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A metal nanoparticle coupled to a semiconductor quantum dot forms a tunable hybrid system which
exhibits remarkable optical phenomena. Small metal nanoparticles possess nanocavitylike optical concentration
capabilities due to the presence of strong dipolar excitation modes in the form of localized surface plasmons.
Semiconductor quantum dots have strong luminescent capabilities widely used in many applications such as
biosensing. When a quantum dot is kept in the vicinity of a metal nanoparticle, a dipole-dipole coupling occurs
between the two nanoparticles giving rise to various optical signatures in the scattered spectra. This coupling
makes the two nanoparticles behave like a single hybrid molecule. Hybrid molecules made of metal nanoparticles
(MNPs) and quantum dots (QDs) under the influence of an external driving field have been extensively studied
in literature, using the local response approximation (LRA). However, such previous work in this area was
not adequate to explain some experimental observations such as the size-dependent resonance shift of metal
nanoparticles which becomes quite significant with decreasing diameter. The nonlocal response of metallic
nanostructures which is hitherto disregarded by such studies is a main reason for such nonclassical effects.
The generalized nonlocal optical response (GNOR) model provides a computationally less-demanding path to
incorporate such properties into the theoretical models. It allows unified theoretical explanation of observed
experimental phenomena which previously seemed to require ab initio microscopic theory. In this paper, we
analyze the hybrid molecule in an external driving field as an open quantum system using a cavity-QED
approach. In the process, we quantum mechanically model the dipole moment operator and the dipole response
field of the metal nanoparticle taking the nonlocal effects into account. We observe that the spectra resulting
from the GNOR based model effectively demonstrate the experimentally observed size dependent amplitude
scaling, linewidth broadening, and resonance shift phenomena compared to the respective LRA counterparts.
Then, we provide a comparison between our suggested GNOR based cavity-QED model and the conventional
LRA model, where it becomes evident that our analytical model provides a close match to the experimentally
suggested behavior. Furthermore, we show that the Rayleigh scattering spectra of the MNP-QD hybrid molecule
possess an asymmetric Fano interference pattern that is tunable to suit various applications.
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I. INTRODUCTION

Metal nanoparticles (MNPs) and quantum dots (QDs)
whose optical properties are tunable using their size and
structure possess a wide array of applications in a variety of
fields such as biosensing [1,2], photothermal cancer therapy
[3–5], and optoelectronic nanodevices [6–9]. Over the recent
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years, QDs and MNPs seem to have gained increasing
popularity in modern nanophotonics [10–13].

Localized surface plasmons (SPs) are nonpropagating
modes of excitations of the conduction band electrons that
arise naturally from the scattering problem of a subwavelength
metallic nanostructure kept in an oscillating electromagnetic
field [14–16]. MNPs much smaller than the wavelength of
the incident light (λ) exhibit strong dipolar excitations in
the form of localized surface plasmon resonances (LSPRs)
which give them a remarkable ability to concentrate optical
energy in the nanoscale [17,18]. This ability enables the use
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of individual MNPs as nanoscale optical cavities that are
able to focus electromagnetic energy to spots much smaller
than λ, overcoming the half-wavelength size limitation of
the conventional optical cavities [19,20]. This strong electric
field localization can significantly enhance the interactions of
MNPs with gain media such as QDs [21].

When a hybrid MNP-QD nanomolecule is optically excited,
an additional electric field superposed on the external driving
field is experienced by the MNP due to the dipole moment of
the optical transitions in the QD. The resulting electric field
induces a dipole moment in the MNP which in turn alters
the field experienced by the QD leading to a self-feedback
[22]. Due to this interaction, artificial hybrid nanomolecules
formed by MNPs in proximity with QDs exhibit a variety
of fascinating optical properties, which have been thoroughly
studied recently [23–26].

The optical response of the MNP plays an important role
in determining the behavior of the MNP-QD hybrid molecule.
A plethora of studies related to nanoplasmonics and MNP-QD
hybrid molecules [19,24,27] utilize the local response approx-
imation (LRA) to model the optical response of the MNP as it
quite successfully aids the description of a range of plasmonic
phenomena [28]. In the LRA, the nonlocal effects of the
MNP’s optical response are neglected and the MNP’s dipolar
polarizability is obtained using a spatially constant, Drude-like
permittivity. Nevertheless, LRA has recently been challenged
on a number of accounts, one example being its prediction that
the resonance energy of surface plasmons in the quasistatic
limit is independent of the MNP size. This conflicts with the
experimentally observed results [28–32]. The size dependence
of the LSPR energy is believed to be a result of the quantum
properties of the MNP’s free electron gas. These quantum
effects enhance further as the particles decrease in size [33].
Modeling the MNP based on ab initio approaches such as
density-functional theory (DFT) captures such nonclassical
effects [34,35]. However, such approaches are computationally
demanding. Simpler and computationally less demanding
approaches are to surpass the LRA using nonlocal response
theories such as the nonlocal hydrodynamic or the generalized
nonlocal optical response (GNOR) models [28].

The nonlocal response in metallic nanostructures manifests
itself through the presence of longitudinal waves which cause
smearing of charge density on the Ångstrom length scale. Due
to the nonclassical effects arising as a result of the nonlocal
response, nanoplasmonics experiments defy explanations with
classical electrodynamics [28–32]. The concept of nonlocal
response was first introduced phenomenologically and after-
wards based on the semiclassical hydrodynamic Drude model
(HDM). The generalized nonlocal optical response (GNOR)
model is a recent generalization and an extension of the HDM
model, which goes beyond HDM by taking both convection
current and electron diffusion phenomena in the MNPs into
account [30]. It better captures both size dependent resonance
shifts and linewidth broadening of the extinction cross section
that occurs with decreasing MNP radius. It has been shown
using experiments on dimers with nanometer sized gaps
that the GNOR model outlines the experimentally-measured
spectra, without the need for invoking the quantum mechanical
effect of tunneling [28]. Hence the GNOR model allows
unified semiclassical explanations of such known experimental

phenomena for both monomers and dimers which previously
seemed to require microscopic theory [30]. Moreover, the
numerical results obtained in this paper suggest that the
GNOR based approach captures the experimentally observed
size dependent resonance shifts, linewidth broadening, and
the amplitude scaling of the Rayleigh scattering spectra
without invoking a need to adopt the Kreibig modification
to the plasmon bulk damping rate.

A quantum mechanical analysis of the MNP-QD hybrid
molecule which takes the nonlocal effects of the MNP into
account is yet to be done. In this paper, we analyze the MNP-
QD hybrid molecule in an external driving field using a cavity-
QED approach and quantum mechanically model the dipole
moment operator and the dipole response field of the metal
nanoparticle, taking the nonlocal effects into account using a
GNOR based approach.

This paper is organized as follows. We first classically ana-
lyze the system using the quasistatic approximation and obtain
expressions for the dipole moment and the dipole response
field of an MNP kept in the vicinity of a QD under the influence
of an external driving field in Sec. II B. In Sec. II C, we quantum
mechanically analyze the MNP-QD hybrid molecule using a
cavity-QED approach and derive expressions for the surface
plasmon mode amplitude and the dipole moment operator
element of the MNP under the LRA by comparison with
the results obtained in Sec. II B. Additionally, we obtain
analytical solutions for the MNP and QD operators of the
open quantum system in the weak field limit. In Sec. II E, we
modify the equations obtained above for the surface plasmon
mode amplitude and the dipole moment operator element of
the MNP under the LRA, incorporating the GNOR nonlocal
correction to the dipolar polarizability of the MNP. We then
discuss the conditions required for the successful applicability
of this model. In Sec. II F, we provide an outline of Rayleigh
scattering by the hybrid molecule, which will subsequently be
used for its numerical analysis. We then numerically analyze
the presented cavity QED model using a hybrid molecule
containing a silver MNP in Sec. III. We compare and contrast
the behavior of the hybrid molecule when the MNP is modeled
using the LRA and GNOR dipolar polarizabilities and show
that our GNOR based cavity-QED model captures features
such as size dependent resonance shifts, amplitude scaling, and
linewidth broadening that are not revealed under the LRA, pro-
viding a close match to the experimentally suggested behavior
[28–32]. Then we present a validity measure for the presented
nonlocal cavity-QED model and quantify the predictions for
silver. We present a table of dipole moment elements and
surface plasmon resonance frequencies for silver at different
environment permittivities and MNP radii calculated using
our model. We conclude Sec. III by discussing the Fano
interference displayed by the MNP-QD hybrid molecule and
suggesting a practical application of the phenomenon.

II. FORMALISM

A. Overview of the approach

We consider a hybrid molecule comprised of a spherical,
nonmagnetic MNP of radius rm coupled to a QD of radius
rqd embedded in a homogenous dielectric bath with a real
positive relative permittivity εb as shown in Fig. 1. The MNP
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FIG. 1. The schematic diagram of the MNP-QD hybrid molecule
in the external driving field. The right insert shows an example
Rayleigh scattering spectrum of the hybrid molecule discussed in
detail in Secs. II F and III.

and QD are separated by a distance R, allowing no direct
tunneling between them (R − rm − rqd > 2 × 109 m) [19].
The hybrid molecule is excited by an external electric field
Edrive = ẽ(E+

0 e−iωt + E−
0 eiωt ) where i is the imaginary unit,

ω is the angular frequency, and ẽ is a unit vector along or
perpendicular to the axis of the hybrid molecule. Throughout
our paper, we use the standard sign convention where a positive
energy h̄ω maps to a positive frequency component, oscillating
as e−iωt [16]. Therefore, E+

0 and E−
0 are the respective positive

and negative frequency coefficients, where E+
0 = E−

0 = E0

for the case of Edrive. The applied field polarizes both the
MNP and the QD, allowing a dipole-dipole coupling between
them.

We first analyze the dipolar response of the isolated MNP
and then proceed to introduce a Hamiltonian for the hybrid
system interacting with the external field, adopting a cavity
QED approach. We then model environmental interaction as
a Markovian process using a density matrix approach and
obtain the solutions for the system operators, after which
a compact, computationally less demanding (compared to
conventional ab initio approaches) correction for the MNP
dipolar polarizability is introduced to account for the nonlocal
effects in the cavity-QED system. We then analyze the
Rayleigh scattering spectra of the system numerically and
observe the tunability of the spectra and the Fano line shape
using different system parameters.

B. The local response approximation model of MNP-QD
hybrid molecule

We initially model the MNP under the LRA [28] where
the nonlocal effects are neglected and the relative permittivity
of the MNP is described by the spatially constant local
dielectric response function εm(ω). The MNP is assumed
to be much smaller compared to the wavelength of visible
light (rm � λ), hence the phase of the electric field at any
given moment is approximately constant throughout the MNP

volume. Additionally, we consider all distances to be small
enough for the retardation effects to be ignored, thus justifying
the use of the quasistatic approximation [15].

The electric field incident on the MNP is comprised
of Edrive and the dipole response field of the QD (Eqd).
The QD is assumed to be sufficiently far apart from the
MNP, and therefore the total incident field across the MNP
is approximated by a spatially constant planewave Ein ≈
Edrive + Eqd . The total spatial electric field distribution (E)
can be calculated by applying Guass’s law to the MNP in the
absence of charges, resulting in an expression of the form [15],

E ≈
{

3εb

εm(ω)+2εb
Ein for r < rm,

Ein + Em for r ≥ rm,
(1)

where r is the distance measured from the center of MNP. Em

is the response field of the MNP given by,

Em ≈ βcmr3
m

r3
[3(Ein.r̃)r̃ − Ein], (2)

where r̃ is the unit vector along the axis of the hybrid molecule.
βcm is the Clausius Mossotti factor of the MNP in the local
response approximation (LRA) [28] denoted by,

βcm = εm(ω) − εb

εm(ω) + 2εb

. (3)

In the quasistatic regime, the scattering of the incident field
(Ein) by the MNP when rm � λ takes the form of a field
radiated by a point dipole [36] located at the center of the
MNP oriented along the incoming field [15]. Therefore, Em

can also be approximated by,

Em ≈ 1

4πε0εbr3
[(3dm.r̃)r̃ − dm], (4)

where dm is the dipole moment of the MNP and ε0 is the
permittivity of free space. When dm lies along r̃ , (4) simplifies
to Em ≈ 2dm/(4πε0εbr

3) and when dm is perpendicular to
r̃ , we have Em ≈ −dm/(4πε0εbr

3). We define an orientation
parameter sα such that sα = 2 when the external field is
polarized along the axis of the hybrid molecule and sα = −1
when the field is polarized perpendicularly to the molecular
axis. Using the standard sign convention introduced earlier and
with sα summarizing the orientation, we use (4) to obtain the
MNP dipole response field felt by the QD as,

E+
m

∣∣∣
r = R

≈ sαd+
m

4πε0εbR3
. (5)

Similarly, the response field of the QD dipole felt by the MNP
is given by E+

qd |r = 0 ≈ sαd+
qd/(4πε0εbR

3).
Comparing (2) with (4) and considering only the positive

frequency coefficients, we arrive at,

d+
m ≈ 4πε0εbβcmr3

mE+
in. (6)

Substituting for Ein in (6), we obtain the final expression
for the MNP dipole moment as,

d+
m ≈ 4πε0εbβcmr3

m

(
E0 + sαd+

qd

4πε0εbR3

)
. (7)
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We carry forward the equations (5) and (7) to the next section,
where we compare them with the expectation values of their
respective quantum operator counterparts.

C. Cavity QED model of MNP-QD hybrid molecule

We now quantum mechanically analyze our hybrid
molecule in the external driving field (see Fig. 1) with the aid
of cavity QED methods. When the QD is irradiated with an
external field nearly resonant with the energy gap between its
valence and the first conduction bands, a bound electron-hole
pair (an exciton) is created [37]. We model our QD as a
two level quantum emitter with a dipole moment operator
element μqd . This is a good approximation when studying
optical processes at frequencies that are nearly resonant with
the frequency corresponding to the lowest excitonic transition
energy of the QD [19,38].

The field arising due to the surface plasmons (SPs) in
the metal nanoparticle is quantized by associating each mode
with a quantum simple harmonic oscillator. For each oscillator
mode k, nk and |nk〉 denote the number of surface plasmons and
the Fock (or number) state, respectively. For subwavelength
particles, SP resonance corresponds to a dipole mode [39]. We
assume that only single plasmon excitations occur, therefore
only the two states |0〉 (or vacuum) and |1〉 of the MNP’s dipole
mode couple with the QD. We define â† = |1〉〈0|, â = |0〉〈1| as
the plasmonic creation and annihilation operators facilitating
the transition between the two Fock states.

We now define the Hamiltonian of our coupled quantum
system in the Schrödinger picture as follows:

ĤSch
sys = ĤSch

m + ĤSch
qd + ĤSch

int + ĤSch
drive, (8)

where ĤSch
m and ĤSch

qd are the unperturbed Hamiltonians of

the isolated MNP and the QD, respectively. ĤSch
int is the

interaction Hamiltonian between the QD and MNP and ĤSch
drive

is the interaction Hamiltonian of the hybrid molecule with the
external driving field.

By modeling the MNP as a two level quantum system where
the initial Schrödinger picture eigenstates |0〉 and |1〉 form
a complete set of basis states, it can be shown that ĤSch

m =
h̄ωmâ†â, where the energy of the vacuum state is assumed to
be zero. Here, ωm is the surface plasmon resonance frequency
of the MNP, defined as the frequency gap between the two
levels |0〉 and |1〉.

Similarly, defining |e〉 and |g〉 as the basis states of the
QD, its state raising and lowering operators are obtained as
σ̂ † = |e〉〈g| and σ̂ = |g〉〈e|. Defining ωqd as the frequency of
the excitonic transition between |e〉 and |g〉 and the energy of
the ground state to be zero, we obtain ĤSch

qd = h̄ωqd σ̂
†σ̂ .

We then calculate ĤSch
int as the dipole energy of the QD

kept in the dipole response field created by the MNP. In the
cavity QED treatment of the hybrid molecule, the electric field
operator of the surface plasmon Êm is approximated by a ring
cavity mode [19], where its positive frequency component
relates to the plasmon field annihilation operator as [40–42],

Ê+
m ≈ iE â. (9)

We derive an expression for the coefficient E towards the
end of this section. The optical decay of the QD from the

excited state |e〉 to the ground state |g〉 is associated with
the transition dipole operator d̂qd = μ∗

qd σ̂ + μqdσ̂
†. With the

dipole moment element μqd assumed real, this simplifies to
[27],

d̂qd = μqd (σ̂ + σ̂ †) = d̂+
qd + d̂−

qd , (10)

where d̂+
qd = μqdσ̂ and d̂−

qd = μqdσ̂
† denote the positive and

negative frequency components that will oscillate as e−iωt and
eiωt , respectively, when converted to the interaction picture.
Following the description of atom-light coupling within the
dipole approximation [43,44], ĤSch

int can be written as,

ĤSch
int = −d̂qd .Êm ≈ −(d̂+

qdÊ
−
m + d̂−

qdÊ
+
m), (11)

where we have eliminated the nonenergy conserving fast
oscillating terms using the rotating wave approximation.
Substituting (9) and (10) in (11), we arrive at,

ĤSch
int = ih̄g(σ̂ â† − σ̂ †â), (12)

where the coupling constant g is defined as [19],

g = μqdE
h̄

. (13)

We now proceed to derive an expression for the Hamiltonian
term ĤSch

drive which results from the dipole interaction of the
MNP and QD with Edrive. We first define the dipole moment
operator of the MNP as,

d̂m = d̂+
m + d̂−

m = μ∗
mâ + μmâ†, (14)

where μm is the dipole moment element of d̂m. This enables
us to write: ĤSch

drive = −Edrive(d̂qd + d̂m). By substituting for
Edrive, d̂qd , d̂m and applying the rotating wave approximation,
we arrive at,

ĤSch
drive = −E0(μmâ†e−iωt + μ∗

mâeiωt )

−E0μqd (σ̂ †e−iωt + σ̂ eiωt ). (15)

Substituting these results in (8) yields the complete expres-
sion for the system Hamiltonian in the Schrödinger picture. We
then convert it to the interaction picture where the interaction
frame rotates at the driving field frequency ω.

We first recast the system Hamiltonian in the Schrödinger
picture to the following form,

ĤSch
sys = Ĥ0 + h̄
mâ†â + h̄
qd σ̂

†σ̂ + ĤSch
int + ĤSch

drive, (16)

where Ĥ0 = h̄ωâ†â + h̄ωσ̂ †σ̂ , and the two detunings of the
MNP and QD with Edrive are given the notations 
m = (ωm −
ω) and 
qd = (ωqd − ω), respectively. The interaction picture
Hamiltonian in a frame rotating at frequency ω is defined
as [45],

ĤInt
sys = Û †

0 V̂Û0, (17)

where Û0 = e−iĤ0t/h̄ and V̂ = ĤSch
sys − Ĥ0.

Simplification of (17) results in the complete expression for
the system Hamiltonian in the interaction picture:

ĤInt
sys = h̄
mâ†â + h̄
qd σ̂

†σ̂ + ih̄g(â†σ̂ − âσ̂ †)

−E0(d̂m + d̂qd ). (18)
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ĤInt
sys possesses dressed eigenstates [46] which govern the

behavior of the hybrid system.
The above Hamiltonian describes a closed quantum system

where we have not yet taken the effects of the environment
or the reservoir into account. However, the system couples
with the environment forming an open quantum system
with irreversible dynamics. This interaction is modeled as a
Markovian process [47].

The full quantum dynamics of the coupled nanosystem
can be derived using the following master equation for the
interaction picture density operator [19,25],

∂

∂t
ρ̂ = i

h̄

[
ρ̂,ĤInt

sys

] + L̂qd + L̂m, (19)

where the Liouvillian terms L̂qd and L̂m are given by
[19,25,47],

L̂qd = γqd

2
(2σ̂ ρ̂σ̂ † − σ̂ †σ̂ ρ̂ − ρ̂σ̂ †σ̂ ), (20a)

L̂m = γm

2
(2âρ̂â† − â†âρ̂ − ρ̂â†â), (20b)

where the Markovian interaction with the reservoirs deter-
mines the decay rates γqd and γm for the QD exciton and the
MNP surface plasmon, respectively [19].

The expectation value of an observable Q̂ can be obtained
using the trace of the product of ρ̂ and Q̂ as 〈Q̂〉 = Tr[ρ̂Q̂]
[48]. Using this claim, we intend to obtain the equation of
motion of 〈â〉 in the interaction picture as,

∂

∂t
〈â〉 = ∂

∂t
Tr[âρ̂] = Tr

[
∂

∂t
(âρ̂)

]
= Tr

[
â

∂

∂t
ρ̂

]
. (21)

We insert (18) in (19) and get the trace of the entire expression
multiplied by â which yields:

∂

∂t
〈â〉 = Tr

[
â

(
i

h̄

[
ρ̂,ĤInt

sys

] + L̂qd + L̂m

)]
. (22)

Assuming the QD and MNP operators commute and using
bosonic commutator relations for the MNP operators together
with the cyclic property of trace, we simplify (22) to obtain,

∂

∂t
〈â〉 = −Dm〈â〉 + g〈σ̂ 〉 + Mm, (23)

where Dm = (i
m + γm/2) and Mm = iμmE0/h̄. Solving
(23) for the steady state using ∂

∂t
〈â〉 = 0, we obtain,

〈â〉 = (g〈σ̂ 〉 + Mm)/Dm. (24)

Similarly, as 〈σ̂ 〉 = Tr [σ̂ ρ̂] we write,

∂

∂t
〈σ̂ 〉 = Tr

[
σ̂

(
i

h̄

[
ρ̂,ĤInt

sys

] + L̂qd + L̂m

)]
. (25)

Using the definitions of σ̂ , σ̂ † and the orthogonality relation of
|e〉, |g〉 in the simplification of (25) we arrive at the equation
of motion for 〈σ̂ 〉 as,

∂

∂t
〈σ̂ 〉 = −Dqd〈σ̂ 〉 − (1 − 2〈σ̂ †σ̂ 〉)(g〈â〉 − Mqd ), (26)

where Dqd = (i
qd + γqd/2) and Mqd = iμqdE0/h̄. In the
semiclassical formalism where the fields are well defined
(noise free), the expectation values of the products of MNP

and QD operators are separable [21]. The latter property was
utilized in arriving at the result in (26).

For weak fields where the excitonic populations are minute
(〈σ̂ †σ̂ 〉 � 1) [19], we obtain the coupled expression for 〈σ̂ 〉 at
steady state as,

〈σ̂ 〉 ≈ (−g〈â〉 + Mqd )/Dqd . (27)

Solving the two coupled equations (24) and (27), and defining
D = DmDqd , we obtain the decoupled analytical solutions for
〈â〉 and 〈σ̂ 〉 for weak fields, at steady state:

〈â〉 ≈ MmDqd + gMqd

D + g2
, (28a)

〈σ̂ 〉 ≈ MqdDm − gMm

D + g2
. (28b)

This is one of the main results in this section.
We then proceed to obtain expressions for the plasmon field

amplitude E and the dipole matrix element μm. If the electric
field operator is replaced with its mean value, we obtain the
classical electric field that satisfies the Maxwell’s equations
[49]. Note that 〈â〉 in (28a) is the expectation value of the
Schrödinger picture annihilation operator, obtained using the
interaction picture density matrix. Hence, 〈â〉 yields the slowly
varying amplitude of the expectation value of the interaction
picture annihilation operator, 〈âI (t)〉 = 〈â〉e−iωt . Similarly, for
the QD, 〈σ̂I (t)〉 = 〈σ̂ 〉e−iωt . Thus equating classical positive
electric field coefficient of the surface plasmon field felt by
the QD in (5), with the expectation value of the relevant
quantum operator in (9), we obtain: E+

m |r = R = 〈Ê+
m〉 =

iE〈â〉. Similarly, from the expectation value of (10), we obtain
d+

qd = 〈d̂+
qd〉 = μqd〈σ̂ 〉.

Substituting for E+
m |r = R using (5) and (7), for 〈â〉 using

(24) and by separately equating the MNP field components
due to the QD and Edrive, we arrive at the following:

E = sα

R3

√
βcmr3

mh̄Dm

4iπε0εb

, (29a)

μm = −
√

4iπε0εb βcmr3
mh̄Dm. (29b)

We then use (29b) and (24) to obtain an expression for
−μm〈â〉 and compare the result with (7) as,

−μm〈â〉 = 4πε0εbβcmr3
m

(
E0 + sαd+

qd

4πε0εbR3

)
= d+

m . (30)

However, we note that the expectation value of (14)
states that: d+

m = 〈d̂+
m 〉 = μ∗

m〈â〉. Therefore, −μm = μ∗
m is

the necessary condition for a given MNP to satisfy this
cavity QED model. In the following section, we derive an
approximate expression for μm of metals exhibiting good
plasmonic properties that will meet this criteria.

D. Approximations for E and μm of good plasmonic materials

We start this section with an overview of good plasmonic
materials that will be useful in our subsequent derivations. A
necessary condition for the existence of SPs is Re [εm(ω)] ∈
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R− [50]. Moreover, a material shows good plasmonic proper-
ties when [17],

Im [εm(ω)] � − Re [εm(ω)]. (31)

The (complex) polarizability α of the MNP in the LRA
is given by α = 4πr3

mβcm [15], where βcm is the Clausius
Mossotti factor given by (3). It can be seen that the polarizabil-
ity experiences a resonant enhancement when |εm(ω) + 2εb| is
a minimum. For small Im[εm(ω)], around the resonance, this
simplifies to the Frölich condition in the LRA [15,17],

Re [εm(ωm)] ≈ −2εb. (32)

The magnitude of α at resonance is limited by the incomplete
vanishing of its denominator, since Im[εm(ω)] 	= 0.

The rate of energy loss from the SP mode is proportional
to Im [εm(ω)] [51]. This leads to a finite lifetime of the SPs
leading to a near-resonance decay rate [17,19],

γm ≈ 2η Im [εm(ωm)], (33)

where,

η =
(

d Re [εm(ω)]

d ω

)−1

ω=ωm

. (34)

When the dielectric losses are relatively small (which is
applicable to the entire plasmonic region of noble metals), the
Kramers-Kronig relations for εm(ω) [17] predicts that η > 0.

Applying (31), (32), and (33) in (29a) and (29b) when

m ≈ 0, we obtain:

E ≈ sα

R3

√
3h̄ηr3

m

4πε0
, (35a)

μm ≈ −iεb

√
12πε0ηr3

mh̄, (35b)

where −μm ≈ μ∗
m and hence d+

m ≈ μ∗
m〈â〉. Note that we have

corrected the equations in [19] that correspond to (30) and
(35b) above.

E. The nonlocal correction

In our discussion so far, we assumed that the MNP of our
hybrid molecule possesses a spatially constant local dielectric
response. Such responses are well described by a classical
Drude-like dielectric function [28,52,53],

εm(ω) = εcore(ω) − ω2
p

ω(ω + iγ )
, (36)

where ωp is the bulk plasmon frequency, γ is the relaxation
constant of the bulk material, and εcore(ω) is the response
from the bound electrons. In cases where interband effects
are absent and only the conduction band electrons account
for the optical properties of the material, we can safely
assume that εcore = 1. However, interband transitions play
an important role when determining the optical properties of
common plasmonic materials, such as gold and silver. In such
cases, εcore(ω) can be determined using an experimentally
measured, bulk dielectric function εexp(ω) (such as the data
set given by Johnson and Christy [54]) using the recipe
εcore(ω) = εexp(ω) + ω2

p/(ω(ω + iγ )) [28].

The energy (or the frequency) of surface plasmon res-
onances in the MNP is determined by its polarizability
using the Frölich condition. In the classical LRA above, the
polarizability of the MNP at a given point was modeled to
be locally related to the electric field. Conversely, nonlocal
electrodynamics partially account for the quantum mechanical
effects of the MNP free electron gas using a spatially nonlocal
dielectric function. Just as the name implies, this captures the
spatially nonlocal relationship between the material polariza-
tion and the electric field [55], which better explains the SP
resonances of the MNP.

Raza et al. [31,32] derived a generalized formula for the
nonlocal dipolar polarizability of a small spherical MNP in
the nonretarded limit, by taking the nonlocal response into
account,

αNL = 4πr3
mβNL

cm , (37)

where βNL
cm is the modified nonlocal Clausius Mossotti factor

given by,

βNL
cm = εm(ω) − εb(1 + δNL)

εm(ω) + 2εb(1 + δNL)
. (38)

The nonlocal correction δNL is given by [28],

δNL = εm(ω) − εcore(ω)

εcore(ω)

j1(kLrm)

kLrmj ′
1(kLrm)

, (39)

where j1 is a spherical Bessel function of the first kind of
angular-momentum order 1 and j ′

1 is its first order differential
with respect to the argument. The longitudinal wave vector kL,
which is responsible for the nonlocal effects in the MNP, is
modeled in the GNOR approach as,

k2
L = εm(ω)/ξ 2

GNOR(ω). (40)

The frequency dependent function ξGNOR(ω), known as the
nonlocal parameter of the GNOR model, is given by,

ξ 2
GNOR(ω) = εcore(ω)[κ2 + D(γ − iω)]

ω(ω + iγ )
, (41)

where

D = 4

15

γ

ω2 + γ 2
v2

f (42)

is the diffusion parameter of the GNOR model and κ2 =
(3/5)v2

F for ω � γ with vF being the Fermi velocity. It is
evident that when δNL → 0, (38) approaches the Clausius
Mossotti factor in the LRA given by (3).

By substituting βNL
cm from (38) in place of βcm in (29a) and

(29b), we can obtain the exact versions of E and μm with the
nonlocal correction. However, for the same reason outlined in
Sec. II C, −μNL

m ≈ (μNL
m )

∗
criteria must be met for the MNP-

QD molecule to be modeled within the cavity QED approach
with a reasonable accuracy, where we have defined μNL

m as the
MNP dipole moment operator element in the nonlocal case.
Then we show that this criteria is met near resonance for good
plasmonic materials when Re(1 + δNL) � | Im(1 + δNL)|.

The modified Frölich condition where αNL undergoes a
resonant enhancement is given by [28],

Re [εm(ωm)] ≈ −2εb Re (1 + δNL), (43)
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FIG. 2. Comparison of the near-resonant behavior of the GNOR based modified Clausius Mossotti factor presented by Raza et al. [28], with
its complex Lorentzian approximated form presented in this paper for different MNP radii at εb = 5. (a) Absolute value of the unapproximated
nonlocal Clausius Mossotti factor of Raza et al. given by (38). (b) Absolute value of the approximated nonlocal Clausius Mossotti factor βNL

cm a

given by (45). (c) The percentage error between the absolute values of the unapproximated and approximated (GNOR based) Clausius Mossotti
factors given in the previous two subfigures. Percentage errors at resonance are marked on the respective curves in subfigure (c).

for Re(1 + δNL) � | Im(1 + δNL)|. When this resonant en-
hancement occurs, Re [εm(ω)] can be approximated using its
first order Taylor expansion near ωm as,

Re [εm(ω)] ≈ Re [εm(ωm)] + (ω − ωm)/η. (44)

We approximate βNL
cm in (38) around the SP resonance

frequency ωm by a complex Lorentzian using (31), (33), (43),
and (44) as follows,

βNL
cm ≈ 3iεbη Re(1 + δNL)/Dm. (45)

Substituting βNL
cm from (45) in (29a) and (29b) yields:

ENL ≈ sα

R3

√
3h̄ηr3

m Re(1 + δNL)

4πε0
, (46a)

μNL
m ≈ −iεb

√
12πε0ηr3

mh̄ Re(1 + δNL). (46b)

The equations (45), (46a), and (46b) capture the main
results of this paper. It is evident that good plasmonic materials
fulfill the −μNL

m ≈ (μNL
m )∗ criteria required by the cavity QED

model near resonance, given the condition Re(1 + δNL) �
| Im(1 + δNL)| is satisfied. In summary, we highlight the
fact that the approximated ENL and μNL

m hold the following
relationships with their approximated LRA counterparts.

ENL ≈ E
√

Re (1 + δNL), (47a)

μNL
m ≈ μm

√
Re(1 + δNL). (47b)

F. Scattering of light by the hybrid molecule

We finally calculate Rayleigh scattering by the hybrid
molecule which is valid when the size of the scattering object
is much smaller than the wavelength of the incident light
[56]. The output scattered light is comprised of coherent and
incoherent components. The coherent part is due to elastic
Rayleigh scattering where the radiated electromagnetic energy
has the same frequency as the incoming field [57]. For low
incident light intensities, elastic scattering is dominant. We
use this claim to model the Rayleigh scattering by the hybrid
molecule, using the cavity QED solutions for the system in the
weak field limit given by (28a) and (28b). The coherent part

of the scattered intensity is proportional to [19,22],

I ≈ |d+
qd + d+

m |2 = |μqd〈σ̂ 〉 + μ∗
m〈â〉|2, (48)

under the LRA. Similarly, for the nonlocal case,

INL ≈ ∣∣μNL
qd 〈σ̂ 〉NL + (

μNL
m

)∗〈â〉NL
∣∣2

, (49)

where the superscript NL denotes the relevant quantities cal-
culated using the nonlocally corrected equations. These results
will be amply used in the numerical results section that follows.

III. NUMERICAL RESULTS AND DISCUSSION

A. Numerical results

In this section, we numerically analyze the presented cavity
QED model for a hybrid molecule, comprised of a QD kept
in the vicinity of a silver MNP. Unless stated otherwise,
we use an incident field intensity of 1 W/cm2, sα = 2,
γqd = 50μeV and μqd = 33.62 Debye [19]. The Drude-like
dielectric function εm(ω) is obtained from (36) where the bulk
parameters for silver used are ωp = 8.99 eV, γ = 0.025 eV,
and vF = 1.39 × 106 m/s [28]. The bound electron response
for silver [εcore(ω)] is calculated using the measured bulk
dielectric values presented by Johnson and Christy in Ref. [54].
We define the detuning between the MNP and QD resonances
as 
 = ωm − ωqd .

In Fig. 2, we compare the nonlocal complex Lorentzian
approximation of βNL

cm derived in (45) with its unapproximated
version in (38) for multiple radii of a subwavelength silver
MNP immersed in a medium of εb = 5. It can be seen that
they closely resemble each other near resonance, justifying
the use of the approximated version of βNL

cm in the presented
cavity QED model, within the given parameter region.

Figures 3(a) and 3(b) show the variation of the coherent
Rayleigh scattering curves of the MNP-QD hybrid molecule
given by (48) and (49) with varying rm in the local and nonlocal
models, respectively. It is evident that only the model with the
GNOR nonlocal correction qualitatively captures the blueshift
of resonance energy that occurs with the decreasing particle
size, which tallies with the studies done using isolated MNPs
in Refs. [31,32]. As our model considers a QD resonance
frequency at a fixed detuning from the MNP resonance
frequency, the spectrum of the entire molecule shifts to the

245419-7



HARINI HAPUARACHCHI et al. PHYSICAL REVIEW B 95, 245419 (2017)

2.3 2.35 2.4 2.45 2.5 2.55 2.6 2.65 2.7

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

2.2 2.4 2.6 2.8 3 3.2

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
rm = 8
rm = 9
rm = 10
rm = 11
rm = 12

rm = 8
rm = 9
rm = 10
rm = 11
rm = 12

LocalLocal

NonlocalNonlocal

ω (eV) ω (eV)

(a)

(b)

(c)

(d)

FIG. 3. Variation of coherent Rayleigh scattering spectra of the hybrid molecule with varying rm and εb in the local and nonlocal (GNOR)
models. Curves are normalized by the largest peak in the respective subfigure. Subfigures (a) and (b) capture the variation of the scattered
intensity for different radii at εb = 5, whereas (c) and (d) capture the scattering intensity variation with the environment permittivity εb at
rm = 8 nm. For all four panels 
 = 20 meV and R = 14 nm are used. All figures clearly indicate an asymmetric Fano interference pattern near
the resonance frequency of the QD. It can be observed that this asymmetry is tunable using rm and εb.

right, following the blueshift of the MNP. The increase in the
coherent scattered intensity with the increasing MNP size is
captured by both local and nonlocal models.

Figures 3(c) and 3(d) show how the intensity spectra
vary with the permittivity of the surrounding medium for
the local and nonlocal cases, respectively. Both these cases
predict that the resonance frequency and the peak scattered
intensity show a high sensitivity to the permittivity of the host
medium, a feature that can be exploited in applications such
as biosensing [57]. We recall that the resonance frequency
is decided by the Frölich condition given by (32) and (43)
in the local and nonlocal cases, respectively. Increasing εb

moves the resonance frequency leftwards, along the Drude-like
dielectric curve (36) in the optical region for metals such as
gold and silver. This frequency redshift with increasing εb is
captured by both local and nonlocal GNOR cases as shown
in Figs. 3(c) and 3(d). Additionally, both cases capture the
enhancement of the scattered intensity with increasing εb.
However, the resonance frequencies given for the same set
of parameters by the local and nonlocal models are seen to be
different.

The dependence of the scattered intensity on the orientation
parameter sα is shown in Fig. 4. It also shows how the
nonlocal scattered intensity scales in comparison with its
local counterpart. This is caused by the introduction of the
Re(1 + δNL) component to the approximated expression of μm

in the nonlocal case. We observe in Figs. 3 and 4 that a sharp
enhancement and a suppression of the scattered intensity occur
in a small region near the resonance frequency of the QD, due
to the respective constructive and destructive interferences of

the MNP and QD spectra. Figure 4 shows that this interference
effect depends on the external driving field orientation or sα .

Moreover, we have used Fig. 4 to show that a line broaden-
ing effect can be observed in the GNOR spectra in comparison
to the respective LRA counterparts. From Fig. 3(b), it can be
observed that this line broadening is size dependent. Such size

0.2
0.4
0.6
0.8

1
1.2 s  = 2

2.3 2.35 2.4 2.45 2.5 2.55 2.6 2.65 2.7
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FIG. 4. (a) LRA and GNOR based coherent Rayleigh scattering
spectra for sα = 2. (b) Coherent Rayleigh scattering spectra for sα =
−1. Other parameters used include εb = 5, rm = 8 nm, R = 15 nm,
and 
 = 20 meV. All curves are normalized by the peak intensity
of the respective LRA based spectrum for the purpose of amplitude
comparison. It can be observed that the Fano interference pattern
near the resonance of the QD is influenced by the orientation of the
external field.
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FIG. 5. Subfigures (a)–(f) depict two-dimensional plots for the coherent scattered intensity of the hybrid molecule, normalized by the
maximum intensity of each subfigure for εb = 5 and rm = 8 nm. (a) Shows the scattered intensity variation against 
 and ω when R = 15 nm
in the LRA. (b) Shows the scattered intensity against 
 and ω for the same set of parameters as in (a) in the nonlocal GNOR model. The
subfigures (c) and (d) show, respectively, the local and nonlocal (GNOR) scattering intensities against μqd and ω. The local and nonlocal
(GNOR) scattering intensities against R and ω are shown in (e) and (f), respectively. The subfigures (c)– (f) use 
 = 20 meV and R = 15 nm.
Subfigure (g) shows the variation of ωm against rm and εb predicted by the LRA, whereas (f) shows the same variation as predicted by the
nonlocal GNOR model. From figures (a)– (f) it can be observed that model parameters such as MNP-QD detuning, dipole moment, and distance
dramatically affect the Fano lineshape resulting from the interference of the MNP and QD spectra.

dependent damping phenomenon has been reported in several
experiments in the past [58–62]. The conventional LRA based
model does not account for this phenomenon. The Kreibig
approach which phenomenologically modifies the Drude bulk
damping parameter as

γ → γ + A
vf

rm

, (50)

where A is a constant related to the probability of the free
electrons scattering off the surface of the particle, has been
used by researchers to account for this effect [63]. However,
the Kreibig approach fails to account for the size-dependent
resonance shifts of the MNP whereas the GNOR based
approach successfully captures both effects [28].

Figures 5(a) and 5(b) show two-dimensional plots of the
scattered intensity against the MNP-QD detuning 
 and the
external driving field frequency ω, given by the local and
nonlocal models, respectively. The slanted line across each
spectrum shows the movement of the steep enhancement-
suppression pattern, seen in Figs. 3 and 4, towards higher
frequencies following the movement of the resonance position
of the QD along the frequency axis.

Figures 5(c) and 5(d) show scattered intensity variation
against μqd and ω. It is evident that the QD causes a

higher enhancement and a suppression in the hybrid molecule
spectrum across a wider range of frequencies with increasing
μqd .

The impact of the MNP-QD distance R on the scattered
intensity is shown in Figs. 5(e) and 5(f). Figure 5(e) represents
LRA and Fig. 5(f) follows the nonlocal GNOR model. It can be
observed that the interference effects due to the QD dominate
across a larger frequency range when the interparticle distance
decreases.

Figure 5(g) shows the variation of the MNP resonance
frequency ωm calculated using the Frölich condition given
by (32) in the LRA, against εb and rm. It clearly shows that
LRA does not capture the radius dependence of the MNP
resonance. Figure 5(h), which depicts ωm given by the nonlocal
GNOR Frölich condition (43), readily captures this radius
dependence. It is observable that the dependence of ωm on
rm increases when rm decreases.

We then do a validity region analysis of our sug-
gested nonlocal cavity QED model for a hybrid molecule
containing a silver MNP. As we have already discussed,
the successful use of the cavity QED model to an-
alyze the MNP-QD hybrid molecule requires the ful-
fillment of the condition −μNL

m ≈ (μNL
m )∗. This in

turn demands that both the conditions Im(εm(ω)) �
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TABLE I. Dipole moment operator elements (μNL
m ) and the resonance frequencies (ωNL

m ) for a silver MNP, calculated using a nonlocal
GNOR based cavity QED approach, against the environment permittivity εb and the MNP radius rm. Each cell contains μNL

m in units of
1 × 10−27Cm at the top and ωNL

m in eV at the bottom. All dipole moment element values presented carry a tolerance level approximately equal
to or less than 0.1. The exact levels of tolerance for the presented dipole moments can be found using P2 in (51b).

εB 3 nm 5 nm 7 nm 9 nm 11 nm 13 nm 15 nm 17 nm 19 nm

1.0 −0.44i −0.98i −1.65i −2.44i −3.31i −4.29i −5.33i −6.44i −7.62i

3.55 3.53 3.52 3.51 3.51 3.51 3.51 3.51 3.51
1.5 −0.70i −1.54i −2.56i −3.73i −5.07i −6.51i −8.09i −9.75i −11.54i

3.41 3.37 3.36 3.35 3.35 3.34 3.34 3.34 3.34
2.0 −0.89i −2.01i −3.37i −4.94i −6.69i −8.62i −10.68i −12.91i −15.23i

3.26 3.22 3.21 3.19 3.19 3.19 3.18 3.18 3.18
2.5 −1.07i −2.28i −3.78i −5.53i −7.50i −9.65i −11.99i −14.48i −17.13i

3.13 3.09 3.07 3.06 3.05 3.04 3.04 3.04 3.04
3.0 −1.19i −2.69i −4.55i −6.71i −9.13i −11.78i −14.66i −17.73i −21.00i

3.03 2.97 2.95 2.93 2.93 2.92 2.91 2.91 2.91
3.5 −1.41i −3.18i −5.29i −7.67i −10.37i −13.29i −16.41i −19.7i −23.32i

2.92 2.85 2.82 2.81 2.80 2.79 2.79 2.78 2.78
4.0 −1.59i −3.27i −5.32i −7.76i −10.46i −13.45i −16.67i −20.16i −23.81i

2.82 2.75 2.72 2.71 2.69 2.69 2.68 2.68 2.68
4.5 −1.59i −3.43i −5.8i −8.56i −11.65i −15.04i −18.69i −22.59i −26.72i

2.73 2.66 2.63 2.62 2.60 2.60 2.59 2.59 2.58
5.0 −1.68i −3.81i −6.35i −9.27i −12.51i −16i −19.8i −23.95i −28.22i

2.66 2.58 2.54 2.53 2.51 2.50 2.50 2.50 2.49
5.5 −1.85i −4.01i −6.57i −9.52i −12.79i −16.31i −20.15i −24.22i −28.69i

2.59 2.50 2.47 2.45 2.44 2.43 2.42 2.41 2.41
6.0 −1.95i −4.1i −6.67i −9.56i −12.86i −16.52i −20.46i −24.65i −29.2i

2.52 2.44 2.40 2.38 2.37 2.36 2.35 2.35 2.35
6.5 −1.99i −4.13i −6.79i −9.94i −13.49i −17.4i −21.66i −26.22i −31.09i

2.46 2.38 2.34 2.32 2.31 2.30 2.29 2.29 2.28

− Re(εm(ω)) and Re(1 + δNL) � | Im(1 + δNL)| are met.
We define,

P1 = | Im(1 + δNL)|
Re(1 + δNL)

× 100%, (51a)

P2 =
∣∣∣∣∣
∣∣μNL

m u

∣∣ − ∣∣μNL
m a

∣∣∣∣μNL
m u

∣∣
∣∣∣∣∣ × 100%, (51b)

where μNL
m u is the unapproximated version of μNL

m in the
nonlocal model obtained by substituting βNL

cm from (38) in
(29b), and μNL

m a is the approximated μNL
m in the nonlocal

model obtained using (46b). We have shown the variation
of P1 and P2 against the MNP radius and the host medium
permittivity for silver in Figs. 6(a) and 6(b), respectively. It
can be clearly seen that P2 is influenced by P1. However,
they do not hold a linear relationship due to the nature of
their analytical equations and the incomplete vanishing of
Im(εm(ω)) near the surface plasmon resonance of the MNP. P2

can be used as a de-facto tolerance for the presented nonlocal
cavity-QED model.

Finally, we present Table I which summarizes the dipole
moment operator elements (μNL

m ) and the surface plasmon
resonance frequencies (ωNL

m ) for silver, calculated using the
nonlocal GNOR model equations (46b) and (43) for a range of
MNP radii (rm) and environment permittivities (εb). All values
presented in Table I fall approximately within the region where
P2 ≤ 0.1 in Fig. 6.

B. Fano resonance and applications

Unlike the conventional Lorentzian resonance, Fano res-
onance comprises a distinctly asymmetric shape with a
functional form similar to,

IF ∝ (F� + ω − ω0)2

(ω − ω0)2 + �2
, (52)

where F is known as the Fano parameter describing the degree
of asymmetry, and ω0 and � are parameters denoting the
width and the position of the resonance, respectively [64].
The excitations possessed by the QDs are discrete excitons
whereas the plasmonic excitations of the MNP comprise a
strong continuous spectral response [65]. In our system, an
asymmetric Fano behavior arises from the constructive and
destructive interference of the narrow discrete resonance of
the QD with the broad spectrum of the MNP.

The numerical results presented in Figs. 3–5 clearly indicate
that the Rayleigh scattering spectra of the MNP-QD hybrid
molecule possess an asymmetric Fano interference pattern
which is tunable using different properties of the MNP-QD
system such as the constituent sizes, dipole moment, MNP-QD
distance, external field orientation, and the environmental
permittivity. This tunability of the Fano resonance pattern
promises usability of the hybrid system in various applications
such as sensing, lasing, switching, and nonlinear and slow-light
devices. The inherent sensitivity of the Fano interference
pattern of the MNP-QD hybrid molecule renders attraction for
a range of practical applications, with the most straightforward
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FIG. 6. (a)P1 calculated using (51a) for silver at the respective resonance frequencies for different MNP radii and environment permittivities.
Approximation of (1 + δNL) by Re (1 + δNL) in all the nonlocal (GNOR) equations is justified when P1 is small and positive. (b) P2 calculated
using (51b) for silver at the respective resonance frequencies for different MNP radii and environment permittivities. P2 represents the de-facto
tolerance level for the MNP dipole moment element μNL

m given by (46b). Thus, P2 can be used to assess tolerance levels of the dipole moment
elements given in Table I.

application being the usage for development of chemical or
biological sensors [64]. As an example, we suggest that the
MNP-QD hybrid molecule can be a good candidate for early
stage tumor detection as the cancerous tissue possess much
higher permittivity than the surrounding normal tissue [66]
resulting in a dramatic shift in the observed Fano scattering
signature. Furthermore, such tunable signatures can be used in
applications such as photothermal cancer therapy [67].

IV. SUMMARY AND CONCLUSION

In this paper, we analyzed the metal nanoparticle-quantum
dot (MNP-QD) hybrid molecule in an external driving field
using a cavity-QED approach and presented a comprehensive
comparison between the behavior suggested by the local
response approximation (LRA) and the generalized nonlocal
optical response (GNOR) based methods. We have derived
expressions for the plasmon field amplitude and the dipole
moment operator element of the MNP in the LRA and
introduced their nonlocally-corrected versions, outlining the
constraints of the model. Additionally, we provided an ana-
lytical solution for the cavity-QED system in the weak field
regime and numerically studied the scattering spectra of an
MNP-QD hybrid molecule comprised of a silver MNP. Optical
signatures of the scattering spectra and their variation with the
tunable system properties were observed and discussed in this
numerical analysis. Many such signatures and their variations
against the tunable parameters can in most instances be

explained by both the local and nonlocal models. However, the
LRA fails to capture some features such as the size dependent
resonance shifts, linewidth broadening, and amplitude scaling
where the GNOR model succeeds. The nonlocal GNOR model
captures the blueshift of resonance energy that occurs with
the decreasing particle size, which tallies with experimental
studies done using isolated and dimer MNPs. We then
provided a numerical quantification for the deviation of the
approximated dipole moment of a silver nanoparticle from
the exact equation suggested by the cavity QED model. We
presented a table summarizing the dipole moment elements of
subwavelength silver MNPs with different radii immersed in
different background media using the nonlocal GNOR based
cavity-QED model. We finally provided a discussion of the
Fano signature observed in the Rayleigh scattering spectra of
the hybrid system and its potential applications.
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