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We show numerically and analytically that temporal reflections from a moving refractive-index boundary act as an
analog of Lloyd’s mirror, allowing a single pulse to produce interference fringes in time as it propagates inside a
dispersive medium. This interference can be viewed as the pulse interfering with a virtual pulse that is identical to
the first, except for a π-phase shift. Furthermore, if a second moving refractive-index boundary is added to create
the analog of an optical waveguide, a single pulse can be self-imaged or made to produce two or more pulses by
adjusting the propagation length in a process similar to the Talbot effect. © 2017 Optical Society of America
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1. INTRODUCTION

Double-slit interference, which occurs when light exiting from
two closely spaced, narrow slits forms intensity fringes in a
plane transverse to the direction of light propagation, has been
a cornerstone of the wave nature of light for centuries [1].
Its temporal analog, where two short pulses propagate through
a dispersive medium and form interference fringes in time,
has also been explored through the well-known space–time
analogy [2–4].

Recently, there has been a growing interest in temporal
reflection and refraction from a moving refractive-index boun-
dary [5–8], particularly with regards to photon acceleration
[9,10], analog gravity [11–17], and interaction of solitons with
dispersive waves [18–25]. In this process, a single optical pulse
splits into a reflected pulse and a refracted pulse, each propa-
gating at a different speed, after it arrives at the refractive-index
boundary. The change in group velocity is caused by a splitting
of the pulse spectrum [8,22,26,27].

One useful tool that combines the double-slit interference
with reflection is the Lloyd’s mirror configuration. In this case,
diffracted light from a single slit is reflected from a mirror, cre-
ating an interference pattern that appears as if the initial slit was
interfering with a virtual second slit that has a π-phase shift
[28]. This configuration has seen use in photolithography [29],
test-pattern generation [30], and radio astronomy [31].
However, a temporal analog of this arrangement has not yet
been explored. In this paper, we show how temporal reflection
from a moving refractive-index boundary leads to an analog of
Lloyd’s mirror for optical pulses propagating inside a dispersive

medium. We also discuss how this configuration relates to two-
pulse interference in time.

The paper is organized as follows. In Section 2, we review
two-pulse interference and its relation to the spatial counterpart
making use of two slits. In Section 3, we discuss how a temporal
analog of Lloyd’s mirror is formed when an optical pulse reflects
from a moving refractive-index boundary. In Section 4, we con-
sider the temporal waveguide configuration [32] and discuss
how it can be employed for either self-imaging or generation
of a burst of pulses from a single pulse. The main results
are summarized in Section 5.

2. TWO-PULSE INTERFERENCE

We first discuss how two large-bandwidth, temporally sepa-
rated pulses propagating inside a dispersive medium can overlap
in time as they broaden due to group-velocity dispersion
(GVD) and form interference fringes that mimic a double-slit
diffraction pattern. We consider optical pulses in the form of
plane waves in the transverse spatial direction. Each frequency
component of the pulses travels with a propagation constant,
β�ω� � n�ω�ω∕c, where n�ω� is the refractive index at fre-
quency ω. For pulses containing multiple optical cycles, β�ω�
can be approximated by a Taylor expansion around the central
frequency of the pulse such that

β�ω� � β0 � β1�ω − ω0� �
β2
2
�ω − ω0�2; (1)

where βm � �dmβ∕dωm�ω�ω0
. The parameter β1 is the inverse

of the pulses’ group velocity. We simplify the following analysis
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by using the retarded time, t � T − zβ1, giving us a moving-
frame dispersion relation in the form

β 0�ω� � β0 �
β2
2
�ω − ω0�2: (2)

Using the dispersion relation in Eq. (2), together with
Maxwell’s equations and the slowly varying envelope approxi-
mation, we obtain the time-domain equation

∂A
∂z

� iβ2
2

∂2A
∂t2

� 0; (3)

where A�z; t� is the temporal envelope of the electric field at
distance z. This equation is easily solved in the frequency
domain using the Fourier transform method, and the solution
is given by [33]

A�z; t� �
Z

∞

−∞
Ã�0;ω� exp

�
i
β2z
2

�ω − ω0�2 − iωt
�
dω; (4)

where Ã�0;ω� is the Fourier transform of A�0; t�.
The integral in Eq. (4) can be performed in a closed form in

only a few special cases. However, similar to the case of far-field
diffraction of optical beams, we can solve this equation analyti-
cally for large propagation distances, z ≫ 0, or in other words,
when we satisfy the far-field condition �jβ2jz�−1 ≪ Ω2

w, where
Ωw is a measure of the width of the input-pulse spectrum. As is
well known, the output envelope in this limit mimics the shape
of the input spectrum and has the form [4,34]

A�z; t� � Ã
�
0;Ω � t

β2z

�
exp

�
−i

t2

2β2z

�
: (5)

Note that the scaling factor between the frequency and time
scales is simply the group delay dispersion, β2z.

We now assume that the temporal waveform at z � 0
consists of two identical pulses separated in time by T s:

A�0; t� � A0�t − T s∕2� � A0�t � T s∕2�; (6)

where A0�t� governs the shape of each optical pulse. By per-
forming the Fourier transform, it is easy to show that the input
spectrum is given by

Ã�0;ω� � 2Ã0�ω� cos�ωT s∕2�; (7)

where Ã0 is the Fourier transform of A0�t�. It follows from the
solution in Eq. (6) that when the two pulses are propagated
through a long-enough dispersive medium to satisfy the far-
field limit, the output intensity, jA�z; t�j2, will have the form

jA�z; t�j2 � 4jÃ0j2 cos2
�
T st
2β2z

�
: (8)

The cosine term in Eq. (8) leads to the formation of
interference fringes in time, with a fringe separation of
T f � 2πβ2z∕T s. As the initial pulses (slits) are separated more
in time, the fringes get closer together. Also, as the propagation
distance, z, is increased, the fringe separation increases. This
behavior is exactly analogous to the fringe separation seen in
a double-slit diffraction pattern.

Figure 1 shows three simulations depicting the propagation
of two hyperbolic-secant–shaped pulses propagating inside a
dispersive medium with β2 � 0.05 ps2∕m. Specifically, we
solved Eq. (3) with the input field of the form

A�0; t� � sech

�
t − T s∕2

T 0

�
� sech

�
t � T s∕2

T 0

�
exp�iϕ�;

(9)

where T 0 is related to the pulse width, and ϕ is the phase offset
between the two pulses. We choose T 0 � 0.3 ps, giving a
dispersion length (LD � T 2

0∕jβ2j) of 1.8 m and satisfying
the far-field condition above. We varied T s and ϕ such that
T s � 2.5 ps, ϕ � 0 for the first column; T s � 5 ps, ϕ � 0
for the second column; and T s � 5 ps, ϕ � π for the third
column. The bottom row shows the evolution of the pulse
shape over 100 m on a decibel scale, and the top row shows
the output pulse shape on a linear scale to more clearly mark
the peak position. In all cases, the two pulses broaden quickly
due to group-velocity dispersion. As the dispersed pulses begin
to overlap in time, they form interference fringes in a fan-like
shape, appearing to form multiple pulses. As predicted by
Eq. (8), a wider separation of input pulses in Fig. 1(b) leads to
a smaller fringe spacing at the output, compared to Fig. 1(a).
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Fig. 1. (a)–(c) Output pulse shapes for two hyperbolic-secant pulses propagating in a dispersive medium with initial pulse separations of
(a) T s � 2.5 ps, (b) T s � 5 ps, and (c) T s � 5 ps. The initial pulses in (c) have a π-phase offset. The predicted fringe locations are marked
with dashed black lines. (d)–(f ) Evolution of pulse shape for the same pulses demonstrating the fan-like interference fringes similar to those from
a double slit.
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The locations of fringe peaks in both Figs. 1(a) and 1(b) do not
perfectly match the values predicted by Eq. (8) (dashed
black lines), because the sinusoidal modulation is contained
within the envelope of the initial pulse spectrum, resulting
in a slight shift of the peaks of the interference fringes from
the predicted times.

We next consider the case shown in the last column of
Fig. 1, where the second pulse is identical to the first but
has a phase offset of ϕ � π. In this case, it is easily shown that
the cosine term in Eq. (7) becomes a sine term, and the output
has the form

jA�z; t�j2 � 4jÃ0j2 sin2
�
T st
2β2z

�
: (10)

As seen in Fig. 1(c), although the fringe spacing is the same
as in Fig. 1(b), the locations of the “bright” and “dark” fringes
have been reversed. This makes sense because bright and dark
fringes differ by a phase shift of π. Figure 1(f ) shows the propa-
gation of the same two pulses as in Fig. 1(e), except for a relative
phase shift of ϕ � π. Again, we see the pulses quickly broaden
due to the GVD of the dispersive medium and form interfer-
ence fringes. But, as predicted, the bright and dark fringes have
swapped locations, compared to the ϕ � 0 case.

3. SELF-INTERFERENCE CAUSED BY TIME
REFLECTION

In this section, we consider the temporal reflection of an op-
tical pulse inside a dispersive medium from a single moving
refractive-index boundary. For simplicity, we use a reference
frame that is moving with the boundary such that t �
T − z∕vB, where vB is the speed of the boundary. We also
Taylor-expand the dispersion relation around a frequency
whose group velocity matches the speed of the temporal boun-
dary. Similar to the derivation of the nonlinear Schrödinger
equation inside a dispersive nonlinear medium, we introduce
two time scales, a fast one at which the electric field oscillates
and a slower one at which the amplitude envelope varies
[33,35]. Assuming that the temporal transition region occurs
on the slow time scale (>10 optical cycles), the evolution of
the pulse envelope is governed by

∂A
∂z

� iβ2
2

∂2A
∂t2

� iβB�t�A; (11)

where βB�t� � k0Δn�t� is the shift in the dispersion curve
caused by a time-dependent refractive-index change of Δn�t�.
Physically speaking, the dispersion relation of the medium
before the temporal boundary is the same as in Eq. (2), and,
after the temporal boundary, takes the form [8,32]

β 0�ω� � β0 �
β2
2
�ω − ω0�2 � βB0; (12)

where βB0 is a constant shift of the dispersion curve caused
by the active process used to create the refractive-index shift.
Note that the dispersion relation before and after the boundary
corresponds to propagation in two homogeneous media, with a
transition between the two located at T B.

We stress that the moving refractive-index boundary is ac-
tually a temporal transition region, where the refractive index
changes over a few optical cycles. An actual step-like boundary

would cause a nonadiabatic transition, which would scatter
between bands of the medium [36]. However, as long as the
rise time of this transition region is much shorter than the
duration of the optical pulse, while still being longer than a
few optical cycles, we can safely approximate the transition
region as a step-like boundary. This approximation requires
that the change of the dispersion parameters across the transi-
tion region be small relative to their values [37], a condition
that must also be satisfied in deriving Eq. (11).

In the retarded time frame, the moving refractive-index
boundary becomes a stationary temporal boundary, which ap-
pears to change the refractive index for all of space and breaks
translational symmetry in time [5]. Therefore, any light that
crosses the boundary must satisfy conservation of momentum
in the moving frame, while the frequency is free to change
[5,8]. Equivalently, the moving-frame dispersion relation must
be continuous across the boundary such that β 0�t � T −

B� �
β 0�t � T�

B �. Imposing this condition, we can solve for the
reflected and transmitted pulse frequencies as

Δωr � −Δωi ; Δωt � Δωi

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 −

2βB
β2�Δωi�2

s
; (13)

where Δωj � ωj − ω0. When 2βB > β2ΔΩ2
i , the transmitted

frequency becomes imaginary, which does not correspond to a
traveling solution. Therefore, all of the pulse energy must be
reflected, creating a temporal analog of total internal reflection
(TIR). In other words, the temporal boundary acts like a perfect
mirror [8]. Note that the imaginary transmitted frequency pro-
duces a decaying exponential tail, which is analogous to the
evanescent wave [8].

We solved Eq. (11) numerically using the standard split-
step Fourier method. Figure 2 shows the evolution of the shape
[Fig. 2(b)] and spectrum [Fig. 2(c)] over 100 m of a single sech-
shaped pulse launched with T 0 � 0.3 ps and Δωi � 0, with a
temporal boundary located at T B � 0. The pulse is offset from
the boundary by T s∕2 � 2.5 ps. The parameter βB � 2.5 m−1

was chosen to ensure TIR at the boundary over the pulse
bandwidth.

We can visually see that the TIR condition is satisfied by
examining Fig. 2(d), which shows the initial dispersion curve
for t < 0 in solid blue and the shifted dispersion curve for
t > 0 in dashed red. Because momentum must be conserved
at the boundary, frequencies must maintain the same value
of β 0 when interacting with the boundary. Because the pulse
starts in the t < 0 region, all frequencies must begin with a
value of β 0 on the blue curve. To be transmitted across the
boundary, a given frequency must have a β 0 that is greater than
the minimum of the red curve (shown with a dotted black line).
We can easily see that there are no frequencies on the blue curve
for which β 0 exceeds this value for the entire pulse spectrum
shown in Fig. 2(c). Therefore, no frequencies can be transmit-
ted across the boundary, and TIR must occur. Note, however,
that only frequencies �ν − ν0� > 0 will actually interact with
the boundary and undergo TIR, while frequencies �ν − ν0� < 0
have group velocities that take them away from the boundary.

Comparing Fig. 2 to Fig. 1, the fringe pattern we obtained
in Fig. 2(b) appears to most closely match the case shown in
Fig. 1(f ), where the second pulse has a π-phase shift from the
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first pulse. This is analogous to the Lloyd’s mirror configura-
tion, which produces interference fringes using a single slit and
a mirror [28]. Because we employed a temporal analog of re-
flection [2,8], it is not surprising that TIR from a temporal
boundary produces a π-phase shift. Indeed, a π-phase shift also
occurs during traditional TIR when the angle between the sur-
face plane and the wave vector is small. As this angle becomes
larger, however, the phase shift begins to drop from π to zero.
Therefore, we should expect to see a frequency-dependent
phase shift across the temporal fringes. We can infer this effect
by more closely examining the fringes in Fig. 2. Figure 2(a)
compares the temporal fringe pattern obtained through TIR
(solid blue curve) with the one in Fig. 1(c) (dotted red curve)
obtained through two-pulse interference [on a decibel (dB)
scale]. For times close to t � 0, the fringe spacing agrees ex-
tremely well in the two cases, indicating that a π-phase shift
occurs during the TIR. As we get farther from t � 0, the bright
fringes for the reflected pulse (solid blue curve) begin to shift

inward toward the dark fringes of the dotted red curve because
of a reduced phase shift.

To quantify the preceding numerical behavior analytically,
we need to find the phase shift, ϕr , added to the pulse when it
reflects off of the temporal boundary. To find this phase, we
must first derive the temporal analogs of the Fresnel equations.
To that end, we write the total electric field of a specific fre-
quency component before and after the boundary as (assuming
linear polarization)

E�t� �
�
Aie

i�β 0z−Δωi t� � Are
i�β 0z−Δωr t� t < 0;

Ate
i�β 0z−Δωt t� t > 0;

(14)

where Ai, Ar , and At are the incident, reflected, and transmit-
ted amplitudes, respectively. We now apply the boundary con-
ditions that the electric field, E�t�, and its derivative, ∂E∕∂t,
be continuous across the temporal boundary [32]. Recalling
that β 0 is conserved in the moving frame across a temporal
boundary, the boundary conditions are satisfied when

Ai � Ar � At; ΔωiAi � ΔωrAr � ΔωtAt : (15)

Solving these equations, the reflection coefficient, r �
Ar∕Ai, is found to be

r � Δωt − Δωi

Δωr − Δωt
: (16)

Substituting the reflected and transmitted frequencies from
Eq. (13) into Eq. (16), we find the temporal analog for the
Fresnel reflection coefficient in a dispersive medium given by

r � 1 − i
ffiffiffiffiffiffiffiffiffiffiffi
Q − 1

p

1� i
ffiffiffiffiffiffiffiffiffiffiffi
Q − 1

p ; Q � 2βB
β2�Δωi�2

; (17)

where we have assumed that the TIR condition is satisfied.
In the following discussion, we focus only on the phase of
the reflection coefficient since that is what determines the
timing of the interference fringes. Note that when the TIR con-
dition is satisfied, the magnitude of the reflection coefficient is
unity (jrj2 � 1), as expected.

From Eq. (17) we obtain the following analytic expression
for the phase ϕr imparted to the reflected pulse during TIR:

ϕr � −2 tan−1
� ffiffiffiffiffiffiffiffiffiffiffi

Q − 1
p 	

: (18)

Figure 3(a) shows a plot of ϕr versus ν � ω∕2π for the same
parameters used in Fig. 2. We see that the phase varies over the
pulse spectrum as expected, starting at ϕr � −π near ν � ν0
and going to zero when jν − ν0j � 1.42 THz. This is analo-
gous to the phase behavior for traditional TIR. We can verify
that the analytical prediction agrees with our numerical simu-
lations using the double-slit analogy with a virtual reflected
pulse. Figure 3(b) shows the output pulse shape for the re-
flected pulse (solid blue curve), and the dotted red curve shows
the output for two interfering pulses when the reflection phase
from Eq. (18) is applied to the second pulse. As the figure
shows, the two sets of fringes overlap perfectly for t < 0, indi-
cating that the phase shift predicted by Eq. (18) is correct. The
fringes for t > 0 do not exist in the TIR case because both the
reflected and initial pulses are trapped in the t < 0 region.

Interference of a reflected pulse with the unreflected parts of
the initial pulse has been previously seen in a numerical study
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Fig. 2. (a) Fringe pattern after propagating 100 m for a single sech-
shaped pulse with T 0 � 0.3 ps (solid blue curve). The pulse is offset
initially by 2.5 ps from a co-propagating refractive-index boundary.
The two-pulse fringe pattern seen in Fig. 1(c) is represented by the
dotted red curve. Evolution of the (b) shape and (c) spectrum of the
single sech-shaped pulse propagating with the moving refractive-index
boundary. (d) Dispersion curves for t < 0 (solid blue curve) and t > 0
(dashed red curve). The dashed black curve shows the minimum initial
momentum needed to cross the boundary.
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devoted to propagation of solitons inside a dispersive nonlinear
medium [38]. In this study, a dispersive wave reflected off of a
temporal soliton. The effect was incorrectly attributed to scat-
tering of the dispersive wave from the soliton, rather than an
interference pattern formed by the initial pulse and the tempo-
rally reflected pulse.

4. SELF-IMAGING IN A TEMPORAL WAVEGUIDE

In this section, we add a second temporal boundary such that
the input pulse is located between the two boundaries, forming
a temporal waveguide [15,26,32]. In this configuration, multi-
ple reflections occur through successive TIR at the two boun-
daries, and we expect that infinitely many virtual pulses will
interfere with the original pulse, rather than just one. This sit-
uation is analogous to the Talbot effect, and we should expect
that the temporal Talbot effect will lead to self-imaging of the
original pulse at certain distances [39]. Some changes are also
expected, since, unlike the traditional Talbot effect where all
fields are in-phase, the waveguide produces a phase shift of
approximately π between adjacent pulses.

As an example, Fig. 4 shows the evolution of a pulse train
when adjacent pulses differ in phase by π. As the pulses overlap
in time, they quickly interfere and briefly form fringes that
eventually form distinct pulses at a higher repetition rate. At a
distance z � 79.5 m, the pulses return to their original shape,
and the process repeats itself. Note that, unlike the traditional
Talbot effect where the original pulse train reforms twice in a
given cycle, the pulse train in Fig. 4 reforms only once before
the process repeats. This is a result of the π-phase shift, which
prevents self-imaging halfway from the full cycle.

Figure 5 shows the evolution of the shape [Fig. 5(a)] and
spectrum [Fig. 5(b)] of a single sech-shaped pulse (T 0�0.2 ps)
propagating through a dispersive medium (β2 � 0.05 ps2∕m)
when it is confined to a 5 ps wide temporal window formed by
two refractive-index boundaries with βB � 5 m−1. In Fig. 5(a),
we see that the pulse quickly broadens to fill the entire window
and begins to interfere with the reflecting pulses formed at the
two edges through TIR. Multiple reflections lead to a more-
complicated interference pattern that begins to form progres-
sively fewer pulses at specific distances until two pulses are
formed at a distance of about 42 m. This process reverses itself,
and a single pulse is reformed at z � 85 m (self-imaging).
Figure 5(b) shows that the reflected frequencies overlap with
the initial pulse spectrum, causing a spectral interference pat-
tern that changes during propagation. Eventually, the spectrum
returns to its original shape at the same distance where the
pulse is self-imaged. For longer propagation lengths, the whole
process repeats itself periodically, just as required by the
Talbot effect.

Although the pulse evolution in Fig. 5 is very similar to that
in Fig. 4, the two are not identical. In particular, the distance
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over which the pulse is reimaged is slightly longer in the single-
pulse case. This is again related to the fact that TIR does not
produce a precise phase shift of π across the entire pulse spec-
trum. As we saw in Eq. (18), the TIR-induced phase shift is
frequency dependent. In Section 3, this frequency-dependent
phase shift led to a slightly different interference pattern. If we
perform the simulation in Fig. 4 again but apply the phase shift
in Eq. (18), we find that the pattern matches perfectly the one
shown in Fig. 5(a). Finally, we note that self-imaging in Fig. 5 is
not perfect, with the reformed pulse being slightly different
from the original. By increasing the value of βB, however, the
difference between the original and reformed pulses can be
reduced, resulting in nearly perfect self-imaging. This makes
sense because the larger the value of βB, the closer the reflection
phase shift in Eq. (18) to π over the entire bandwidth of the
optical pulse.

5. CONCLUSIONS

We have shown, both numerically and analytically, that tem-
poral reflections from a moving refractive-index boundary act as
an analog of Lloyd’s mirror, allowing a single pulse to produce
interference fringes in time as it propagates inside a dispersive
medium with a temporal boundary across which the refractive
index of the medium changes. Our numerical simulations show
that the pulse spectrum also develops a multipeak structure in
this situation. By comparing the temporal fringe pattern to that
formed through two-pulse interference, we show that temporal
reflection produces a frequency-dependent phase shift that
varies between 0 and π. We used the boundary conditions
across the temporal boundary to derive an explicit expression
for the amplitude reflection coefficient when TIR occurs and
found the frequency-dependent phase shift given in Eq. (18).
Applying this phase shift to a virtual second pulse produces the
same interference pattern as the pulse reflecting from the tem-
poral boundary. This matches the behavior of traditional reflec-
tion, where the reflection can be interpreted as coming from a
virtual source.

We also discussed the self-imaging occurring when a second
temporal boundary is added, forming a temporal waveguide
that confines an optical pulse inside it. In this case, a single
pulse experiences multiple reflected pulses that interfere and
form a complex fringe pattern before eventually forming an
image of the original pulse. This self-imaging effect is also seen
in spatial planar waveguides and is similar to the temporal
Talbot effect [39], which requires interference from an infinite
train of pulses. Although the reimaging is not exact in general,
increasing the refractive-index change across the boundary
causes the reimaged pulse to more closely match the shape of
the initial pulse. This arrangement could be used to selectively
convert a single pulse into two or more pulses, with the number
of pulses set by the length of the dispersive medium.

An experimental realization of this effect would be of great
interest. One approach would involve using a pump-probe con-
figuration, where the pump produces the moving refractive-
index boundaries through cross-phase modulation. While our
current discussion did not include the effects of third-order
dispersion, our previous work has shown that higher-order
dispersion can be largely ignored by working far from the

zero-dispersion wavelength [40]. Working near the zero-
dispersion wavelength could allow for even more interesting
interference patterns, as multiple reflections can occur from
a single boundary.
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