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Temporal reflection as a spectral-broadening mechanism in dual-pumped dispersion-decreasing
fibers and its connection to dispersive waves
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We show that temporal reflections off a moving refractive index barrier play a major role in the spectral
broadening of a dual-wavelength input inside a highly nonlinear, dispersion-decreasing fiber. We also find that
a recently developed linear theory of temporal reflections works well in predicting the reflected frequencies.
Successive temporal reflections from multiple closely spaced solitons create a blueshifted spectral band, while
continuous narrowing of solitons inside the dispersion-decreasing fiber enhances Raman-induced redshifts,
leading to supercontinuum generation at relatively low pump powers. We also show how dispersive wave
emission can be considered a special case of the more general process of temporal reflections. Hence our findings
have implications on all systems able to support solitons.
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I. INTRODUCTION

The mathematical equations governing light propagation in
optical fibers have established connections between nonlinear
fiber optics and seemingly unrelated fields such as Bose-
Einstein condensates [1], plasma physics [2], and water
waves [3]. Fiber optics offers a convenient laboratory-scale
platform for studying systems covered by the nonlinear
Schrödinger equation. One of the extreme nonlinear phe-
nomena occurring in optical fibers is supercontinuum (SC)
generation [4], which is of great interest to the broader physics
and engineering community because of its applications in
optical coherence tomography [5], high-precision metrology
[6], communication systems [7], and optical pulse shaping [8].

SC generation in photonic crystal fibers (PCFs) has been
studied extensively over the past decade [4,9]. The disper-
sion of a PCF can be made to change along its length
either during the manufacturing process or by tapering it
afterwards. SC generation has been studied in both kinds of
dispersion-varying fibers [10]. Typically the fiber is pumped
in the anomalous-dispersion regime, and the magnitude of the
dispersion parameter β2, defined as β2 = d2β/dω2 where β(ω)
is the modal propagation constant at frequency ω, is made to
decrease along the fiber’s length. Such fibers are referred to
as dispersion-decreasing fibers (DDFs). The beneficial effect
of decreasing |β2| on the spectral width of an optical pulse is
evident in the context of solitons, as decreasing |β2| causes
them to compress temporally, which broadens their spectrum
and also causes them to redshift faster through the Raman
effect [11,12]. In practice, tapering a fiber will also decrease
its core size, leading to broader SC spectra simply due to
enhanced nonlinearities [10,13].

When the input to a nonlinear fiber is a cw or a long pulse
at a wavelength in the anomalous-dispersion regime of the
fiber, spontaneous modulation instability (MI) breaks it into a
train of much shorter pulses [12]. Spontaneous noise-seeded
MI leads to incoherent supercontinua [14]. However, MI can
also be induced by modulating the input at an appropriate
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frequency, resulting in better coherence properties [15]. In
this case, MI causes the modulation sidebands to grow, and
the cascaded effect can yield frequency combs. Another
way to induce MI is to pump the fiber with two (or more)
pumps of different wavelengths. SC and frequency comb
generation using dual-wavelength pumping has been explored
in numerous studies [16–21]. The dual-pump configuration
can have significant advantages over single-cw pumping.
Demircan et al. [22] considered two pulses on opposite sides
of the zero-dispersion wavelength. The solitonic input pulse
created a moving temporal refractive-index barrier for the other
pulse propagating in the normal dispersion regime. The other
pulse then scattered off this barrier and created new spectral
components in a quasicontinuous manner, leading to a very
broad and relatively flat SC spectrum.

Using the dual-pumping case as an example, in this paper
we reveal the origin of the blue components during SC
generation in DDFs. This explains previous experimental
results on enhanced blue side spectral broadening [10] as
well as our recent observations about longitudinally varying
dispersion being beneficial for dual-pump SC generation but
detrimental for a single cw pump [23]. The origin of the blue
components then brings us to an important result: a connection
between dispersive wave (DW) emission and the more general
phenomenon of temporal reflection [24]. Dual pumping
creates an amplitude-modulated input signal, which evolves
nonlinearly into a train of fundamental solitons that are then
compressed temporally by decreasing |β2|. While adiabatic
soliton compression due to varying dispersion extends the
spectrum to the red side, here we show that the blue side
of the spectrum is also significantly affected through multiple
reflections of the pump remnants at the soliton-induced index
barriers. In previous work, scattering of DW’s off solitons
led to spectral broadening only under carefully crafted input
conditions [22,25]. In contrast, our approach allows temporal
reflection to occur spontaneously, with little sensitivity to
the input conditions. Furthermore, the periodic nature of the
emerging soliton train effectively creates temporal waveguides
for the blue frequency components, and the waves can keep
reflecting and remain partially trapped between two adjacent
solitons. This wave-trapping phenomenon continues to be a
topic of contemporary research [26].
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FIG. 1. Dispersion parameter β2 at the input end of the fiber.
The circle denotes ν0. The zero-dispersion wavelength of the PCF is
985 nm.

II. NUMERICAL MODEL

We use the generalized nonlinear Schrödinger equation that
has been shown to accurately model nonlinear propagation
down to the few-cycle regime [9]. This equation can be written
as [12]
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+ α

2
A −

∑
n�2

in+1

n!
βn

∂nA

∂T n

= iγ

(
1 + iτs

∂

∂T

)

×
(

A(z,T )
∫ ∞

−∞
R(T ′)

∣∣A(z,T − T ′)
∣∣2

dT ′
)

, (1)

where A is the complex amplitude of the electric field,
T = t − z/vg is the retarded time in a frame moving with
the group velocity vg at a chosen central frequency ω0, α

accounts for fiber losses, and γ is the nonlinear parameter.
Further, the sum is over dispersive terms with the parameters
βn, defined as βn = (dnβ/dωn) and evaluated at ω0. For a DDF,
in general, all dispersion parameters βn are functions of z. In
this paper, however, only β2 changes linearly with z, and the
higher-order terms as well as the nonlinearity are kept constant.
Equation (1) is solved numerically using the split-step Fourier
method [12].

The input consists of two cw’s of equal power and different
frequencies centered around ν0 = ω0/(2π ) = c0/λ0, where c0

is the vacuum speed of light and λ0 = 1.06 μm. Quantum
shot noise is also included by adding one photon with random
phase per mode [9]. The frequency separation �ν between the
two pumps is varied from 25 GHz to 1 THz. The nonlinear
parameter is γ = 91.6(W km)−1 at the center frequency ω0.
β2 at ω0 increases linearly from −8.56 to 5 ps2/km over the
150-m length of the fiber. The dispersion curve at the fiber’s
input end is shown in Fig. 1.

The nonlinear response function, R(t) = 0.82δ(t) +
0.18hR(t), includes both the delayed Raman response hR

and the instantaneous [12] Kerr-type electronic response. The
convolution integral on the right-hand side of Eq. (1) is done
in the frequency domain where the Raman contribution is
modeled through the full experimental Raman spectrum of
silica [27]. Self-steepening is governed by the shock time scale
τs = 0.563 fs. The fiber lengths considered were 150 m or
less, and since losses for PCF’s of such lengths can be less

FIG. 2. Temporal (a) and spectral (b) evolutions of a dual-pump
input inside a DDF. (a) Square root of the intensity on a linear scale
in

√
W. (b) Normalized spectral intensity in decibels. The two pumps

are separated in frequency by 400 GHz and their total power is 1 W.
The dashed black line shows the distance at which β2 = 0 at the
pumps’ center wavelength. Double arrows mark locations of temporal
reflections in (a) together with the corresponding wavelengths in (b).
The solid black line in (b) shows the theoretical prediction of the
temporal reflection model discussed in the text. The dashed line shows
the zero-dispersion wavelength.

than 0.15 dB [28], they were ignored for simplicity by setting
α = 0.

III. ROLE OF TEMPORAL REFLECTIONS

Figure 2 shows the temporal and spectral evolution of a
dual-pump input inside a DDF (frequency separation �ν =
400 GHz). The total input power of 1 W corresponds to a peak
power of only 2 W at the location of each temporal peak. The
input acts as a train of cosine-shaped pulses with a full width
at half maximum of 1.25 ps. During the first 20 m, the pulses
compress temporally as they undergo self-phase modulation
(SPM). The central peak of each individual pulse then starts
adjusting to become a fundamental soliton. During these stages
the spectrum is still comblike.

Once solitons are formed, the soliton self-frequency shift
(SSFS) starts redshifting them. Moreover, the redshift is
accelerated compared to a fiber with constant dispersion due
to a decrease in |β2| along the fiber length. This is because
of soliton compression making the solitons more intense and
shorter in time. The rate of SSFS scales inversely with the
fourth power of soliton duration [12] and thus the redshift
becomes greatly enhanced. Since the input power is too low for
modulation instability to amplify the shot noise to observable
levels, the first stages of signal evolution are governed solely
by the SPM phenomenon.

Until each soliton has decelerated enough to temporally
overlap with the remnants of the neighboring pulse, each
pulse follows single-pulse evolution dynamics. After 65 m
of propagation, the pump remnants of the adjacent pulse see
a moving refractive-index barrier caused by solitons, resulting
in temporal reflections that create new frequency components
between 970 and 980 nm [24]. Most of the pump remnants
pass through this index barrier and undergo further temporal
reflections creating new spectral components first between
990 nm and 1.02 μm, then between 1.02 and 1.025 μm, and
finally between 1.03 and 1.04 μm (after 130 m of propagation).

033813-2



TEMPORAL REFLECTION AS A SPECTRAL-BROADENING . . . PHYSICAL REVIEW A 95, 033813 (2017)

In a recent study by Plansinis et al. [24] temporal reflections,
occurring because of an abrupt temporal change in the refrac-
tive index, were studied and the spectral shift of the reflected
light was predicted analytically using the conservation of
photon momentum during the reflection process. In their
theory, the frequency ω of reflected light is obtained from

�β1(ω − ω0) +
∑
n�2

βn

n!
(ω − ω0)n = 0, (2)

where the Taylor expansion has been done around the incident
frequency ω0 and �β1 = β1(ω0) − 1/VB, VB being the veloc-
ity of the moving refractive index barrier. The trivial solution
ω = ω0 corresponds to the incident wave, and the other solu-
tion, if it exists, provides the frequency of the reflected wave.

In the case studied in this paper, the intense narrow solitons
act as the moving refractive-index barriers. Therefore, the
barrier velocity VB is the inverse of the first-order dispersion
coefficient β1(ωs), where ωs is the soliton’s center frequency.
By virtue of the retarded time coordinate used, β1(ω0) = 0, and
the difference �β1 in Eq. (2) reduces to �β1 = −β1(ωs). To
determine the value of β1(ωs), we traced the curved trajectory
of a soliton in Fig. 2(a) and fitted a polynomial spline to it,
expressing the location Tp of the soliton peak as a function
of z. The derivative dTp/dz then yields β1(ωs). Knowing
β1(ωs), we calculated ωs and checked that it agreed with the
spectral peak of the solitons. The calculated β1(ωs) was then
used to determine the wavelength of the reflected wave when
the pump remnants centered around 1.06 μm reflect off the
solitonic index barrier. The solid black line in Fig. 2(b) shows
the predictions for the reflected wavelength based on Eq. (2).
As seen in this figure, the theoretical predictions agree quite
well with the numerical results.

By looking at Fig. 2(b) we note that the input spectrum
has broadened considerably at a distance of 65 m (just before
the first reflection), forming a frequency comb spanning from
1.02 to 1.12 μm through dual-pump enhanced SPM [20]. Since
there is a band of (discrete) frequencies that can reflect off the
solitonic index barriers, the reflected frequencies also form
bands around the theoretically predicted curve (solid black
line). The width and position of these bands depend on the
width of the incident band, the dispersion, and the central
wavelength of the solitons [through β1(ωs)], as evident from
Eq. (2). Furthermore, the theory of Ref. [24] does not account
for nonlinearities, which affect the propagation constants of
both the incident and reflected waves (owing to the Kerr effect).
In addition, the nonlinear effects are expected to be different
in magnitude for the incident and reflected waves, as the latter
is much weaker than the former one.

To clarify the drastic effects of temporal reflections on the
blue side of the output spectra, we also performed simulations
in constant dispersion fibers with the same dispersion curve
shown in Fig. 1 for all z. Figure 3 shows the temporal and
spectral evolutions of the same input signal in this case and
should be compared with Fig. 2 where dispersion varies along
the fiber length. It is remarkable how narrow the output
spectrum is in Fig. 3(b) when compared to that in Fig. 2(b). The
additional spectral broadening in Fig. 2(b) has two sources:
On the red side, it is due to soliton compression and enhanced
SSFS of the narrower solitons. In contrast, on the blue side,

FIG. 3. Temporal (a) and spectral (b) evolutions of a dual-pump
input under conditions identical to those in Fig. 2 except that the
dispersion is kept constant along the PCF length.

spectral broadening is due to the formation of blueshifted
spectral bands resulting from temporal reflections. Note that
there is no visible DW emission in either case, and all the
blueshifted components that are present in Fig. 2(b) but not in
Fig. 3(b) are solely due to temporal reflections of the pump
remnants off the solitons.

IV. DISPERSIVE WAVES AND TEMPORAL REFLECTIONS

The absence of a DW in Fig. 3 is, at first, somewhat
puzzling since such waves are often generated when solitons
form. On further investigation, we find that the reason behind
the lack of temporal reflections in Fig. 3(b) is related to the
shape of the dispersion curve, which causes Eq. (2) to have
only one solution ω = ω0 such that no solution exists for a
reflected wave. Since no temporal reflections can occur, all
pump remnants incident on a solitonic index barrier simply
pass through it (temporal refraction), without a significant
change in their frequencies [24]. We stress that this behavior is
due to the presence of dispersion terms beyond the third order
in our simulations.

To clarify this issue further, we carried out additional
numerical simulations. Figure 4 shows the temporal and
spectral evolutions under conditions identical to those in Fig. 3,
except that the value of β2 at the pump’s center wavelength was
−2.684 ps2/km rather than −8.56 ps2/km like in Fig. 3. This
value of β2 corresponds to its value in Fig. 2 at a distance of
65 m, which is the location of the first temporal reflection. As
in Fig. 3, the input beating signal reshapes to form a periodic

FIG. 4. Temporal (a) and spectral (b) evolutions under conditions
identical to those in Fig. 3 except that the value of β2 at the pump-
center wavelength was changed to −2.684 ps2/km.
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train of solitons, but unlike in Fig. 3, now each soliton emits a
DW soon after its formation at a distance of 30 m.

The wavelength of a DW can be calculated from the phase-
matching condition [12]:

∑
n�2

βn

n!
(ω − ω0)n − (ω − ω0)/vg − γP0 = 0, (3)

where P0 is the soliton’s peak power and vg its group velocity.
In practice, the nonlinear term is often small compared to the
others and can be neglected to yield the linear phase-matching
condition. When γP0 = 0, Eq. (3) is exactly identical to
the temporal reflection equation (2) when VB = vg because
�β1 = −1/vg in that situation. When the moving refractive-
index boundary is caused by solitons of group velocity vg ,
the condition VB = vg is automatically satisfied, and Eq. (2)
becomes Eq. (3) with γP0 = 0. This indicates that DW
emission is a special case of a temporal reflection process.
Thus, DW emission in Fig. 4 and the formation of blueshifted
components in Fig. 2 through a temporal reflection are the same
phenomenon. The difference can be understood as follows.
In Fig. 2 the pump remnants meet and interact with the
solitons after they have left the original pulse and slowed
down considerably through the SSFS. In contrast, in Fig. 4
the pump remnants on the trailing side of each soliton reflect
off that soliton itself as it slows down. In other words, DW
generation is a kind of “temporal self-reflection,” where the
temporal refractive-index boundary is caused by the formation
of a soliton in a pulse’s central region, and the trailing parts
of the same input pulse reflect off this soliton, changing their
frequency as required by the process of temporal reflection.
Small differences in the wavelengths of the blue components
in Figs. 2(b) and 4(b) can be attributed to slight differences in
the soliton group velocities and peak powers in the two cases.

Interpreting DW emission as a special case of temporal
reflection also explains the lack of DW’s in Fig. 3. As
mentioned earlier, the shape of the dispersion curve in the

case of Fig. 3 is such that Eq. (2) admits only one solution
(ω = ω0), and hence no temporal reflections can occur. As the
same equation in the form of Eq. (3) governs DW emission, no
such waves are generated either. All pump remnants initially
present during soliton formation at a distance of 20 m simply
pass through the solitons without reflecting off them.

V. CONCLUSIONS

Using numerical simulations, we showed how temporal
reflections are a key spectral-broadening process when two
or more closely spaced pulses are transmitted through an
optical fiber. To be specific, we focused on a periodically
modulated input signal created by launching two cw laser
beams at slightly different wavelengths. We compared the
output spectra for PCFs with both constant dispersion and
longitudinally varying dispersion (a DDF). We found that
spectral broadening was enhanced considerably in the case
of a DDF and attributed the broadening on the blue side to
temporal reflections from a moving refractive-index boundary
created by the solitons. We used the recently developed theory
of Ref. [24] to predict the reflected frequency bands and found
it in agreement with our numerical simulations. Importantly,
we interpret DW generation as a special case of temporal
reflection, in which the spectral components that reflect off the
temporal index boundary have the same or nearly the same
frequency as the soliton that produces the temporal boundary,
hence connecting temporal reflections to a wider range of
physical systems.

ACKNOWLEDGMENTS

The authors would like to thank the following funding
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