
1Scientific REpoRts | 7: 9083  | DOI:10.1038/s41598-017-09502-9

www.nature.com/scientificreports

Dynamics and detection of the 
Newton-Wigner time delays 
at interfaces using a swivelling 
method
Albert Le Floch1,2,3, Olivier Emile1,2, Guy Ropars1,2 & Govind P. Agrawal4

Evanescent waves are ubiquitous at interfaces with optical, seismic or acoustic waves, and also with 
electron, neutron or atom beams. Newton was the first to suspect that both small time delays and 
spatial shifts exist during total internal reflection. However, these effects are so tiny that the spatial 
shifts were only observed in 1947 in optics, whereas the time delay values predicted by the Wigner 
model in the 10−14 s range in optics had to await femtosecond lasers to be detected with difficulty. The 
spatial shifts have been isolated in many areas but the time delays, though fundamental, generally 
remain out of reach, particularly with particles. In textbooks usually both quantities are supposed to be 
simply linked. Here we report, using swivelling detectors, that the spatial and temporal measurements 
are intimately intermingled, especially in the so-called cyclical regime. Indeed, while the spatial shift 
does not depend on the type of detection, the measured time delay can be positive, negative or zero, 
but controllable. We also discuss how such intricate measurements of spatial and temporal effects 
allow crucial time penalties to be eliminated in guided soliton propagation, and should be used to 
unambiguously identify the Newton-Wigner time delays for particles.

Although suggesting a mechanical corpuscular model of light, Newton was the first to observe and use evanescent 
waves at total reflection1. Moreover he suggested spatial shifts and time delays for light impinging on an interface. 
Among the many definitions of time delays2, considering the energy derivative of the scattered phase shift δ dur-
ing an elastic collision, Wigner introduced a time delay value τ linked to the principle of causality3, in the form 
τ = ∂δ

∂E
 . This formulation has been extended to space-time intervals4 and applied to the total reflection case5, 

correlating the expected Newton-Wigner time delay, i.e., the time spent in the second medium, to the 
Goos-Hänchen spatial shift6. This spatial shift δLGH (see Fig. 1a) has been extensively investigated, both theoreti-
cally and experimentally, at interfaces involving not only all kinds of optical media such as glass7, metals8, super-
conductors9, nematics10, graphene11, magnetic materials12 but also using newly discovered metamaterials with 
properties not available in nature13–16. The Goos-Hänchen shift has also been observed in acoustics17, 18, and 
neutronics19 and is expected in seismology20 and in quantum reflection21. However, from the experimental point 
of view, while the spatial shift requires only a continuous wave (CW) set-up to be observed, measuring the 
Newton-Wigner time delay (in the range of 10−14 s in optics) necessitates short pulses, a reference clock, and an 
appropriate finish line for the arrival of two pulses, when two spatially separated trajectories are used. The meas-
urement of such delays requires detecting the difference between the time arrivals of two pulses propagating along 
parallel pathways. As for runners in different lanes in a stadium, one has to clearly identify the start and finish 
lines. Fundamentally, spatial shifts and time delays are expected for transverse, longitudinal and de Broglie matter 
waves, but the two measured quantities are experimentally structurally intermingled (Fig. 1).

In recent years the Newton-Wigner time delays at interfaces have been observed with difficulty in optics for 
gratings and dielectrics using complex techniques22–24. Indeed, for a single reflection on an interface, only differ-
ential methods using synchronous detections allow one to reach the expected small Newton-Wigner delays of 
about 20 fs between broadened 1000 fs TE and TM correlation signals24. In fact, in any experiment, one has to 
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compare the pulse arrivals for two beams with spatially separated pathways, with their own possible extra delays. 
On the one hand, in contrast to the measurement of spatial shifts that remain unchanged in a continuous wave or 
a pulsed regime, the measurement of time delays requires a pulse regime with short optical pulses and is expected 
to exhibit experimentally paradoxical dynamics, according to the chosen finish line. For this reason, spatial shifts 
and the measured delays cannot be simply linked as described in textbooks25, 26. Nonetheless, on the other hand, 
combining spatial shifts with time delays could provide us with the possibility to compensate for unwanted penal-
ties occurring in fast phenomena such as soliton propagation. Today, temporal solitons are the subject of intense 
research10, 27, 28 and find applications in many areas including communications and frequency combs with their 
numerous uses beyond the laboratory environment. In systems where temporal solitons interact with interfaces, 

Figure 1. Goos-Hänchen shifts and Newton-Wigner time delays in different regimes. (a) A Ti:Sa laser beam 
at a wavelength of 808 nm is coupled into a waveguide via the prism 1 and undergoes up to 161 total internal 
reflections before being outcoupled by the prism 2. The laser could operate either in CW or pulsed regime. 
The total Goos-Hänchen shifts between TE and TM beams reaches 0.8 mm. It is directly observed through an 
infrared viewer giving the green colour. (b) In the femto-second regime, the Newton-Wigner delay qδτMeas. is 
measured by a correlation with a fixed reference beam on a two-photon detector, whose surface of detection 
could be rotated by an angle θ. The pulse polarizations are successively TE or TM. Note that for θ = 0°, the TE 
and TM pulses arrive at the same time due to an automatic compensation in the second prism. (c) In the soliton 
regime, when a randomly polarized soliton at a wavelength of 1550 nm is launched into a telecommunication 
system including a waveguide, a forked fibre detector can take advantage of the intermingled spatial and 
temporal shifts to compensate for the distortion.
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combining the spatial shifts with time delays opens new possibilities to control soliton perturbations. Moreover, 
such a combination could help us in unambiguously identifying time delays in the particle domain.

Beyond the difficulties to access the delays, several experiments22–24 have used counterintuitive schemes, 
where the detection line is oriented parallel to the interface.

Modern nanophotonic techniques have been proposed to reach Newton-Wigner delays by simply orienting 
the detection plane perpendicular to the beam propagation29. Unfortunately, in this case there is a mathematical 
compensation of the Newton-Wigner delays22 due to the inherent extra optical length in the glass22, 24. Indeed, 
around the critical angle at total reflection in glass (see Fig. 1b), the time delay qδτNW of the TM pulse along the 
interface (along AB) is exactly compensated by the extra TE pulse propagation time from A to H in the glass:

δτ δ= ⋅ ⋅q n c q L sin i( / ) , (1)NW GH

where n is the refractive index of the waveguide, i is the angle of incidence, and sin i = 1/n.
The observed residual time delay in ref. 29 is probably due to an unavoidable pulse distortion in the attenuated 

total reflection system, which is not related to Goos-Hänchen shifts and Newton-Wigner delays studied here. 
The preceding discussion shows the difficulty to reach the Newton-Wigner time delay itself. This is particularly 
true, as even orienting the detection plane parallel to the interface22–24 is not universal. In fact, as shown below, 
when the Goos-Hänchen shift vanishes like in the so-called cyclical regime, surprisingly, orienting the detection 
plane perpendicular to the beam axis works correctly to measure the delay. Hence, to reach the fundamental 
Newton-Wigner time delay in a given experiment, we have to use a swivelling method. An experimental set-up 
has to fulfil two conditions: i) be based on a direct method, avoiding complex modulation techniques, so as to 
clearly identify the different pulse arrival times, ii) meet the Rayleigh-like criterion which requires that the time 
interval between the two correlation signals is at least equal to the half-width at half-maximum of the correlation 
signal itself.

Materials and Methods
In optics, the two preceding conditions can only be satisfied by amplifying the shifts and delays of femtosecond 
laser pulses in a planar guiding slab of refractive index n as shown in Fig. 1a. In this case the geometrical prop-
erties of the Gaussian beam can be perfectly preserved even after q = 161 successive reflections by choosing the 
angle of incidence just above the critical angle of total internal reflection. The resulting large 0.8 mm spatial shifts 
qδLGH between the TM and TE polarized beams can then be seen even with the naked eye (see photo of Fig. 1a 
taken near the output prism 2). Unfortunately, directly measuring the corresponding time delay qδτNW between 
the TM and TE pulses at the interface, would require placing a detector parallel to the interface along the line 
AB (see Fig. 1b) just after the last reflection inside the denser medium, i.e. in the glass, which is impossible. A 
second prism is necessary to extract the pulses after q reflections, adding extra delays in the measurements. 
Alternative experimental configurations can be imagined along the surface, in the air medium. For example, the 
detector could be butt coupled to the waveguide, or ultrafast near-field microscopy could be used, and the angle 
of incidence varied. Both cases require a reference signal, and the adjustments of the angle of incidence are tricky 
around the critical angle and cannot give access to the same dynamics. In our case, the two required conditions 
are fulfilled using a Ti:Sapphire laser delivering 150 fs pulses (about 8 nm Fourier-limited bandwidth). Indeed 
for an expected delay of about 3000 fs along the surface after 161 successive reflections, a direct correlation with 
a reference beam, taking into account of the geometry of Fig. 1b, will give separated signals with a half-width at 
half-maximum of about 300 fs (larger than any pulse broadening due to the chromatic dispersion in the wave-
guide), satisfying the Rayleigh-like criterion.

The planar waveguide consists of a 30 cm long, 5 cm wide and 0.15 cm thick silica plate with a surface flatness 
of λ/2. Two 0.5 cm right-angle prisms used to couple the pulses in and out are also made of fused silica. The 
refractive index of the plate and of the prisms equals 1.453. An index matching liquid at the interfaces between 
the plate and the prisms and a careful adjustment of the position of the prisms, enable us to keep the optical 
quality of the 400 μm laser beam waist, even after 161 reflections (see photograph of Fig. 1). We use two Newport 
M-URM80MS microstage rotations which have an angular resolution of 0.001°. The first one enables the angle of 
incidence to be set at i = 43.53°. The second one is used to rotate the swivelling detectors. For the time delay, we 
used a Hamamatsu G1116 GaAsP photodiode which has a band gap around 680 nm. This photodiode exhibits a 
nonlinear two-photon absorption at 800 nm. In order to observe the dynamics of the delays, the reference beam is 
kept constant while the swivelling detector is rotated (see Fig. 1b). For detecting the spatial shifts, the two-photon 
photodiode is replaced by a Hamamatsu S11071-1004 CCD image sensor with 1024 elements spaced by 25 μm.

To compensate for a soliton distortion we use another swivelling method with the fibre optics shown in Fig. 2. 
In the forked detector (see Fig. 1c), the 1 mm distance between the two fibres is adjusted so as to correspond to 
the spatial shift between the TE and TM beams through the waveguide. The TE and TM pulses then propagate 
within two separate fibres before reaching the detector. The distance between the output of the waveguide and the 
fibre input faces can be adjusted independently for the two fibres to compensate for the difference in the arrival 
times of the TE and TM pulses, using a microstage translator. The two input faces of the fibres define a finish line, 
as when we dealt with the femtosecond pulses. A laser oscillating at 1550 nm generates 2.5 ps soliton pulses with 
a repetition rate of 10 GHz. These pulses are electrically time multiplexed to obtain a 40 GHz repetition rate. The 
telecommunication signal is encoded via an electro-optic modulator to get a return-to-zero modulation format at 
40 Gbit/s. This signal is finally optically multiplexed four times to obtain a 160 Gbit/s telecommunication signal. 
After the waveguide is inserted in the system (Fig. 2), the two TE and TM components of the soliton are sent into 
the forked detector. Its output is connected to a standard 50/50 coupler, before entering an EXFO PSO-102 optical 
sampling oscilloscope.
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Results and Discussion
The comparative dynamics of the Goos-Hänchen shifts and the Newton-Wigner delays. To 
investigate the link between the spatial shifts and the measured time delays, let us compare their respective 
dynamics in the guided setup of Fig. 1b, using the swivelling detectors. The experimental results are shown in 
Fig. 3a for three orientations of the detector demonstrating the stability and the robustness of the measured values 
of the spatial shifts. When the detection angle θ is increased, the measured Goos-Hänchen signals are only slightly 
spread by (cosθ)−1. For θ = 25° orientation, the shifts of the Gaussian beams are increased by 10%. However, if 
we introduce a factor of merit, QGH = q δLGH/Δω where Δω corresponds to the measured width of the Gaussian 
beam at half-maximum, QGH remains constant as shown in Fig. 3b. The measurements of the spatial shifts are 
stable and unchanged in both the CW and pulse regimes.

Measuring the corresponding time delays is more tricky. As shown in Fig. 1b, we have to use a two-photon 
detector so as to detect the correlation of a fixed reference pulse with the TE and the TM pulses successively. 
However, although the TM pulse spends more time outside the glass than the TE pulse, at total reflection, no 
delay is observed for θ = 0° (Fig. 3c). Indeed, after q reflections, the TE pulse is reflected before the TM pulse (see 
Fig. 1b). As already stated in Eq. 1, the Newton-Wigner delay for the TM pulse is equal to the propagation delay 
of the TE pulse from A to H, i.e.

⋅ = ⋅ ⋅n cAH ( / ) (BH tani)(n/c) (2)

If θ = 0°, the TE and TM pulses reach the detector simultaneously, and no delay is observed (Fig. 3c). There 
is a systematic compensation as already described. When the detector is rotated counter-clockwise (θ > 0°), the 
TE pulse reaches the detector before the TM pulse, as in Fig. 1b. The measured delay between the two pulses is:

δ θ θ= ′ ′ = ′ ′ ⋅ = ⋅ ⋅q H B c H A/ ( tan )/c (BH tan )/c (3)Meas

From equations (2) and (3) we deduce the actual value of the Newton-Wigner delay time:

δ δτ θ= ⋅ ⋅q q i(n tan )/tan (4)NW Meas

Thus, when the detector is rotated so that the finish line A’B’ is more parallel to AB, as for the positive values of 
θ =  + 9° and θ =  + 25°, the TE pulse clearly arrives before the TM pulse as expected (Fig. 3c) and Eq. (4) leads to 
the Newton-Wigner time delay along the interface of qδτNW = 2595 ± 30 fs for θ =  + 9° for example.

The divergence of the measured time delay values versus the orientation of the finish line is an unavoidable 
consequence of the spatial shift between the TE and TM pulses, with an inversion point at θ = 0°. If we introduce 
a similar factor of merit for the measured time delay, i.e. QNW = q δτNW/Δtc, where Δtc corresponds to the time 
duration of the correlation signal at half-maximum, we obtain the results shown in Fig. 3d. The Rayleigh-like 
criterion (i.e. q δτNW = Δt) is satisfied only for θ ≥ °8  and the sharp decrease of the Q factor around θ = 0° 
excludes any direct measurement in the central zone with the correlation technique. However, high variability of 
the measured time delays shows the crucial role played by defining the finish line for correctly reaching the true 
Newton-Wigner time delays.

For negative rotations θ of the swivelling detector, the measured values of qδτMeas are reversed as shown for 
θ = −9° in Fig. 4a. The TM signal arrives before the TE signal. θ = 0° is really an inversion point in our case. 

Figure 2. Experimental setup for the soliton experiment. Photograph of the telecommunication system for 
λ  = 1550 nm including the plane waveguide. The swivelling detection is performed here by the forked detector. 
The red and the blue fibres carry the TE and the TM beams respectively.
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In any experiment with a Goos-Hänchen spatial shift along an interface, the large variation of the measured 
time delays around the inversion point is a necessary signature of the true Newton-Wigner delay. Although the 
Newton-Wigner delays are essentially positive due to the causality principle, the measured delays can be positive, 
zero or negative.

The cyclical regime for the Goos-Hänchen spatial shifts and the Newton-Wigner delays. As 
suggested by the photograph of Fig. 1a where the TM pulse is already shifted by 0.8 mm compared to the TE 
pulse after 161 reflections corresponding to a propagation length of about 0.2 m, one may wonder what regime 
should be expected in longer waveguides (1 m long or more). It turns out that the spatial shifts do not keep on 
increasing monotonically but exhibit a cyclic behavior. As shown in Fig. 4b after q = k reflections of the TE pulse, 
the TM pulse catches up with the TE pulse. However, the TM pulse has experienced only k−2 reflections. For an 
even longer guide such spatial coincidence of the TE and TM pulses is repeated after 2k and 2(k-2), 3k and 3(k-2) 
reflections for the TE and TM pulses respectively. We are left with a cyclical regime for the Goos-Hänchen spatial 
shift as shown in Fig. 4b. For a given guide and a particular wavelength, one can introduce a Goos-Hänchen beat 
length (see Supplementary Information Fig. S1) as the distance over which the TM mode will experience an accu-
mulated extra shift compared to the TE mode, such that the beams are again superposed. In this case, at the end 
of each beat length (for k, 2k, 3k, …), where the spatial shift between the TE and TM pulses is cancelled, a swivel-
ling detector is no longer necessary, and measurements of the time delay can be performed at θ = 0°. Moving the 
extracting prism along the guide, one can record a step pattern schematized at the bottom of Fig. 4b for the time 
delay that corresponds to the successive beat lengths. The expected measured delays are now systematically nega-
tive as the TE pulses undergo an extra-delay corresponding to the time spent for undergoing two more reflections 
in the guide. The time delay increment Δτk between the TE and TM pulses is equal to this TE penalty, minus the 
true Newton-Wigner delay kδτNW accumulated after k reflections (see Supplementary Information). When the 2k 
and 3k reflections are reached, the guide can work as a Vernier calliper, leading to a potentially higher precision 
on the time delay for a single reflection at each step.

The compensation of pulse distortions by the Newton-Wigner delays. The dynamics of the 
Newton-Wigner delays offers the possibility of compensating for distortions in the propagation of high-bit-rate 

Figure 3. Respective dynamics of the measured spatial shifts and delay times. (a) Experimental and theoretical 
dynamics of the spatial shifts for the TE and TM polarizations for different orientations of the finish line in the 
plane of incidence of the waveguide. (b) Plot of the figure of merit Q for the different measurements showing the 
invariance of the Q factor versus the orientation of the detection line. (c) Corresponding responses for the delay 
times. The measured value for θ = 9° leads to a Newton-Wigner delay value along the interface of 2595 ± 30 
fs. Note here, the existence of an inversion point where the sign of the measured delay times changes. (d) The 
corresponding factor of merit Q shows large variations around the inversion point schematized by the purple 
line.
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signals such as solitons30 in optical telecommunication systems with total reflections. Figure 1c schematizes the 
launching of a soliton in a passive optical guide inserted in the system of Fig. 2. The detector has been modified 
in order to separately detect the TE and TM contributions of the distorted soliton at 1.55 μm. We used the forked 
detector which consists of two cleaved single mode fibres, as in a Hanbury-Brown and Twiss like experiment31. 
The two input faces of the fibres define a finish line, as when we dealt with femtosecond pulses. When a typical 
unperturbed soliton such as the one in Fig. 5a is first multiplexed to obtain the 160 Gbit/s high-bit-rate signals, a 
large vertical eye opening is recorded only limited by the signal-to-noise ratio (Fig. 5b). For a randomly polarized 
distorted soliton (at the input) as depicted in Fig. 5c, the eye diagram for the corresponding multiplexed soliton 
rapidly degrades. The eye diagram at the output is really greatly reduced for θ = 0°, showing an eye closure penalty 
of 4.0 dB (Fig. 5d). For θ = −14°, the eye opening is still more reduced leading to a 7.5 dB penalty (Fig. 5e). By con-
trast, for θ =  + 30° the eye diagram is restored, showing a residual penalty of 1.2 dB (Fig. 5f). So, combining the 
spatial shifts and the associated dynamics of the temporal delays at interfaces optimizes the quality of the detec-
tion of high-bit-rate signals. Here the spatial shift between the TE and TM beams reaches 1 mm. In a miniaturized 

Figure 4. Variability of the measured delay time. (a) Change of sign of the measured delay time between 
the TE and TM laser pulses around the inversion point, successively observed on the intensity correlation 
profiles for + 9°, 0° and −9° rotations of the detection surface of the swivelling two-photon detector. (b) After 
q reflections, for a long waveguide, the TM component catches up with the TE component leading to a cyclical 
regime for q = k, 2k, 3k. If the laser pulse polarization is launched at 45° from the incidence plane of the prism, 
for q varying from 1 to k, with the detector oriented at θ = 0°, the Newton-Wigner delay between TM and 
TE is automatically compensated (see text). By contrast, for q = k, as the spatial shift ΔLGH is cancelled, the 
detector receives two pulses separated by a Δτk delay including the Newton-Wigner delay (see Supplementary 
Information). For q = 2k and 3k the delay Δτ at θ = 0° is multiplied by 2 and 3 respectively.
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system, the necessary shift could be reduced to 100 μm corresponding to the distance between two joined fibres 
of the fork. Only 3 cm long guide would then be needed.

The Newton-Wigner time delay measurements for different particles on interfaces. Spatial 
shifts and time delays observed for transverse waves are also expected for longitudinal and de Broglie waves. 
Although the spatial shifts and the time delays at interfaces have been predicted for many particles9, 32–38, to the 
best of our knowledge, only the spatial shift for neutrons has yet been observed19. The respective dynamics of both 
quantities observed in optics can bring new insights in the investigations for particles and their de Broglie matter 
waves. Figure 6 shows the comparative issues to be resolved for measuring the time delay for the optical waves and 
particles. In optics, while the tiny time delay for a simple reflection is only of the order of 20 fs requiring correla-
tion techniques, the amplification via multiple reflections allows the Rayleigh-like criterion to be fulfilled, so as 
to reach the Newton-Wigner domain where the measurements are straightforward. As the expected time delays 
for electrons32–34, neutrons35 and cold atoms36, 37 are considerably larger than those for photons, by about three, 
seven and eleven orders of magnitude respectively, measuring the delays rather than the corresponding spatial 

Figure 5. Rectification of a distorted soliton. Eye diagrams for a 160 Gbit/s telecommunication signal at a 
wavelength of 1550 nm, measured with the forked fibre detector and an optical sampling oscilloscope. (a) 
Picture of a TE polarized soliton entering the waveguide (scale bar, 5 × 10−12 s). (b) Multiplexed soliton. 
(c) Picture of a distorted soliton. (d), (e), (f) Multiplexed signals corresponding to the distorted soliton at 
the output of the waveguide for different orientations of the finish line of the forked detector: (d) θ = 0°, (e) 
θ = −14°, the eye closure penalty is increased, (f) θ =  + 30°, the eye closure penalty is almost cancelled.
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shifts seems more accessible. The Rayleigh-like criterion in Fig. 6 shows that it is much easier for particles to reach 
the Newton-Wigner domain, i.e. the region where the pulse width Δτ to be used, is shorter than the delay to be 
measured. While the expected or measured spatial shifts for particles remain tiny, the expected time delays are 
rather large. Indeed, the speeds of the particles can be considerably reduced, reaching the mm/s range for very 
cold atoms. For instance metastable Ne and He atoms36, 37 and Bose-Einstein condensates38 exhibiting quantum 
reflections at grazing incidence on solid surfaces, seem to be a promising case for isolating their millisecond 
Newton-Wigner time delays. The triplet state of the He atom39, 40 seems to be the best candidate to observe, for 
the first time, the delay in quantum reflection. Paradoxically, although the expected Newton-Wigner time delays 
for particles are much larger than those measured in optics and do not require any correlation techniques, they 
remain to be observed.

Conclusions
The swivelling detection is a powerful method to unambiguously identify and measure the fundamental 
Newton-Wigner time delays at interfaces. Combining the respective dynamics of the measured time delays and 
the accompanying spatial shifts permits us to compensate for distortions in high-bit-rate transmissions. The 
introduction of the Goos-Hänchen beat length in a long planar waveguide leads to a cyclical regime that opens 
new possibilities for straightforward measurements of the Newton-Wigner delays. Moreover, in spite of the higher 
complexity of the particle experimental set-ups, the swivelling detection should enable the Newton-Wigner time 
delays to be clearly identified for the first time in the Newton-Wigner domain.
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