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We adopt a variational technique to study the dynamics of perturbed dissipative solitons whose evolution
is governed by a Ginzburg-Landau equation (GLE). As a specific example of such solitons, we consider a
silicon-based active waveguide in which free carriers are generated through two-photon absorption. In this
case, dissipative solitons are perturbed by physical processes such as third-order dispersion, intrapulse Raman
scattering, self-steepening, and free-carrier generation. To solve the variational problem, we adopt the Pereira-
Stenflo soliton as an ansatz since this soliton is the exact solution of the unperturbed GLE. With this ansatz, we
derive a set of six coupled differential equations exhibiting the dynamics of various pulse parameters. This set of
equations provides considerable physical insight into the complex behavior of perturbed dissipative solitons. Its
predictions are found to be in good agreement with direct numerical simulations of the GLE. More specifically,
the spectral and temporal shifts of the chirped soliton induced by free carriers and intrapulse Raman scattering
are predicted quite accurately. We also provide simple analytic expressions of these shifts by making suitable
approximations. Our semianalytic treatment is useful for gaining physical insight into complex soliton-evolution
processes.
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I. INTRODUCTION

A dissipative soliton is a stable, strongly localized structure
forming inside a nonlinear dissipative system under suitable
conditions [1]. Its applications range from optics, condensed-
matter physics, and cosmology to biology and medicine.
Dissipative solitons arise in an open nonlinear system, far from
equilibrium, and a continuous supply of energy is essential for
them. More specifically, pulselike dissipative solitons form
inside a nonlinear active medium as a result of double balance
between the medium’s nonlinearity and its dispersion and
between the gain and loss mechanisms that change pulse
energy. Owing to this dual balance, the parameters of a
dissipative soliton, such as its amplitude, width, chirp, and
phase, do not depend on the initial conditions.

Active optical waveguides provide a fertile ground for ob-
serving optical dissipative solitons (ODSs) by launching short
optical pulses inside them. In practice, however, such ODSs are
sensitive to perturbations such as higher-order dispersion and
self-steepening that become non-negligible for femtosecond
pulses. Another important nonlinear effect for such short
pulses is the intrapulse Raman scattering (IRS) that leads to
a continuous redshift of the pulse spectrum. In this paper we
study the effects of IRS and other perturbations on the ODS
dynamics through a variational approach technique [2]. The
variational technique is a standard method used extensively
for both the dissipative [3] and nondissipative [4] soliton
systems. Its application is straightforward for conservative
(nondissipative) systems by choosing a suitable Lagrangian
density [4]. The Lagrangian needs to be modified in the case
of dissipative systems such that it consists of a conservative
part and a dissipative part [5]. Construction of a Rayleigh
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dissipation function is an alternative method to handle the
dissipative effects [6]. In all cases, the Lagrangian density
is reduced by integrating over time. This reduction process
requires a suitable ansatz. The variation technique makes the
assumption that the functional form of the ansatz remains intact
in the presence of a small perturbation, but all parameters
appearing in the ansatz (amplitude, width, position, phase,
frequency, etc.) may evolve with propagation. The reduced
variational problem, followed by the Ritz optimization, leads
to a set of coupled ordinary differential equations (ODEs) that
governs the evolution of individual pulse parameters under the
influence of the perturbation [7].

A proper choice of the ansatz is critical for the success of
any variational approach. For example, soliton perturbation
theory uses the hyperbolic-secant profile of a Kerr soliton as
its ansatz with considerable success [7]. However, this form
will not be suitable for ODSs as they represent chirped optical
pulses. In this work we adopt the Pereira-Stenflo solution [8]
of the Ginzburg-Landau equation (GLE) and show that the
choice of this solution as an ansatz to the variational problem
is much superior compared to the choice of a Kerr soliton. We
examine the dynamics of various pulse parameters and predict
accurately both the magnitude of the spectral redshift of the
ODS initiated by the IRS and the corresponding changes in its
speed. We also show that the ODS undergoes a slight blueshift
when self-steepening acts as a perturbation. The characteristic
shift in the ODS location by the third-order dispersion (TOD)
is also captured by the variational treatment presented here. As
a special case, we consider the ODS formation inside an active
silicon waveguide where free carriers are generated through
multiphoton absorption and examine the perturbing effects
of free carriers on an ODS. To verify the accuracy of our
variational results, we compare them to the full numerical
solution of the GLE and find reasonable agreement between
the two. We also propose some closed-form solutions that may
prove more convenient to use in practice.
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II. THEORY

To be realistic and to take into account several practical
perturbations, we choose a silicon-based, active, nanophotonic
waveguide [9] and study the formation and evolution of ODSs
in such a system. In such a waveguide, the leading loss
mechanism comes from two-photon absorption (TPA) when
pumped at a wavelength below 2.2 μm. As a consequence
of TPA, free carriers are generated inside the waveguide
that introduce additional loss so-called free-carrier absorption
(FCA) and also change the refractive index [10,11] through
a phenomenon called free-carrier dispersion (FCD). In our
model we take account of these effects by coupling the
carrier dynamics with the complex GLE that governs the
pulse dynamics [12,13]. This equation is a kind of nonlinear
Schrödinger equation with complex coefficients representing
growth and damping [8,14]. Its classical solution is known
as the Pereira-Stenflo soliton [8] and it constitutes a specific
example of dissipative solitons.

The extended GLE describing the evolution of optical
pulses inside a silicon-based active waveguide can be written
in the normalized form [13,15]
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where the free-carrier effects are included through the normal-
ized density parameter φc that satisfies the rate equation [12]

dφc/dτ = θ |u|4 − τcφc. (2)

The time and distance variables are normalized as τ = t/t0
and ξ = z/LD , where t0 is the initial pulse width and LD =
t2
0 /|β2(ω0)| is the dispersion length, β2(ω0) being the group-

velocity dispersion coefficient at the carrier frequency ω0.
The preceding equations contain multiple dimensionless

parameters. The TOD, IRS, and self-stepping parameters are
normalized as δ3 = β3/3!|β2|t0, τR = TR/t0, and s = 1/ω0t0,
where TR is the first moment of the Raman response function
[7]. The field amplitude A is rescaled as A = u

√
P0, where the

peak power P0 = |β2(ω0)|/t2
0 γR , γR = k0n2/Aeff, and n2 ≈

(4 ± 1.5) × 10−18 m2 W−1 is the Kerr-nonlinear coefficient of
silicon. The dimensionless TPA coefficient is given as K =
γI /γR = βTPAλ0/4πn2, where βTPA ≈ 8 × 10−12 m W−1 and
γI = βTPA/2Aeff. The linear loss coefficient is normalized as
α = αlLD . The free-carrier density Nc is related to φc as φc =
σNcLD , where σ ≈ 1.45 × 10−21 m2 is the FCA cross section
of silicon at λ0 = 1.55 μm [16]. The generation of free carriers
is regulated by the parameter θ = βTPA|β2|σ/2h̄ω0A

2
efft0γ

2
R

[17]. The parameter μ = 2πkc/σλ0 is the FCD coefficient
with kc ≈ 1.35 × 10−27 m3 [18]. The carrier recombination
time tc is scaled as τc = t0/tc. The gain G and the gain
dispersion coefficient g2 are normalized as g = GLD and
g2 = g(T2/t0)2, where dephasing time is T2. The spectral
wings of the pulse experience less gain due to a finite gain
bandwidth related to g2.

In the absence of TOD (δ3 = 0), IRS (τR = 0), self-
steepening (s = 0), and free carriers (i.e., φc = 0), Eq. (1)
reduces to the standard GLE, which is known to have the
stable ODS solution in the following form [8,15,19]:

u(ξ,τ ) = u0[sech(ητ )](1+ia)ei�ξ , (3)

where the four parameters u0, η, a, and � are given by [15]
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a = H − √
H 2 + 2δ2

δ
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Here H = −[(3/2)sgn(β2) + 3g2K] and δ = −[2g2 −
sgn(β2)K]. The preceding solution was first obtained in [8]
and is known as the Pereira-Stenflo soliton.

III. VARIATIONAL ANALYSIS

The ODS solution exists only when four terms in Eq. (1)
related to TOD (δ3 = 0), IRS (τR = 0), self-steepening (s =
0), and free carriers (φc = 0) are neglected. The important
question is how these terms affect the ODS solution. One can
study their impact by solving Eq. (1) numerically. However,
this approach hinders any physical insight. In this section
we treat the four terms as small perturbations and study
their impact through a variational analysis. The variational
method has been used with success in the past for many pulse-
propagation problems [2–6]. It requires a suitable ansatz for
the pulse shape and makes the assumption that the functional
form of the pulse shape remains intact in the presence of
small perturbations, but its parameters appearing in the ansatz
(amplitude, width, position, phase, frequency, etc.) may evolve
with propagation. For our problem, it is natural that we choose
the Pereira-Stenflo solution in Eq. (3) as our ansatz since it is
the exact solution of Eq. (1) in the absence of perturbations
induced by TOD, IRS, self-steepening (s = 0), and free-carrier
generation. We thus choose the following ansatz:

u(ξ,τ ) = u0(ξ )(sech{η(ξ )[τ − τp(ξ )]})[1+ia(ξ )]

× exp(i{φ(ξ ) − �(ξ )[τ − τp(ξ )]}), (5)

where the six parameters u0, η, τp, φ, a, and � are now
assumed to depend on ξ . We first write Eq. (1) in the form of
a perturbed nonlinear Schrödinger equation [4,7]
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where we have chosen the dispersion to be anomalous (β2 < 0)
and define ε(u) as
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We then follow a standard procedure [7] and introduce the
Lagrangian density appropriate for Eq. (6) and integrate over
τ using the ansatz in Eq. (5) to obtain the following reduced
Lagrangian:

L = 2u0
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where C = ln(4) − 2. The next step is to use the Euler-
Lagrange equation for each pulse parameter to obtain a set
of coupled ODEs for the six parameters that describe the
overall soliton dynamics [7,20]. These equations govern the
evolution of pulse energy E = ∫ ∞

−∞ |u|2dτ , temporal position
τp, frequency shift �, amplitude η, frequency chirp a, and
phase φ and have the form
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where Re and Im stand for real and imaginary parts, respec-
tively. The final step is to evaluate all the integrals using ε(u)
given in Eq. (7). It results in the following set of six coupled
differential equations:
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These equations provide considerable physical insight since
they show which perturbations affect a specific pulse param-
eter. For example, the Raman parameter τR appears only in
the equation for the frequency shift � and the term containing
it has a negative sign. This immediately shows that the IRS
leads to a spectral redshift of the ODS. In contrast, the
self-steepening parameter s appears in the frequency equation
in a term with the positive sign and shows that self-steepening
will reduce the Raman-induced spectral redshift. This kind of
physical insight is very valuable in interpreting the numerical
results. It is noteworthy that the phase φ does not appear in any
equation except the last one. This indicates that the numerical
value of the soliton’s phase does not affect any of its other
parameters. For this reason, we ignore the phase equation in
the following discussion. In the next section we discuss the
effects of various perturbations on the evolution of the ODS
parameters and also compare variational results with the results
obtained from direct simulation of Eq. (1).

IV. FULL NUMERICAL SIMULATIONS

Before discussing the variational results, we solve Eq. (1)
numerically and present the results for a realistic silicon active
waveguide. More specifically, the individual and collective
effects of various perturbation on the evolution of an ODS are
discussed in this section. Since the temporal shape of the ODS
is distorted rapidly in the presence of TOD, which violates the
basic assumption behind the variational technique, initially
we study pulse dynamics by setting δ3 = 0 in Eq. (1). We
solve this equation with the standard split-step Fourier method
[7] by taking the input pulse in the form of a Pereira-Stenflo
soliton with the parameters given in Eq. (4). The parameter
values used are K = 0.01, g0 = 0.01, g2 = 0.01, τR = 0.1,
s = 0.1, θ = 0.0044, and μ = 3.7741. The values of θ and
μ are calculated by adopting the realistic values of device
parameters.

Figures 1(a)–1(c) show the temporal and Figs. 1(d)–1(f)
the spectral evolutions of the perturbed ODS in three cases:
Only IRS [Figs. 1(a) and 1(d)], only self-steepening [Figs. 1(b)
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FIG. 1. (a)–(c) Temporal and (d)–(f) spectral evolution of an ODS in three cases under a single perturbation: (a) and (d) IRS acts alone
with τR = 0.1, (b) and (e) self-steepening acts alone with s = 0.1, and (c) and (f) FCD acts alone with θ = 0.0044. The other parameters used
in the simulations are K = 0.01, g0 = 0.01, g2 = 0.01, and α = 0. The input (dotted trace) and output pulse shapes are also shown on the top
of each panel.

and 1(e)], and only free carriers [Figs. 1(c) and 1(f)] perturb the
ODS. As expected, IRS leads to a spectral redshift and slows
down the ODS considerably. However, the redshift saturates
after some distance of propagation (around ξ = 20). In the
time domain, the ODS continues to shift because of a change
in its speed induced by the redshift. Our simulations confirm
that the pulse width is also affected by the Raman term. In the
case of self-steepening, the shape of the pulse remains almost
intact and ODS slows down a bit even though its spectrum
undergoes a small blueshift. The influence of free carriers is
more dramatic because of FCD that leads to a larger blueshift
with an acceleration of the pulse, consistent with the previously
reported results [13].

V. RESULTS OF VARIATIONAL ANALYSIS

In this section we solve the coupled differential equations
obtained with the variational approach [Eqs. (15)–(20)] and
compare their predictions with the numerical simulations in
Fig. 2. The four parts of this figure compare changes in
the pulse position τp, spectral shift �, peak intensity |u|20,
and the pulse width τw. The solid red, dashed blue, and
dot-dashed green curves in each case correspond to the three
cases shown in Fig. 1 when only the physical process perturbs

the ODS. The solid gray curves show the case when all three
perturbations are present simultaneously. In all cases, the solid,
dashed, and dot-dashed lines show variational result and solid
circles, diamonds, triangles, and squares show the numerical
predictions of Eq. (1). The agreement between the variational
and numerical results is remarkably good under so many
diverse situations, indicating the suitability of our variational
approach for perturbed ODSs.

The set of coupled differential equations becomes more
useful if we decouple them with suitable approximations. If we
assume that variations of η and a are relatively small (which
is true for propagation distance ξ < 40) and treat them as
constants, we can integrate Eq. (17) analytically. The spectral
redshift owing to IRS can then be written in a closed form as

�(ξ ) ≈ −�R(1 − e−ρξ ), (21)

where �R = τREavη/5g2(1 + a2) and ρ = 4g2(1 + a2)η2/3.
This equation shows how the redshift increases with ξ initially
but saturates to a final value of −�R when ξ is large
enough that ρξ � 1. Here changes in the total energy E are
approximated by its average over the distance at which �

is calculated. Under the same assumptions, we can integrate
Eq. (16) for the temporal shift analytically to obtain

τp(ξ ) ≈ �R(1 + 2g2a)[ξ − ρ−1(1 − e−ρξ )]. (22)
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FIG. 2. (a) Temporal position τp and (b) frequency shift � as a function of distance in four different cases listed at the bottom. Changes
in the peak intensity |u|20 and pulse width τw in the same four cases are shown in (c) and (d), respectively. The solid red line, dashed blue
line, dot-dashed green line, and solid gray line show the variational predictions for τR , θ , s, and all three parameters, respectively, whereas
red circles, blue diamonds, green triangles, and gray squares represent the corresponding numerical data. The other parameters used in the
simulations are K = 0.01, g0 = 0.01, g2 = 0.01, and α = 0.

This equation shows that once the redshift saturates (ρξ � 1),
τp varies linearly with ξ ; this is clearly evident in Fig. 2(a).

In the same way we can derive an approximate analytic
expression for the spectral blueshift induced by FCD. The
results has the same form as for IRS and the blueshift is

�(ξ ) ≈ �FC(1 − e−ρξ ), (23)

where the saturated value becomes �FC = (μ −
a/2)θE2

av/10g2(1 + a2). The temporal shift due to the
free carrier can also be approximated as

τp(ξ ) ≈ −�FC(1 + 2g2a)[(1 + χFC)ξ − ρ−1(1 − e−ρξ )],

(24)

where χFC = 35g2(1 + a2)/36(μ − a/2)(1 + 2g2a). The pre-
ceding results use the concept of average pulse energy to
account for energy variations inside the waveguide in an
average sense. In Fig. 3(a) we plot energy variations under
different perturbations for the four cases shown in Fig. 2.
Depending on the distance and the mechanism involved, pulse
energy may be reduced by more than 50%. In Fig. 3(b) we
plot the spectral shifts under when IRS and free carriers act
as perturbations and compare the full numerical results with
the approximate analytical expressions derived above. The
agreement with simulations is reasonable in the case of FCD
when we use the average energy (blue dashed curve on the
positive � side). If we use the initial value of pulse energy,
agreement is good at short distances but becomes increasingly
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FIG. 3. (a) Changes in pulse energy as a function of ξ in the
four cases of Fig. 2. (b) Changes in the IRS-induced redshift and
FCD-induced blueshift as predicted by the approximated analytic
expressions. The blue (red) dot-dashed and dashed lines represent the
cases when the initial values of the pulse parameters and the average
values of the pulse parameters are considered for the free-carrier
(Raman) case, respectively.

poor for longer distances (blue dot-dashed curve on the positive
� side). In the Raman case, the red dashed curve (on the
negative � side) disagrees initially with numerical results
but merges asymptotically to the saturated value predicted by
the full calculation. The mismatch at the initial stage occurs
because we assumed η to be constant, which is not the case.
We emphasize that our closed-form expressions help us to
understand the pulse dynamics qualitatively. However, the
inclusion of all variations of a, η, and E is essential for accurate
results.

As a final test of the set of ODEs derived variationally, we
solve them under zero perturbation. If the derived ODEs are
correct, they should provide the exact Pereira-Stenflo soliton
when all perturbations are switched off. Figure 4(a) shows
that this is indeed the case. The simulated temporal profile at
ξ = 200 overlaps exactly with the variational temporal profile
when there is no perturbation. We stress that the use of ODS at
the input end is essential while solving Eq. (1). In Fig. 4(b) we
compare the IRS-induced redshifts obtained using a standard
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FIG. 4. (a) Comparison of output intensity profile at ξ = 200 be-
tween full numerical simulation (red dots) and variational prediction
(blue trace). (b) Frequency shift as a function of distance for τR = 0.1.
Blue circles and red squares correspond to sech-shape pulse and ODS
inputs, respectively. The solid green line shows variational prediction
of the frequency shift. The parameters used in the simulations are
K = 0.01, g0 = 0.01, g2 = 0.0001, and α = 0.
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FIG. 5. (a) Temporal evolution of ODS under the TOD per-
turbation. Input (dotted trace) and output pulse shapes are shown
on top. (b) Changes in ODS position with distance as predicted
by the variational technique (solid blue line) are compared with
numerical data (red circles). The parameters used in the simulations
are K = 0.01, g0 = 0.001, g2 = 0.001, and δ3 = 0.1.

soliton and the ODS at the input end. It is evident that the
variational results are consistent with the data obtained using
the Pereira-Stenflo soliton as an input but not when a sech
profile of a standard soliton is used for solving Eq. (1).

VI. IMPACT OF TOD

So far, we have ignored the TOD perturbations. However,
our variational analysis includes the TOD effects through the
δ3 parameter. Indeed, the temporal position τp of the ODS
depends explicitly on δ3 in Eq. (16). If we ignore all other
perturbations and set � = θ = s = 0 in this equation, we get
a simple relation τp(ξ ) ≈ δ3(1 + a2)η2ξ , provided both η and
a remain nearly constant. It shows that TOD shifts the soliton
position linearly with distance, a well-known result for the
standard solitons. To see if this linear behavior persists for an
ODS, we solve Eq. (1) by taking TOD as the only perturbation
(τR = s = θ = 0).

Figure 5(a) shows the evolution of ODS under TOD acting
as the sole perturbation using δ3 = 0.1. We observe that the
ODS nearly preserves its shape with only small variations in
the pulse width (mild breathing). The pulse shape at ξ = 200
is plotted on top in Fig. 5(a) and it shows a small temporal
shift from the initial ODS position. We compare this temporal
shift (red dots) with the variational prediction (solid line) in
Fig. 5(b). The two agree reasonably well for up to ξ = 100
with increasing departure for longer distances. This agreement
is expected only for relatively low values of δ3. Indeed,
significant distortions of the pulse shape are observed for
high values of δ3. Under weak TOD perturbation, the ODS
maintains its overall shape over relatively long distances and
the variational analysis works reasonably well in that situation.

VII. CONCLUSION

By exploiting the standard variational technique, we study
the dynamics of a perturbed dissipative soliton excited inside
an active semiconductor waveguide. The pulse evolution is
governed by an extended GLE containing additional terms
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that have their origin in higher-order effects such as TOD,
self-steepening, Raman scattering, and free-carrier generation.
We treat these terms as small perturbations and carry our
variational analysis after choosing a dissipative soliton as
our ansatz. Being an exact solution of the unperturbed GLE,
this chirped soliton maintains its shape inside the active
waveguide with slow evolution of its parameters with distance.
The variational treatment provides a set of coupled ordinary
differential equations. We have shown that solution of this
set of equations predicts quite well how the individual pulse
parameters will evolve with distance. We solve the GLE
numerically using the split-step Fourier method and show
that the variational predictions agree well with full numerical

simulations. We also propose simple analytical solutions for
the Raman-induced spectra redshifts and the corresponding
temporal shift of the pulse peak. With suitable approximations,
our closed-form expressions should prove useful in practice.
In summary, our semianalytical treatment provides significant
insights into the understanding of the complex dynamics of
perturbed dissipative solitons.
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