as
a measure of the ellipticity of the waveguide core, vanishing for a
circular waveguide. Note that 6 can be negative or positive de-
pending on whether the major axis of the ellipse is parallel to
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the x or the y axis, and either orientation is fine as long as |§] < 1.
By treating 6 as a perturbation from the circular case, F (and G)
can be expanded as

F(w,y) = ) 8"F,(w,), 3)
n=0

without loss of generality. The condition || < 1 is needed for the
series to converge. For Eq. (3) to satisfy Eq. (2), the equations
have to be satisfied individually for each order of 8. This is analo-
gous to perturbation theory commonly used in quantum mechan-
ics with the key difference being that the perturbation affects the
coordinate system used. Substituting Eq. (3) into Eq. (2) yields an
infinite set of equations:

[0% + 0 + (& - fH)]F(w,y) = 0, 4)
and
(0% + 0) + (& - PIF (w,y) = -0 F .1 (wp),  (5)

where Eq. (5) was divided by 6” and holds for all » > 1.
Equation (4) is mathematically identical to the Helmholtz
equation for a circular fiber, with the general solution given by

Fo=Y_a,sin(np + $,)Z,(r7), (©)
n=0

where Z, is a Bessel function (/,, in the core region and X, in the
cladding region), y is a constant related to 4 and f (with different
values in the core and cladding regions), and z,, and ¢,, are con-
stants found by matching the boundary conditions. We used w =
7 cos ¢ and y = r sin ¢, but 7 and ¢ are not the circular polar
coordinates (a constant 7 corresponds to an ellipse instead of a
circle). We refer to them as quasi-polar coordinates (QPCs).
In physical terms, the QPCs are polar coordinates after scaling
the x axis by the axis ratio of the ellipse.

The deviations of the field profile F from the circular case are
given by the higher order terms F, obtained by solving Eq. (5),
which is a driven Helmholtz equation. However, note that for
6 # 0 the zeroth-order term F|j is already different from the circular
waveguide modes as it has been scaled in the x dimension. The
homogeneous part of Eq. (5) is identical to Eq. (4), and its general
solution has the exact same form as the solution of Eq. (4) given
in Eq. (6). The general form of F in Eq. (3) can thus be

written as

F= fj e, 2, (rr)sin(ngp + ¢,) + OFL (), ()
n=0

where £ (7, ¢) are particular solutions of Eq. (5). Even though an
elliptical waveguide is not rotationally symmetric, it exhibits reflec-
tion symmetry with respect to both the x and y axes. As a result,
F must be an even or odd function with respect to both x and y.
Therefore, either ¢, = 0 or ¢, = x/2 for all n. Furthermore,
¢, =0 for even n or ¢, = 0 for odd 7. Since sin(x + 7/2) =
cos(x), the ¢, = 0 case will be referred to as the sine case and
¢, = m/2 as the cosine case. In what follows, the treatment will
be restricted to the sine case only. The treatment of the cosine case
is identical with sines replaced by cosines.

Equation (7) provides the general solution for the waveguide
modes as an infinite series in powers of the perturbation param-
eter 8. To solve Eq. (5) for the first-order correction (7 = 1), we
note that £ needs to converge toward the circular-waveguide sol-
ution in the limit 6 — 0, say Fy = A sin(ng)Z,,(yr). This means
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that for each mode the sum in Eq. (6) consists of only one term.
Substituting this simple form of F into Eq. (5) then gives the
equation for F;, the particular solution of which, after some
algebra, is found to be

PV = 4B, 9) = 11 () sin()
- AZ s 07) = s ()]sl n + )
- AZ ) - T sinln- 24, (®)

where p = /(kyn;)? - % in the core, and

ng) = A%[Kn+l (9’7’) + K;%] (qr)] Sll’l(n¢)
+ A%[K vi3(q7) + K iy (g7)] sin[(n + 2)]

F ALK, () + K, s(glsnln- 208, )

where ¢ = \/* - (kyn,)? in the cladding. The obtained result

makes intuitive sense. When a circular-waveguide mode of angu-
lar dependence sin(n¢) is perturbed by making the core slightly
elliptical, the first-order correction comes from the sin[(7 £ 2)¢]
terms as they are the nearest-order non-zero perturbative terms. In
addition to these particular solution terms, the sum in Eq. (7) also
has terms of the form Z,.,(y7)sin[(n £ 2)¢] {or only the
Z ia(yr) sin[(n + 2)@] term if n < 2 since the sum in Eq. (7)
starts from 7 = 0} that originate from the homogeneous parts
of the equations for F,,. Since F; already has terms of the form
sin[(7 & 2)¢] from the particular solution, we will interpret the
Z 12 (y7) sin[(n £ 2)¢p] terms that exist in Eq. (7) as belonging to
F, and other terms of the form Z,,, (y7) sin[(n & 2m)¢] that are
present in the sum as being a part of #,,. Even though the func-
tion F, affects the particular solution of F ;, it does not matter
which homogeneous solution terms are or are not included in 7,
as the coefficients ¢, in Eq. (7) are arbitrary (for the time being)
and the particular solutions give only the magnitudes of the cor-
rective terms with respect to these coefficients. Without specify-
ing which homogeneous solution terms belong to which order F,,
only the zeroth-order term F; would be uniquely defined, aside
from its normalization factor, as it has to coincide with the cir-
cular-waveguide mode for § = 0.

Since circular-waveguide modes have an azimuthal mode order
n associated with them, and since each elliptical mode converges
toward a unique circular mode in the limit § — 0, it is meaningful
to assign a mode order to the elliptical modes as well. Roughly
speaking, the mode order of an elliptical mode is the index 7
of the dominant term in the sum in Eq. (7) (except for the
TE-like 2 = 0 mode). Now consider an elliptical mode of some
order 7. In general, all terms in Eq. (7) are needed, but for near-
circular waveguides we have |§| < 1, and hence the first-order
approximation F & Fy 4+ 8F can be expected to yield accurate
results, as each successive higher order term is smaller by a factor
of || compared to the previous one. To the first order in the
perturbation expansion, the transverse profile £ of the electric
field’s z component is found to be
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Fr xljnjn + ijn+25n+2 + xijn—zjn—Z

ro.. .
+ xlé% (]n+l _]n—l)sﬂ
pro. . pro. .
‘xl‘sﬁ Gnts = Jut1)Snr2 = Xﬁﬁ Gt = Ju3)su2 (10)
in the core, and

Fr x4kn5n + xSkn+25n+2 + kan—an—Z

+ x45ﬂ(kn+l + kn—l)sn

+x45 (/en+3 + ki 1)Sni2 +X45 (kn 1tk 3)s5,0 (11)

in the cladding, where we have defined the short-hand notations
jr =7(pr), kb = K ,(g7), and 5; = sin(/¢h), and where x; to x¢
are the amplitudes of various terms. As mentioned earlier, we can
follow the same procedure for the magnetic field’s z component
and will obtain identical terms for G, the only difference being
that all sines are replaced by cosines. Let us denote the magnetic
field term amplitudes by y, instead of x;, so y, are to G what x; are
to F. Essentially, Egs. (10) and (11) are approximations to the
transverse profile of £,, and the error in the approximation is
of the order of §*. For highly elliptical cores, 5? will be comparable
to 6, in which case second- and possibly higher order corrective
terms 6" F,, should be added for improved accuracy.

In the general case, 12 variables are thus needed to characterize
both £, and H,. However, depending on the order 7, some of the
terms in the expressions above might be redundant either because
they vanish or because they are of the same functional form as
some other term. Again, considering the sine case only, we have
x| =x3 =x4 =x5 =3 =Yg =0 when n=10. Forn =1 we
have x5 = x5 = y3 = y5 = 0, as these terms are of the same form
as the ones with x|, x4, y;, and y,. For n = 2 the sin[(n - 2)¢]
terms become identically zero, which means we must set
x3 = x5 = 0. For modes with 7 > 2, all 12 variables are needed.
The equations to remove redundant variables for the cosine case
can be obtained by interchanging every x; with y;,.

To solve the modal problem, we need to satisfy the boundary
conditions along an elliptical cross section. For this purpose, we
need the transverse field components, E; and Hy, which can be
written in terms of the longitudinal fields E, = Fe'#* and
H, = Ge#*. However, unlike the circular case, both fields
now depend on all four derivatives 0,£,, 0yE,, 0,H ,, and 0, H ,:

N wu . a)ﬂ acos® ¢+ bsin® poH
B o T 5 y ap |
ff[ 7(17c052¢+asm ¢)%

wp (a-b)sin ¢ cos poH, . oE,
5 . b —i—(ﬂ—b)smgbcosqﬁﬁ
+acosz¢+bsin2¢aE }(2) (12)
r 9P
and

{(b cos® ¢p + asin® ¢) M ();;
oE, a)eacoszq’)—i—bsngbéE
_?(4 b)smd)cosgb ﬂfaqﬁ]
Zfz [F (bcos? ¢p + asin? qb)
we(a-b)sin ¢ cos P OE,
5w

H
+ (@ - b)sin ¢ cos ¢—aa =+
-

H; =

acos® p + bsin> poH, | -
o)’
(13)

where k2 = p? in the core and k2 = —¢” in the cladding. Even
though these expressions appear lengthy, it should be kept in
mind that they involve only trigonometric and Bessel functions
and are thus considerably simpler than the Mathieu function
treatment [3]. It is important to note that the transverse tangential
field components are not parallel to the unit vector ¢ in the QPC
system. However, the transverse component tangential to the in-
terface simplifies considerably and can be expressed as

E =" K bl\j sin(2)0, H , + ﬂNa E _gaer}, (14)

and

H,=-it [52 251n(2¢)0¢E b 2 _o,H, NaE}, (15)
"B 246N ewN e

where NV = \/a sin? ¢ + & cos® ¢. Note that Egs. (12)—(15)
are the same for the cosine case, as the trigonometric functions
in them originate from the coordinate system used and not
the fields.

We need to match the tangential components of the electric and
magnetic fields (£, H,, E,, H,) at the core—cladding interface.
Matching of £, at the interface yields three equations in the general
case because of the three different ¢ terms in Egs. (10) and (11).
Similarly, matching of /4, E,, and H, yields nine more equations.
The equations can be written in matrix form as Mv = 0, where
v =[x, ..o, X V1> -+ Jg) - The modal propagation constants /3
are found by requiring det(M) = 0, and the eigenvector of M cor-
responding to the zero eigenvalue then gives the 12 coefficients x;
and y; up to a muldplicative factor. For » < 3, the number of lin-
early independent equations is smaller. The same procedure can be
used to include second- and higher order perturbation terms, but
the number of equations grows for higher order terms because of
the increasing number of variables x; and y,.

Depending on the effective area of the fundamental mode
compared to the core area, even slight ellipticity in the core of
an optical fiber can have a significant effect on the birefringence
between the slow and fast fundamental modes [3]. Manufacturing
imperfections thus cause fibers to be randomly birefringent due to
core ellipticity and stress-induced anisotropic changes in the re-
fractive index. This is generally detrimental in optical communi-
cation systems and a limiting factor for networks based on optical
fibers [1]. Varying core ellipticity may also lead to linear mode-
coupling in multimode fibers, which would be problematic
for next-generation fiber networks utilizing space-division multi-
plexing [21]. Accurate modeling of random changes in the effec-
tive indices and linear coupling coefficients would require the



Letter

)

Tg 0.5 ——Ref. [11]
$ 0.4 ——Ref. [12]
S ——Ref. [13]
£03 Ref. [14]
= ---Refs. [15, 22]
3 0.2 —"Exact" [3]
N 1|—ETPM

= 0.1

£

2 9%

2 4
Normalized frequency (V)

Fig. 1. Predictions for normalized birefringence between the funda-
mental modes using different methods. 7; = 1.5, 7, = 1.49, and the
core ellipse axis ratio is & /D = 0.9 (after Ref. [3] with corrections [22]).

computation of propagation constants and modal field profiles for
all possible core ellipticities and orientations, which would be very
time consuming without simplifications or approximations. The
ETPM is no more complex than previous approximate methods
[7-15] and has the advantage of accurately determining the mo-
dal field profiles as well as the propagation constants of waveguide
modes of any order. To compare first-order ETPM with the other
methods, Fig. 1 shows the normalized birefringence of the

fundamental mode defined as [3]

B DAp
1= (d/D)|1 - (my)my) 2P/

where 4 and D are the lengths of the semi-minor and -major axes,
respectively, and Af is the difference between the propagation
constants of the slow and fast fundamental modes. The refractive
indices of the core and cladding are #; = 1.5 and 7, = 1.49,
respectively. The fiber core has an axis ratio of 4/D = 0.9, mean-
ing 6 = -0.19 if we align the major axis along the x direction
(a= D), or 6~0.23 if the major axis is along the y axis
(b = D). The average of the predictions using the two possible
orientations for ETPM has been used for Fig. 1. The normalized
frequency V' for the elliptical fiber is defined as V =

Dky\/n? - n}, where k is the vacuum wave number.

It should be noted that Eq. (8) in the paper by Adams ez /.
[15] is erroneous, as described by Love et al. [22]. We further
point out that the equation provided by Love and coauthors also
contains a minor error: Eq. (1) in Ref. [22] should have (2A)3/2
instead of (2A)°. The corrected equation has been used for Fig. 1.
Figure 1 provides a clear example of the capabilities of the tech-
nique proposed in this Letter. The first-order ETPM involves only
eight variables and yet is very accurate over the whole range, as
Fig. 1 shows. Furthermore, more perturbation orders could be
included beyond the first-order term £, which means that
ETPM is the only method, aside from the tedious “exact”
Mathieu function treatment, capable of yielding arbitrarily accu-
rate results.

(16)
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In conclusion, we introduced a method, called the ellipse
transformation perturbation method (ETPM), to determine
the normal modes of oscillating systems with elliptical geometry.
The method is mathematically considerably simpler than the con-
ventional Mathieu function treatment and gives quite accurate
results for nearly circular geometries, even with just the first-order
corrective term, as was demonstrated in the context of birefrin-
gence in optical fibers with elliptical cores. Even for a relatively
high core ellipticity (axis ratio 0.90), the inclusion of first-order
corrections yielded results for fiber birefringence that were com-
parable to or more accurate than several previous approximate
methods. ETPM avoids assumptions, such as weak guidance,
and has the additional advantage of being able to provide both
the modal eigenvalues and the eigenfunctions (corresponding
to propagation constants and modal field distributions in the con-
text of optical waveguides) for any mode to any desired accuracy.

Funding. National Science Foundation (NSF) (ECCS-
1505636).
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