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Photonic crystal fibers doped with silver nanoparticles exhibit a Kerr nonlinearity that can be positive or
negative depending on the input wavelength and which vanishes at a specific wavelength. The existence of negative
nonlinearity allows soliton formation even in the normal-dispersion region of the fiber, and the zero-nonlinearity
wavelength (ZNW) acts as a barrier for the Raman-induced redshift of solitons. We adopted the variational
principle to understand the role of the zero-nonlinearity point on Raman redshift and verified its prediction
numerically for fundamental and higher-order solitons. We show how the simultaneous presence of a ZNW and
a zero-dispersion wavelength affects soliton evolution inside such fibers and find a number of unique features
such as the position and the spectral bandwidth of the dispersive wave that change with the location of the ZNW.
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I. INTRODUCTION

Study of nonlinear phenomena in optical fibers has been
an active area of research, both from the fundamental and
application perspectives [1–15]. It is well known that optical
pulses can propagate as solitons by balancing the effects of
group-velocity dispersion (GVD) through self-phase modula-
tion induced by the Kerr nonlinearity [2]. Photonic crystal
fibers (PCFs) have an added advantage over conventional
optical fibers as they offer endlessly single mode behavior
and an easy dispersion tailoring with enhanced nonlinearity
[3–5]. Solitons react to the presence of higher-order dispersion
by generating dispersive waves (DWs) that play a pivotal
role in supercontinuum generation when short optical pulses
propagate inside PCFs [6–8]. Evolution of such pulses inside
a PCF with more than one zero-dispersion wavelength (ZDW)
leads to fascinating effects such as suppression of the Raman-
induced frequency shift (RIFS) [9–11], controllable RIFS in
nonlinear metamaterials [12], a blueshift of solitons [13], and
all-optical control of GVD [14,15]. In all these cases the
formation of optical solitons required anomalous dispersion
because most optical fibers exhibit a positive Kerr nonlinearity
(n2 > 0) at all wavelengths.

Recent work has shown that PCFs whose core is doped
with metal nanoparticles exhibit n2 that varies rapidly with
wavelength and can even change sign at a specific wavelength
[16–18]. The existence of a zero-nonlinearity wavelength
(ZNW) is intriguing since such PCFs can exhibit both a
ZNW and a ZDW that do not coincide, making it possible
to realize four spectral regions with different signs of the
GVD parameter β2 and the Kerr parameter n2. In this work
we study numerically the propagation of short optical pulses
inside silver-doped PCFs. By focusing on the wavelength
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dependence of n2 and tailoring the ZNW, we find some
interesting effects. In particular, we find that ZNW suppresses
the spectral redshift arising from Raman scattering. We adopt a
variational technique where the frequency-dependent higher-
order nonlinear term acts as a perturbation. In this entire work
our emphasis is on understanding the role of the ZNW on the
evolution of the pulse spectrum.

This paper is organized as follows. In Sec. II, we introduce
the simple design of the doped PCF exhibiting negative
nonlinearity and for that a generalized nonlinear Schrödinger
equation (GNLSE) is formulated. In Sec. III, we adopt
the variational method to explain the restriction of Raman
redshift due to ZNW. In Sec. IV, we numerically study the
evolution of higher-order solitons when ZDW and ZNW are
present in the system simultaneously. Section V focuses on
the graphical examination of how the variation of doping
concentration changes the ZNW which changes the position
and the bandwidth of DW as described in Sec. IV. Finally in
Sec. VI, we conclude our findings.

II. GNLSE FOR A SILVER-DOPED FIBER

We consider a PCF in the form of a solid-core microstruc-
ture optical fiber shown in Fig. 1. Its silica core is doped
with silver nanoparticles. The pitch of air holes surrounding
the core of the PCF is 3 μm with an air-filling fraction of
0.9. Geometrical parameters of the fiber are selected from the
fabrication point of view.

Before proceeding it is important to modify the standard
GNLSE for doped PCFs [1] for which the Kerr nonlinearity
changes rapidly with wavelength. In our previous work [18]
we assumed that both Kerr and Raman parts were affected by
the silver nanoparticles. This led to Raman-induced spectral
blueshifts that appeared to be nonphysical. In this work, we
assume that silver nanoparticles do not affect the Raman
contribution to the fiber nonlinearity and write the nonlinear
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FIG. 1. (a) Schematic cross section of the proposed fiber.
(b) Fundamental mode field distribution calculated at the operating
wavelength of 880 nm.

polarization in the form
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where E(�r,t) = F (x,y)A(z,t) exp(iβ0z) is the total electric
field containing the spatial distribution F (x,y) and time-
domain envelope function A(z,t). Here fR is the fractional Ra-
man contribution, χ (3)

eff is the effective third-order susceptibility
in the presence of metal nanoparticles, and χ

(3)
h is the third-

order susceptibility of the host glass. Using this expression of
nonlinear polarization and under a slowly varying envelope
approximation, the GNLSE takes the following form [1]:
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βn is the nth-order dispersion parameter. Both γ (ω) ≈ γ0 +
γ1(ω − ω0) and γeff(ω) are frequency-dependent nonlinear
coefficients of the undoped and the doped PCF defined as
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Here εeff = εh(1+2σf )
(1−σf ) with σ = εi−εh

εi+2εh
is the effective per-

mittivity of the silver-doped PCF calculated from Maxwell-
Garnett theory [19]. The filling factor f is the volume fraction
of the silver nanometric inclusions. Further,εi and εh are the
dielectric functions of silver [20] and silica, respectively.

The effective third-order susceptibility of silver-doped
fibers has been calculated using a theory of composite

nonlinear materials [21] and is given by [18]

χ
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D = 1 − f {1 − 0.4(4σ 2|σ |2 + 3σ |σ |2 + σ 3 + 9|σ |2 + 9σ 2)}.
(5)

The susceptibility of host silica glass and silver
are χh = 2.233 × 10−22 m2/V2 and χi = (−6.3 + i1.9) ×
10−16 m2/V2, respectively.

Dispersion and the nonlinear parameters of the fiber shown
in Fig. 1 are calculated using the finite element method (FEM)
using a filling factor of f = 6 × 10−3. At the pump wave-
length of λ0 = 880 nm we found β2 = 0.0297 ps2/m, γ0 =
0.040 W−1 m−1, and γ1 ≈ 0.0186 W−1 m−1 fs. Frequency de-
pendence of γeff is included using γeff(ω) ≈ γ0eff(ω0) +
γ1eff(ω − ω0) with γ0eff = −0.5334 W−1 m−1 and γ1eff ≈
−0.925 W−1 m−1 fs for the chosen value of f . The ZDW
and ZNW of the PCF are found to be 1023 and 1205 nm,
respectively.

III. RESTRICTION OF RAMAN REDSHIFT DUE TO ZNW

In this section we try to understand the effect of ZNW on
pulse dynamics. We adopt the standard variational method
[22] and treat the higher-order nonlinear terms resulting
from Taylor-series expansion of the frequency-dependent
nonlinearity as a perturbation. The GNLSE as given in Eq. (2)
can be written in a normalized form as
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where the parameters are rescaled as u =AP
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. Here, P0, T0, and vg are the input peak power, initial
pulse width, and the group velocity of the pulse, respectively.

To study the impact of ZNW, we adopt the soliton
perturbation analysis treating Eq. (6) as a perturbed NLSE:

i
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∂ξ
− 1

2
sgn(β2)

∂2u

∂τ 2
+ sgn(γ0eff)|u|2u = i�(u), (7)

where �(u) contains all first-order perturbation terms:
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The perturbative theory is developed by introducing the
ansatz,

u(ξ,τ ) =
[
E(ξ )η(ξ )

2

]1/2
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× exp{iφ(ξ ) − i�(ξ )[τ − q(ξ )]

− iκ(ξ )[τ − q(ξ )]2}, (9)

where all six normalized parameters—energy E, amplitude η,
temporal position q, phase φ, frequency shift �, and chirp κ—
are dimensionless and are functions of propagation distance ξ .
Using the standard Lagrangian density and integrating it over
the time parameter τ we get the total Lagrangian in the form
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This normalized Lagrangian leads to a set of ordinary
differential equations for the six parameters that describe
the soliton dynamics. Exploiting the perturbation �(u) and
denoting the ξ derivative with a subscript, four of these
equations are

Eξ = 0, (11)

ηξ = 2κη, (12)
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15
τR�Eη3 + 2

3
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3
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π2
{E − 2η + E�μ1eff(1 − fR)

+Es��fR + [� − sgn(γ0eff)]fRE}. (14)

The equation for � is the most relevant for us as it describes
changes in the soliton frequency with distance. The first term
in Eq. (13) corresponds to the standard RIFS. The presence of
the second term containing μ1eff shows that RIFS is reduced
by the presence of a ZNW. Note that we omitted the third-order
dispersion (TOD) effects in this calculation to capture the sole
effect of ZNW on pulse dynamics.

To compare the variational predictions with the full
GNLSE, we solved Eq. (6) numerically using parameters
T0 = 50 fs, λ0 = 880 nm, β2 = 0.0297 ps2/m; and βn>2 = 0,
γ0 = 0.040 W−1 m−1, γ0eff = −0.5334 W−1 m−1, and γ1eff =
(±1,0) × 0.925 W−1 m−1 fs. The value and numeric sign of
γ1eff control the location of the ZNW and slope of the nonlinear
dispersion, respectively. In Figs. 2(a) and 2(b) we show the
evolution of a second-order soliton (N = 2) in the presence
and absence of the ZNW. In the absence of ZNW, the Raman
soliton accelerates and its spectrum shifts considerably toward
the red side as shown by an arrow in Fig. 2(b). This shift is
reduced significantly when a ZNW is present [vertical dotted
line in Figs. 2(a) and 2(b)]. The temporal shift is also reduced
because of a reduced RIFS.

FIG. 2. (a) Raman-induced spectral shift at ξ = 20 of a second-
order soliton (N = 2) in the absence (red pulse) (dark gray pulse)
and presence (pink pulse) (light gray pulse) of a ZNW. (b) Spectral
evolution inside the PCF in the two cases. The arrow marks the
absence of a ZNW. (c) Frequency shifts with distance as predicted
by the variational technique for N = 1; blue squares represent
numerical data that agree with the dashed blue line. The dashed
blue line (upper) represents the negative higher-order nonlinear
coefficient and the dotted red line represents the positive higher-
order nonlinear coefficient. The black solid line (middle) indicates
the absence of higher-order nonlinear coefficient. (d) Variational
prediction comparing soliton spectrum at a distance of ξ = 8 with
the input spectrum (dotted curve). Red dot at the peak shows the
extent of RIFS.

Variational treatment also shows that the RIFS is reduced
in the presence of ZNW. We solve the coupled differential
equations given as Eqs. (11)–(14) and plot the evolution of the
soliton’s frequency shift � with distance in Fig. 2(c). Three
curves correspond to three different values of the parameter
μ1eff . The middle curve is for μ1eff = 0 which implies no ZNW.
The other two curves show that the RIFS becomes less (more)
when the numeric sign of μ1eff is negative (positive). As a final
check, we solve Eq. (6) numerically for a fundamental (N = 1)
soliton and find the reduced RIFS as shown in Fig. 2(d). Here
we must emphasize that a major approximation in variational
method is the preservation of pulse shape. Because of this
constraint we are forced to use N = 1 for which the changes
in the RIFS are relatively small. However, even for N = 1
the RIFS reduction is evident in Fig. 2(d). Moreover, the
variational predictions agree with the numerical data shown
in Fig. 2(c) by blue squares. We conclude that the variational
method qualitatively describes how the interplay between the
ZNW and accumulated chirp on the pulse limits the extent of
RIFS.

IV. HIGHER-ORDER SOLITONS AND DISPERSIVE WAVES

In this section we study how a higher-order soliton is
influenced by the ZDW and ZNW when both are present
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FIG. 3. Spectral (a) and temporal (b) evolution of the pulse over 3
m. Black and pink vertical lines in (a) mark the ZDW (1023 nm) and
the ZNW (1374 nm), respectively. (c) GVD and nonlinear profiles
of the PCF as a function of wavelength. (d) Spectrogram at 1.2 m
where DW initiates. (e) Phase-matched curve; a red circle indicates
the location of DW. (f) Spectrogram at 2 m.

simultaneously. To simulate the soliton dynamics inside the
adopted PCF, we solved Eqs. (1)–(5) numerically. Figure 3(c)
shows the wavelength dependence of β2 and γeff for a
silver-doped PCF with γ1eff ≈ −0.694 W−1 m−1 fs so that
ZNW is 1374 nm. For numerical simulations we expand the
frequency-dependent nonlinear parameter in a Taylor series
and retain the linear term, which is a reasonable approximation
in the spectral range of 800–1300 nm. We checked our results
by solving Eq. (2) in the frequency domain, and the results
were almost identical.

Numerical simulations are performed for the input pulse
shape, A(0,t) = A0sech( T

T0
) with T0 = 50 fs. The peak power

(P0 = A0
2) of 200 W is chosen such that N = |γ0eff |P0T0

2

|β2| ≈ 3
at the input wavelength of 880 nm. In this case as shown
in Fig. 3(c), the optical pulse encounters three distinct
propagation regions: Region (1) is solitonic (β2 > 0,γeff < 0),
region (2) (β2 < 0,γeff < 0) is nonsolitonic, and region (3) is
again solitonic with (β2 < 0,γeff > 0).

We launch the pulse in region 1 so that it begins its evolution
as a soliton. Figures 3(a) and 3(b) show the evolution of a
third-order soliton over a 3-m-long PCF whose dispersion and
nonlinear profiles are depicted in Fig. 3(c). As expected, the

pulse spectrum shifts initially toward the red side through
RIFS, but the presence of a ZDW (black vertical line) at
1023 nm suppresses RIFS. The dispersive wave radiation
emitted due to the presence of ZDW falls in region 2 near
1220 nm. Location of this radiation is obtained analytically
from the phase-matching argument [1,23] between the soliton
and dispersive wave using

∑
n�2

βn(ω − ωs)
n = [γoeff(ωs) + γ1eff(ω − ωs)]Ps. (15)

Here ωs is the soliton frequency at the onset of the radiation.
Position of this frequency is recorded from the spectrogram at
1.2 m length where the strong radiation initiates in Fig. 3(d).
Ps is the peak power of a fundamental soliton formed after
the fission process. Dispersion and the nonlinear parameters
appearing in Eq. (15) are at the soliton central frequency ωs .
The phase-matching curve is plotted in Fig. 3(e). The predicted
frequency of the dispersive wave matches well with simulation.

To understand the pulse dynamics in detail, we show a
spectrogram in Fig. 3(f) at a distance of 2 m. The formation
of two Raman solitons after the fission process is seen clearly.
The spectra of both Raman solitons are redshifted compared
to the input pulse. Their positions are shifted toward negative
delay because redshifted solitons travel faster compared to
the input pulse. As soon as the spectrum of the first Raman
soliton overlaps with the ZDW, a strong spectral peak appears
on the red side of the ZDW around 1220 nm [see Fig. 3(a)].
This peak represents radiation shed by the Raman soliton in
the nonsolitonic region [region 2 in Fig. 3(c)]. As it is well
known [1], spectral recoil from this DW suppresses the RIFS.
Exponential amplification of this DW seen in Fig. 3(a) agrees
with the results in [10] where a PCF with two ZDWs was used.
In Fig. 3 the ZNW is too far to play a significant role. However,
the configuration studied in Sec. II gives a ZNW of 1205 nm.
In Fig. 4 we show what happens when the ZNW is moved to
1205 nm while keeping all other parameters identical to those
in Fig. 3. From the spectral evolution seen in Fig. 4(a), it is
clear that the ZNW acts as a barrier. Both the bandwidth and
position of the DW change when the location of ZNW changes
from 1374 to 1205 nm. Now the strong radiation initiates at
a distance of 1.5 m compared to the previous case where it
initiated at 1.2 m. Also, the pulse spectrum hits the ZDW
further away with distance. The ZNW pushes the location of
DW from 1220 nm to nearly 1177 nm. Location of the DW is
cross-checked analytically using Eq. (15). It matches with the
simulation quite well. The rest of the pulse dynamics remains
nearly the same.

In order to understand how the width of region 2 in Fig. 4
affects soliton evolution, we shift the ZNW to 1135 nm in
Fig. 5, while keeping other parameters the same. From the
spectral evolution seen in Fig. 5(a), it is clear that the ZNW
acts as a barrier as the spectrum is mostly confined to regions 1
and 2. However, now two distinct DWs are visible in Figs. 5(a)
and 5(b). One DW is formed at a distance of 1.3 m and the other
around 1.8 m. The spectrogram in Fig. 5(d) shows a weak DW
in region 3 at its original wavelength near 1200 nm. Since this
DW lies in region 3, it is not amplified. Rather, a second, much
stronger DW is emitted in spectral region 2 at a distance of
1.8 m when the RIFS is suppressed at the ZDW boundary. The
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FIG. 4. Spectral (a) and temporal (b) evolution of the pulse over 3
m. Black and pink vertical lines in (a) mark the ZDW (1023 nm) and
the ZNW (1205 nm), respectively. (c) GVD and nonlinear profiles
of the PCF as a function of wavelength. (d) Spectrogram at 1.5 m.
(e) Phase-matching curve; a red circle indicates the wavelength of the
DW. (f) Spectrogram at 2 m.

cone-shaped region on the left in Fig. 5(b) shows how this DW
spreads, traveling faster than the input pulse. The phase-match
curve is plotted for the stronger DW in Fig. 5(e). Both the DWs
in Fig. 5(f) are clearly visible in the spectrogram at a distance
of 2 m. The dark blue wing corresponds to the weak one and
the turquoise region to the strong one.

In Fig. 6 we further reduce region 2 by shifting the
ZNW to 1073 nm so that its bandwidth is just 50 nm. All
other parameters remain the same. The spectral evolution in
Fig. 6(a) shows that a DW begins to form near 1180 nm
after 1.6 m, but its spectrum blueshifts toward the ZNW with
further propagation. At the same time, the RIFS is no longer
blocked by the ZDW, and the Raman soliton occupies region
2 where solitons are not supposed to form. To understand
the underlying physics, we show in Figs. 6(d)–6(f) three
spectrograms at a distance of 1.7, 2, and 3 m, respectively.
As expected, a weak DW forms at 1.7 m when the spectrum of
redshifted Raman soliton just overlaps the ZDW [Fig. 6(d)].
We also see that the Raman soliton has trapped this DW and
forces it to shift its spectrum through cross-phase modulation.
Indeed, at a distance of 2 m, the spectrogram in Fig. 6(e) shows
that the DW is dragged by the Raman soliton, whose spectrum
is now much wider and ranges from 850 to 1250 nm. At this

FIG. 5. Spectral (a) and temporal (b) evolution over 3 m. Black
and pink vertical lines in (a) mark the ZDW (1023 nm) and the ZNW
(1135 nm), respectively. (c) GVD and nonlinear profiles of the PCF.
(d) Spectrogram at 1.3 m. (e) Phase-matching curve; a red circle
indicates the location of DW. (f) Spectrogram at 2 m.

distance, most of the DW energy is at a wavelength near the
ZNW.

The spectrogram in Fig. 6(f) also shows that the Raman
soliton drags the DW with it even at larger distance (3 m), and
both are traveling faster than the original pulse. At this point,
the spectrum of DW lies within the broad soliton spectrum. The
important conclusion is that, when region 2 is made narrower
by bringing the ZNW closer to the ZDW, the Raman soliton
can tunnel through it, resulting in a much shorter soliton with
a very broad spectrum. At the same time, the soliton drags the
DW with it.

As a further check, we move the ZNW so close to the ZDW
that the two coincide; i.e., the bandwidth of region 2 has been
reduced to zero. The top row of Fig. 7 shows the spectral and
temporal evolutions of the pulse in this situation and should be
compared with the top row of Fig. 6. The temporal evolutions
are quite similar with the main difference that the DW, trapped
by the Raman soliton, is much less spread. Figure 7(a) shows
that the soliton spectrum is now confined to region 1 and does
not penetrate the ZNW barrier.

It also confirms from the spectrogram at 4 m fiber length in
Fig. 7(d), that mostly solitonic energy is not able to overcome
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FIG. 6. Spectral (a) and temporal (b) evolution over 3 m. Black
and pink vertical lines in (a) mark the ZDW (1023 nm) and the ZNW
(1073 nm), respectively. (c) GVD and nonlinear profiles of the PCF.
(d–f) are the spectrograms corresponding to 1.7, 2, and 3 m. Notice
that the DW blueshifts along the length of the fiber.

the barrier. In contrast, both DWs lie in region 3 beyond the
ZNW.

Finally, we change the dispersive properties of the PCF
such that all of the higher-order dispersion terms are negligible
(βn = 0 for n > 2). Clearly no ZDW exists for such a fiber.
The bottom row of Fig. 7 shows this case by keeping the ZNW
still at 1023 nm. From Fig. 7(e) it is evident that the RIFS is
reduced, and no DW exists in region 3 that lies beyond the
ZNW. Here ZNW plays the role of a true barrier that restricts
the RIFS. This case has already been discussed in Sec. III in
detail.

V. CONTROLLING DISPERSIVE WAVES
BY TAILORING THE ZNW

In this section we study how the ZNW controls the
frequency (or wavelength) of DWs. To see how the presence
of ZNW affects the generation of DWs, we plot the DW
wavelength λDW as a function of ZNW in Figs. 8(a) and 8(b)
both numerically using Eq. (2) and analytically using Eq. (15).
In both cases the analytical predictions match well with the
numerical results. From the data in Fig. 8(a) we see that λDW

follows the ZNW almost linearly in the 100-nm-wide spectral
region shown there. Physically speaking, the ZNW affects the

FIG. 7. Spectral (a) and temporal (b) evolution when the ZDW
and ZNW coincide at 1023 nm. (c,d) are the spectrograms at 2 and
4 m, respectively. Fiber dispersion is modified in (e,f) such that the
ZDW is absent but ZNW coincides at 1023 nm [pink vertical line in
(e)].

RIFS of solitons, and it is the Raman soliton that drags the DW
along with it. Note that, for a conventional PCF, λDW does not
change as long as dispersion of the fiber remains the same.

One may wonder how far the linear variation seen in
Fig. 8(a) persists. To answer this question, we varied the
ZNW over a much wider spectral range by modifying the Kerr
nonlinearity through the filling factor of silver nanoparticles,
and the results are shown in Fig. 8(b). The plot indicates that
λDW increases initially in a linear fashion, but soon saturates
and almost stops increasing after λZNW exceeds 2000 nm.
This saturation region is also predicted analytically [circles
in Fig. 8(b)]. The reason for this behavior is not difficult to
understand. If we push the ZNW far away from the input
wavelength, there is less chance that the spectrum of Raman
soliton will approach the ZNW. However, we found that if the
doped fiber has a negative constant value equal to γ0eff(ω0),
i.e., no ZNW exists, then λDW is close to 1275 nm, as indicated
by the horizontal line in Fig. 8(b). This suggests that the ZNW
affects the DW even when it is far from the input wavelength. It
seems that λDW will merge to actual DW wavelength (1275 nm)
asymptotically only in the limit λZNW → ∞. In Fig. 8(c) we
used the filling factor f for tailoring the location of the ZNW.
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FIG. 8. (a) Variation of DW wavelength with the ZNW both numerically (dot-dashed line) and analytically from phase-matched Eq. (15)
(circle). (b) Same variation over a wider range of ZNW. The horizontal line shows the wavelength of DW when ZNW does not exist.
(c) Variation of ZNW with the filling factor f. (d) Variation of spectral bandwidth width of DW with the ZNW. Bandwidth is defined as the
difference between the two points that are 10 dB below the peak intensity of the DW. The horizontal line shows the width of DW when ZNW
does not exist.

Figure 8(c) shows the variation of ZNW with the filling factor
in the range 0 < f < 0.1.

Since the spectral bandwidth of the DW is also affected
by the location of the ZNW (see Figs. 3–7), in Fig. 8(d) we
show the extent of this variation. Similar to the behavior seen in
Fig. 8(b) for the central wavelength of DW, the DW bandwidth
also increases rapidly initially with an increasing ZNW, but
then saturates at a value of about 70 nm. Indeed, the DW
bandwidth is quite large in Fig. 3(a) but is reduced considerably
as the ZNW moves close to ZDW in Figs. 4–7. Since energy of
the DW is also reduced under these conditions, we conclude
that the ZNW affects the emission of DWs if it moves closer
to the ZDW of a silver-doped PCF.

VI. CONCLUSIONS

We have studied, the role of the ZNW on the dynamics
of ultrashort pulses launched into a PCF whose core has
been doped with silver nanoparticles. The effective nonlinear
parameter γeff in such PCFs varies rapidly with wavelength,
vanishes at a specific wavelength (the ZNW), and then it
becomes negative. As a result, such PCFs acquire unique
nonlinear features, one of them being that solitons can exist in

the normal-dispersion region. Theoretically we have confirmed
that how this ZNW affects the pulse evolution is by creating
suppression to the Raman soliton. We studied numerically the
propagation of femtosecond pulses in the presence of ZDW
and ZNW and found a number of intriguing features. Our
PCF has a single ZDW, yet it shows generation of a DW
through suppression of RIFS. This DW encounters anomalous
dispersion but cannot form a soliton because it experiences a
negative nonlinearity. The simultaneous presence of a ZNW
and a ZDW, whose relative spacing can be controlled by
changing the filling factor of dopants, provides a fertile ground
where unique optical phenomena may occur. We found that
both the central wavelength and the bandwidth of the DW are
affected considerably when the ZNW is varied. Position of the
DW is verified analytically from the phase-matched equation
and it matches quite well with the simulation. In particular, the
ZNW behaves like a barrier that suppresses the RIFS and does
not allow redshifting of a Raman soliton beyond wavelengths
longer than the ZNW. We believe that the concept of ZNW
is fascinating in the context of nonlinear fiber optics and is
likely to open up promising avenues. We are in the process of
fabricating a PCF doped with silver nanoparticles so that we
can verify our theoretical predictions experimentally.
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