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We numerically investigate the interaction of two temporal solitons propagating in the two degenerate or nearly
degenerate modes of a multimode fiber. Similar to the case of single-mode fibers, the solitons are found to attract
or repel each other depending on their relative phase, even though they belong to two different modes of the fiber.
However, unlike the single-mode case, each soliton transfers some of its power to the other mode through inter-
modal four-wave mixing. Our results show that, in spite of this intermodal power transfer, each soliton keeps
propagating as a bimodal soliton and interacts with the other bimodal soliton as if they were propagating inside
a single-mode fiber. Indeed, the total power in the two modes evolves similar to the case of a single-mode fiber.
We study the impact of varying input parameters such as the relative phase, amplitude, and spacing of the two
input pulses used to excite the fundamental solitons and point out differences introduced by the intermodal
nature of the nonlinear effects. © 2016 Optical Society of America

OCIS codes: (190.4370) Nonlinear optics, fibers; (190.5530) Pulse propagation and temporal solitons.
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1. INTRODUCTION

The study of nonlinear effects in multimode fibers (MMFs) is
attracting considerable attention recently [1–18]. The renewed
interest in MMFs is related to their potential applications in
optical communications [19–23], image formation [24–26],
and construction of high-power fiber lasers [8,9,27]. One of
the important properties of nonlinear media is their ability
to support solitary waves, or temporal solitons that are formed
when the nonlinear effects exactly compensate for dispersion
in the media. Propagation and interaction of temporal solitons
inside a single-mode fiber (SMF) is well understood and is used
for a variety of applications including supercontinuum gener-
ation [28].

The formation and evolution of solitons in MMFs is still not
completely understood because of the complexity introduced by
the simultaneous presence of multiple modes. Mathematically,
a coupled set of nonlinear Schrödinger equations must be solved
[1]. The complexity arises from the intermodal nonlinear cou-
pling, which can lead to new and interesting nonlinear effects.
Multimode solitons, in which energy of a single pulse is spread
over several low-order modes, have been observed experimentally
and studied theoretically [7,8]. Since such pulses are confined in
both space and time, they are sometimes referred to as spatio-
temporal solitons. In an earlier study, we studied the case in
which fundamental solitons are launched simultaneously in sev-
eral modes of a few-mode fiber and looked for conditions where

multiple solitons can propagate over long distances in a stable fash-
ion [15]. Our study included differential group delay (DGD) and
found that, under some conditions, solitons can trap each other
and propagate with the same speed. Nonlinear coupling is gen-
erally stronger for modes that are degenerate or nearly degenerate.
Indeed, soliton trapping ceased to occur for a large DGD.

In our previous study, two solitons launched simultaneously
in two nearly degenerate modes overlapped temporally. In this
paper, we consider the case when solitons are launched in such a
way that they are separated initially with some overlap in the
tail region, which still allows weak nonlinear coupling. The sit-
uation is similar to the study of soliton interaction in SMFs
[29–39] with one main difference. In the case of SMFs, the
two solitons overlap completely spatially as they share the same
mode. In contrast, the two solitons propagate in different
modes of a MMF and overlap only partially. Mathematically,
we solve a set of coupled nonlinear equations numerically to
simulate pulse evolution in MMFs. Our results show that, sim-
ilar to the SMFs, soliton interaction in MMFs also depends on
the relative phase of the two solitons. However, the multimode
nature of the fiber also leads to several significant differences.

The paper is organized as follows. In Section 2 we present
the numerical model and discuss the parameters used in
numerical simulations. In Section 3 we focus on the case of
two degenerate modes and study the effect of changing input
parameters such as initial temporal separation of two solitons
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and their relative amplitudes and phases. In Section 4 we study
the more realistic case in which the two modes in which solitons
are propagating have slightly different propagation constants and
also exhibit some differential group delay. The main results are
summarized in Section 5.

2. NUMERICAL MODEL

We consider an ideal MMF and assume that its modal spatial
distributions Fm�x; y� and propagations constants βm are
known for all M modes (m � 1; 2;…; M ). In this study we
ignore linear coupling among modes that often occurs in prac-
tice due to random perturbations in the refractive index [3–5].
We also assume that optical pulses can be selectively launched
into any spatial mode of the MMF through a suitable mode-
multiplexing device. In the frequency domain, the total electric
field at any point z inside the fiber can be written as

E�x; y; z;ω� �
XM
m�1

�x̂Ãmx�z;ω� � ŷÃmy�z;ω��Fm�x; y�eiβp�ω�z ;

(1)

where Ãmx�z;ω� and Ãmy�z;ω� are the spectral amplitudes of
the x- and y-polarized components of mth mode, respectively.
Maxwell’s equations can be used to find an equation that
describes evolution of these components inside a MMF
[1–3,5]. We simplify this equation by not including the higher-
order nonlinear (Raman and shock) terms as well as dispersion
terms of order three and higher. We also convert it to the time
domain and normalize it using the so-called soliton units. The
resulting equation for the pth mode can be written as [15]
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where up � Ap∕
ffiffiffiffiffi
Pr

p
, Ap � �Apx; Apy �T is a Jones vector, and

Apx is the slowly varying envelope of the x-polarized pulse propa-
gating in pth spatial mode of the fiber. The superscripts T and H
stand for the transpose and Hermitian conjugate of a matrix. The
power Pr used to normalize the amplitude is the peak power
needed to form a fundamental soliton in a specific (reference)
mode of the fiber.

In deriving Eq. (2), the propagation constant βp of each
mode was expanded in a Taylor series as

βp�ω� � β0p � β1p�ω − ω0� � β2p�ω − ω0�2∕2�…; (3)

where βkp � �dkβp∕dωk�j
ω�ω0

. The parameters d 1p and d 2p
are defined as

d 1p � �β1p − β1r�Ldr∕T 0; d 2p � β2p∕jβ2r j: (4)

In soliton units ξ � z∕Ldr is the distance normalized
using the dispersion length defined as Ldr � T 2

0∕jβ2r j and
τ � �t − β1rz�∕T 0 is the reduced time, where T 0 is related
to the width of input pulses. The phase mismatch on the right
side of Eq. (2) is given byΔϕlmnp � �β0m � β0n − β0l − β0p�Ldr.

The nonlinear effects in Eq. (2) are included through the
soliton order Nr defined as N 2

r � γPrT 2
0∕jβ2r j, where γ �

n2ω0∕�cAeff
1 � is the nonlinear parameter of the fiber with

the effective area Aeff
1 of the fundamental mode and n2 is

the Kerr parameter. The strength of intermodal nonlinear cou-
pling is governed by the dimensionless quantity f lmnp given by

f lmnp � Aeff
1

ZZ
F�
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where Fm�x; y� is the spatial distribution of the mth mode, as-
sumed to be normalized such that

RR jFmj2�x; y�dxdy � 1.
We apply Eq. (2) to a graded-index fiber supporting three

spatial modes, referred to as LP01, LP11a and LP11b, and label
them with m � 1; 2; 3, respectively. It is well known that the
LP11a and LP11b modes are almost degenerate in an optical fiber
and become degenerate in the weakly guiding approximation.
We first assume that this approximation holds and use
β2 � β3. In this paper we study the case when input pulses
are launched in these two modes with enough peak powers
to form a fundamental soliton at wavelength λ0. Using mode
2 as the reference mode and assuming no power in the mode 1,
Eq. (2) leads to the following set of coupled equations:
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These equations still include both polarizations for each
mode. The first-order time derivatives do not appear in them
because the group velocity is the same for all four modes
(d 12 � d 13 � 0). We solve them numerically with the well-
known split-step Fourier method [28] using the parameters
given in Table 1. We even include mode 1 in our simulations
to capture any potential transfer of energy to this initially un-
excited mode through nonlinear mechanisms, such as inter-
modal four-wave mixing (FWM) and modulation instability
induced by cross-phase modulation [28]. It is important to
stress that the numerical model is valid for any MMF, including
a highly multimodal graded-index fiber. Hence, our results and
conclusions should apply qualitatively even for such fibers as
long as only two nearly degenerate modes of the fiber are being
initially excited.

Table 1. Parameters Used for Numerical Modeling

Parameter Group Values

Nonlinearity γ � 1.77 W−1∕km
f 1111 � 1, f 2222 � f 3333 � 1∕2
f 2233 � f 3322 � f 2323 � 1∕4
f 2332 � f 3232 � f 3223 � 1∕4

Dispersion β22 � β23 � 24.3 ps2∕km
Pulse T 0 � 1 ps, Pr � 18.38 W, λ0 � 1540 nm
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Before considering the MMF case we briefly review the ex-
pected behavior when two temporally separated solitons inter-
act nonlinearly inside a SMF. If the initial separation is not too
large, the tails of the two solitons overlap partially and they
either attract or repel each other depending on their relative
phase. In particular, two in-phase identical solitons attract each
other until they collide at a distance known as the collision dis-
tance. After that, they cross over and recover their initial sep-
aration, and the whole procedure repeats in a periodic fashion.
Even small changes in the solitons’ relative amplitudes or phases
affect this scenario drastically, and the solitons may repel each
other if such changes are large enough.

3. SOLITON INTERACTION IN TWO FIRST-
ORDER DEGENERATE MODES

In this section we focus on the LP11a and LP11b modes of a
MMF and assume that they are fully degenerate (β2 � β3).
We also assume that both solitons remain linearly polarized
along the x direction as they propagate inside a MMF and
set u2y � u3y � 0. We further assume that input pulses have
the same widths and peak powers and choose N 2 � N 3 � 1
with

u2x�0;τ�� sech�τ−q0�; u3x�0;τ�� sech�τ�q0�eiθ; (7)

where θ is relative phase shift. If T s is initial temporal separa-
tion of the two pulses launched to excite the two solitons,
2q0 � T s∕T 0. If q0 is not too large, the tails of the two solitons
will partially overlap, and the two solitons will interact non-
linearly, even though they belong to different fiber modes,
because their spatial modes also partially overlap.

A. Interaction of Two In-Phase Solitons

We choose T 0 � 1 ps, q0 � 4, and θ � 0, representing two
in-phase fundamental solitons separated by 8 ps initially. The
dispersion length (Ld ) is about 40 m in this case. The first two
panels of Fig. 1 show the evolution of mode powers over 100Ld ,
while the third panel shows the total power in the two modes.
Similar to the case of SMFs, two solitons attract each other
(through intermodal nonlinear coupling) and move toward
each other, even though they belong to two different modes
of the fiber. However, unlike the single-mode case, we find that
each soliton transfers some of its power to the other mode as the
two solitons approach each other. Eventually the two solitons
overlap completely, forming an intense bimodal pulse at a dis-
tance of about 75Ld . At this point, each pulse is considerably
narrower than the input pulse and its spectrum is also wider.
With further propagation, both pulses cross over and separate
from each other, almost returning to their original separation
after 150Ld . However, we stress that the input conditions are
never recovered fully because some energy remains in the origi-
nal time slot.

Intermodal soliton interaction in Fig. 1 is similar to that
occurring in SMFs with some obvious differences. The major
difference is that there is an intermodal exchange of power dur-
ing the initial attraction phase. The underlying physical mecha-
nism behind power transfer is the intermodal FWM, governed
by the last term in Eqs. (6a) and (6b), which causes a part of the
energy from one mode to be transferred to the other mode. If

we plot the powers in Fig. 1 on a logarithmic scale, we note that
power transfer begins right after pulses are launched but it be-
comes a noticeable fraction of the peak power in Fig. 1 only
after 30LD or so.

Figure 2 shows the evolution of the power in mode 2 in the
range 60–85Ld that includes the point at which two solitons
“collide” and overlap temporally; power variations in mode 3
are just a mirror image of Fig. 2 around τ � 0. The smaller
peak on the left is due to the intermodal power transfer.
One can see that it grows in amplitude, while the other on
the right weakens, because of a continuous transfer of power
to the other mode. The reason why this peak also moves toward
the center is that it is trapped by the soliton in mode 3 through
intermodal cross-phase modulation. Even after the point of col-
lision, once the pulses cross over and start to separate tempo-
rally, a small portion of the energy in mode 2 stays trapped with
the pulse propagating in mode 3 (and vice versa). However, if
we add the powers in the two modes, the interaction appears to
be virtually indistinguishable from the case of SMFs (last panel
in Fig. 1). This is surprising but also reassuring since total en-
ergy of the two solitons must be conserved in the absence of
losses. It is not obvious why the two-mode interaction should
mimic the single-mode case when intensities (rather than

Fig. 1. Interaction of two temporally separated solitons launched in
degenerate modes. (Left) Evolution of power in individual modes.
(Right) Sum of powers in both modes. The color bar shows optical
power on a linear scale.

Fig. 2. Magnified view of the LP11a mode power in a range that
includes the point of collision. The peak initially on the left is due
to intermodal power transfer from the LP11b mode.
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amplitudes) are added together. The similarity between the
SMF case and the degenerate modes of a MMF has also been
noted in the strong mode-coupling regime [3].

One way to understand the features seen in Figs. 1 and 2 is in
terms of the concept of a multimode soliton [7,8] whose energy
is distributed over several modes that are locked with each other
and propagate as one unit as a “spatiotemporal” soliton. In this
picture, even though a part of each soliton’s energy is transferred
to the other degenerate mode, both parts remain part of the same
“bimodal” soliton. Since the modes are assumed to be perfectly
degenerate, the exchange of power due to intermodal FWM is
equal in both directions and hence the total energy in each mode
is conserved. Intermodal FWM appears to be distinct from intra-
channel FWM studied in the context of telecommunication sys-
tems [40,41] because of the absence of ghost pulses.

B. Impact of Relative Phases and Amplitudes
of Solitons

First, we study how the intermodal soliton interaction depends
on the relative phase shift θ. As mentioned earlier, soliton inter-
action is quite sensitive to θ in the case of SMFs. For this reason,
we expect qualitative changes to occur with changes in θ even in
MMFs. Figure 3 shows the effect of changing θ while keeping
the same value q0 � 4 for the initial temporal separation. For
θ � π∕8 (top row) and π∕4 (middle row), the solitons still ex-
perience intermodal attraction initially, but they separate from

each other and never appear to collide. Indeed, the last panels
where total power in the two modes is plotted exhibit features
that are almost identical to the single-mode case.

However, when we look at the mode powers in each mode
individually, we find new remarkable features. Intermodal power
transfer similar to that seen in Fig. 1 still occurs and it does depend
to some extent on the exact value of θ. Around 75LD, the distance
where solitons crossed over in the in-phase case, we observe that,
despite the absence of complete temporal overlap of the two sol-
itons, the entire mode power has shifted temporally to the other
side. This feature is hard to understand. One possibility is that
intermodal FWM becomes so strong that it transfers the entire
power in mode 2 to mode 3 (and vice versa). A second possibility
is to invoke the formation of multimode solitons and only con-
sider the sum of powers in the two modes as a relevant quantity.

Another remarkable feature in Fig. 3 is the temporal asym-
metry seen clearly in the last panel of the top row. Notice how the
trace on the left is more intense than on the right after the two
pulses separate from each other. Thus, even if we interpret the
soliton interaction in terms of multimode solitons, intermodal
FWM is not symmetric when θ ≠ 0. More power is transferred
to the soliton on the left, making it more intense. This asym-
metry is also present in individual mode powers. If we look care-
fully, the direction of power transfer is not uniform, which leads
to one mode having more energy compared to the other mode.
In other words, the energy in each mode is no longer conserved,
although the total energy remains conserved.

We have verified that this asymmetry occurs even in the case
of single-mode fibers and is related to the sign of the phase
difference θ. Indeed, when we change the sign such that
θ � −π∕8, we find that the direction of power transfer is re-
versed such that the soliton on the right is more intense than on
the left, in contrast to what is seen in the top panel of Fig. 3.
This means that not only the magnitude of the relative phase
but also its sign plays a role in deciding which mode is preferred
by intermodal FWM.

The bottom row in Fig. 3 shows the case of θ � π∕2. For this
specific value of θ both solitons appear to propagate, without any
interaction or intermodal FWM, as if the other soliton did not
even exist. This behavior is quite different than what is observed
in SMFs. In that case, solitons experience repulsion and move
away from each other when θ � π∕2. The physical reason
why the multimode case is so different for this specific value
of θ is not understood at this time. One factor that may contrib-
ute to this difference is the partial spatial overlap between the two
modes compared to the SMF case where the overlap is 100%.

We also change q0 by varying the initial temporal separation
between the pulses. The first plot in Fig. 4 shows how the spac-
ing between the two solitons changes as they propagate down the
fiber for three values of θ while choosing q0 � 4. The spacing
goes to zero only for θ � 0 at a certain distance where the two
solitons overlap fully (or collide). In the case of θ � 0 the quali-
tative behavior remains identical to that seen in Fig. 1 for other
values of q0 except that the two solitons collide after a shorter
distance for smaller values of q0. This dependence on q0 is shown
in the second plot in Fig. 4. Similar to the single-mode case, the
collision distance depends exponentially on q0, as verified by an
exponential fit to the numerical data (dashed line).

Fig. 3. Effects of initial phase difference on intermodal soliton in-
teraction: (top row) θ � π∕8, (middle row) θ � π∕4, (bottom row)
θ � π∕2. Power is color-coded on a linear scale.
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In the single-mode case, nonlinear interaction also depends
on the relative amplitudes of two solitons [28]. We studied the
amplitude dependence in the two-mode case by changing the
peak powers that affect the soliton ordersN 2 andN 3 associated
with the two pulses. To emphasize the bimodal nature of the
solitons, Fig. 5 shows how the total power in the two modes
varies over 100Ld for the case of N 2 � 1 and N 3 � 1.1 after
choosing q0 � 4 and θ � 0. In contrast to the equal-amplitude
case shown in Fig. 1, the two bimodal solitons never collide and
exhibit an oscillatory behavior with the distance. These results
indicate that the amplitudes and phase of the two input pulses
can thus be used to control the interaction process in MMFs.

One may ask whether the periodic evolution of two in-phase
solitons over long distances predicted in the case of SMFs holds
in the case of MMFs. To answer this question, we reduce the
initial separation 2q0 between the two solitons so that they col-
lide at a much shorter distance and propagate them long
enough to record several collisions. Figure 6 shows the results
by plotting the evolution of bimodal solitons for q0 � 2 and 3.
Clearly, intermodal interaction of two in-phase solitons inside a
MMF is far from being periodic. As seen in Fig. 6, successive
collisions occur after increasingly shorter distances. This
breakdown in periodicity is certainly a consequence of the

intermodal FWM among the modes. Because of this phenome-
non, after the first collision, each mode has two pulses propa-
gating through it, one of which is the original soliton launched
into that mode and the other forms due to energy transfer from
the other mode. As a result, each pulse experiences not only
intermodal nonlinear coupling, but also intramodal nonlinear
coupling, and the initial launch conditions are not reproduced
after the first collision. It is thus not surprising that the distan-
ces at which the second and later collisions occur are different
than that of the first collision.

4. CASE OF TWO NEARLY DEGENERATE
MODES

In this section we investigate how the intermodal interaction
changes when the two modes are not exactly degenerate
(β2 ≠ β3). One expects the results of Section 3 to hold quali-
tatively for relatively small deviations, and the question is how
much deviations are tolerable. Since β2 is not expected to
change much for small deviations, we answer this question nu-
merically by introducing two parameters defined as Δβ0 �
β02 − β03 and Δβ1 � β12 − β13, the latter representing the
DGD between the two nearly degenerate modes.

Figure 7(a) shows the evolution of individual mode powers
and total bimodal power over 300Ld under conditions identical
to those in Fig. 1, except that Δβ0 now has a finite value of
0.1 m−1. The bimodal picture shows an initial attraction phase
leading to a near collision of the two bimodal solitons around
75Ld after which they separate from each other. The individual
mode powers, however, show even more drastic changes caused
by slightly different propagation constants. After the first
collision, each mode repetitively transfers power to the other
mode forth and back, but the two modes do not behave in
a symmetric fashion. Indeed, as seen in Fig. 7(a) the LP11a
mode becomes more intense compared to the other mode after
the attraction phase. Similar to the case of initial phase differ-
ence θ studied in Section 3, the sign of Δβ0 determines which
mode is preferred. When we reverse the sign and make Δβ0
negative, it is the LP11b mode that becomes more intense,
and the total bimodal power exhibits a pattern that is the mirror
image of the one seen in Fig. 7(a).

Fig. 4. (left) Spacing between the two solitons as a function of propa-
gation distance for three values of θ. (right) Dependence of collision
distance on the initial pulse separation for two in-phase solitons. The
dashed line shows an exponential fit to the numerical data.

Fig. 5. Intermodal interaction of two in-phase solitons of the same
width with different amplitudes (N 2 � 1, N 3 � 1.1). Total power in
both modes is plotted as a function of distance.

Fig. 6. Breakdown of periodicity inMMFs in collisions of two in-phase
solitons. Total power in the two degenerate modes is plotted as a function
of distance for q0 � 2 and 3 with color-coding on a linear scale.
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To quantify the tolerable values of Δβ0, Fig. 7(b) shows the
evolution of total bimodal power over 200Ld for three values of
Δβ0 ranging from 0.01 to 10 m−1 using the same parameters
used in Fig. 7(a). For the smallest value of Δβ0, the initial
behavior is similar to the case of degenerate modes shown in
Fig. 1. The two solitons attract each other and collide after
almost the same distance as in Fig. 1. But even for this small
value of Δβ0, the behavior after the first collision is different
since the two bimodal solitons repel each other and do not
collide again. Further increasing Δβ0 leads to weaker nonlinear
coupling between the modes, and even the initial collision
ceases to occur. After Δβ0 exceeds 5 m−1, the two bimodal
solitons propagate independently as if they were isolated from
each other. We thus conclude that the intermodal collision of
two in-phase solitons requires the ratio jΔβ0j∕β02 to be below
10−7, making it unlikely that it can be observed in practical
fibers.

Finally, we study the impact of modal DGD on soliton
interaction. Figure 8 shows soliton interaction for different
values of Δβ1. The modes are assumed to have the same propa-
gation constant. Although this situation is not realized in prac-
tice, it is simulated to isolate the effects of DGD on intermodal
interaction of solitons. In Fig. 8(a), we show the behavior of
solitons in individual modes as well as that of two bimodal
solitons for Δβ1 � 3 ps∕km. As seen there, the individual
solitons change their group velocity, one of them speeding
up while the other slows down, under the influence of nonlinear

coupling. We also observe power being transferred repeatedly
from one mode to the other. The last panel shows how the
bimodal solitons attract each other after they have adjusted their
speeds and nearly collide with each other. After the collision, one
of the solitons becomes more intense. Again, the sign of Δβ1
determines which mode is preferred.

Figure 8(b) shows the bimodal picture by summing the
powers in the two modes for three values of Δβ1 ranging from
1 to 5 ps/km. For a small value of DGD, the solitons exhibit
a behavior quite similar to that seen in Fig. 1 (no DGD).
More specifically, they adjust their speeds quickly to travel at
the same speed and collide after some distance because of an
attraction between two bimodal in-phase solitons. In this sce-
nario, the two solitons qualitatively exhibit interaction behavior
similar to the no-DGD case, except that the distance at which
they collide is longer than that in Fig. 1. As the magnitude of
Δβ1 increases, the nonlinear coupling keeps getting weaker, and
the collision distance keeps increasing. After a certain value, the
nonlinear coupling weakens enough that the solitons no longer
undergo collision. For DGD values beyond 10 ps/km, the two
solitons do not interact with each other as the pulses cease to
have any temporal overlap soon after they are launched.

5. CONCLUSIONS

We studied numerically the interaction of two temporal soli-
tons propagating in the two degenerate or nearly degenerate
modes of a MMF. Similar to the case of a SMF, the solitons
are found to attract or repel each other depending on their

Fig. 7. Interaction of two in-phase solitons propagating in nearly
degenerate modes with parameters identical to those used in Fig. 1.
(a) Evolution of individual mode powers and total bimodal power over
300Ld for Δβ0 � 0.1 m−1. (b) Total power in both modes for three
values of Δβ0.

Fig. 8. Impact of DGD on the interaction of two in-phase solitons
launched with q0 � 4. (a) Evolution of individual mode powers and
total bimodal power over 300Ld for Δβ1 � 3 ps∕km. (b) Total power
in both modes for three different values of DGD.
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relative phase, even though they belong to two different modes
of the fiber. However, unlike the single-mode case, each soliton
transfers some of its power to the other mode through inter-
modal FWM. Our results show that, in spite of this intermodal
power transfer, each soliton keeps propagating as a bimodal sol-
iton and interacts with the other bimodal soliton as if they were
propagating inside a SMF. Indeed, when the modes are fully
degenerate, the total power in the two modes evolves in a fash-
ion identical to the case of a SMF.

In the degenerate case, we studied in detail the impact of
varying input parameters, such as the relative phase, amplitude,
and spacing of the two input pulses used to excite the funda-
mental solitons. In all cases, bimodal solitons form because of
intermodal power transfer through FWM that interact with
each other and exhibit features similar to those occurring in
a SMF with one important difference. In the multimode case,
the evolution of bimodal solitons does not coincide with the
single-mode case over long distances. Even two identical in-
phase solitons do not exhibit a periodic behavior such that they
collide again and again after the same distance. Rather, we
found that the successive collisions occur after shorter and
shorter distances.

In the nearly degenerate case, we studied how small changes
in the modal propagation constants, or group velocities,
affected the intermodal interaction between two solitons.
We found that the difference Δβ0 between the modal propa-
gation constants should be a small fraction of the average value
(<10−7 for the qualitative behavior to remain identical to the
degenerate case). In the case of DGD, Δβ1 values of<1 ps∕km
do not affect the intermodal interaction qualitatively but the
two solitons cease to interact when Δβ1 exceeds 10 ps/km.

One may ask whether the intermodal interaction of optical
pulses studied in this paper can be observed using realistic
fibers. Simple calculations show that the value of Δβ0 between
any two adjacent modes of a commercially available graded-
index MMF (core diameter >50 μm) is at least 2 orders of
magnitude larger than the tolerable value of Δβ0 found here.
However, three-mode fibers designed with a core diameter just
large enough that the two nearly degenerate first-order modes
exist, in addition to the fundamental mode, are a potential can-
didate, provided their core–cladding index difference is small
enough that the weakly guiding approximation holds. Both
Δβ0 and Δβ1 for such fibers are expected to be small enough
that the theoretical predictions of this paper should be verifi-
able. Another possibility is to employ two orthogonally polar-
ized modes belonging to the same spatial mode of a fiber
designed with low birefringence. We have verified that all fea-
tures of the intermodal interaction of optical pulses studied in
this paper occur even in this situation.

It is important to stress that the effects described here are
solely dependent on the nonlinear coupling among modes
of an ideal fiber since we have ignored all sources of linear cou-
pling between the mode pairs. In practice, linear coupling
among fiber modes owing to random refractive-index pertur-
bations is hard to avoid [3–5]. Since degenerate modes are
likely to have a much shorter coupling length compared to
the dispersion and nonlinear length scales (strong coupling
regime), some of the effects described here may be hard to

observe. As the dispersion and nonlinear lengths can be reduced
considerably by using ultrashort pulses with high peak powers,
their use together with MMFs exhibiting weak linear coupling
is recommended for experimental verification. Our study is
useful for a fundamental understanding of the formation, evo-
lution, and interaction of optical solitons in few-mode fibers.
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