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Temporal total internal reflection (TIR), in analogy to the conventional TIR of an optical beam at a dielectric
interface, is the total reflection of an optical pulse inside a dispersive medium at a temporal boundary across which
the refractive index changes. A pair of such boundaries separated in time acts as the temporal analog of planar
dielectric waveguides. We study the propagation of optical pulses inside such temporal waveguides, both ana-
lytically and numerically, and show that the waveguide supports a finite number of temporal modes. We also
discuss how a single-mode temporal waveguide can be created in practice. In contrast with the spatial case, the
confinement can occur even when the central region has a lower refractive index. © 2016 Optical Society of America

OCIS codes: (320.5550) Pulses; (060.5530) Pulse propagation and temporal solitons.
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1. INTRODUCTION

The fundamental concept of total internal reflection (TIR) at a
dielectric interface has been known since 1840 and is discussed
thoroughly in optics textbooks [1,2]. It has been used to make
optical waveguides that confine an optical beam to the vicinity
of a central core region whose refractive index is chosen to be
higher than the surrounding cladding regions [3,4]. A multi-
tude of applications have been found for waveguides, notably
in the optical fibers used extensively for designing modern tele-
communication systems [5].

The temporal analog of time reflection and refraction was
first explored in the context of photon acceleration in plasmas

]6–8 ] and occurs when an optical pulse approaches a moving
temporal interface separating two regions with different refrac-
tive indices. This process has since been studied in several dif-
ferent contexts [9–16]. In the context of nonlinear optics, rapid
rise (or fall) in the intensity of a pump pulse creates a moving
temporal boundary, and the spectrum of a probe pulse shifts in
such a way that the probe appears to being reflected from the
temporal boundary. This nonlinear phenomenon has recently
been explored in the contexts of analog gravity [17–19] and
optical solitons [20–22].

Although optical nonlinearities are often used to create tem-
poral boundaries, temporal TIR is a general concept, and any
technique that shifts the refractive index in time can be used
for realizing it [16,17,22]. Here we show that two temporal
boundaries that satisfy the temporal TIR condition can be used
to make a temporal analog of an optical waveguide, which
confines the pulse to a central time window inside which the
refractive index is different from the outer regions. A similar

arrangement was first examined as a temporal support structure
for reducing soliton jitter [23]. More recently, this idea has been
explored for bouncing an optical pulse between the two boun-
daries [19,24–26]. In this work we explore, both analytically
and numerically, the propagation of optical pulses inside a tem-
poral waveguide and address the existence of temporal modes
supported by such waveguides.

The paper is organized as follows. In Section 2, we discuss
the conditions under which the temporal analog of TIR can
occur. We use these results in Section 3 to form a temporal
waveguide in which a short pulse bounces back and forth be-
tween the two temporal boundaries. Analogous to conventional
spatial waveguides, a temporal waveguide supports a finite
number of modes. This topic is discussed in Section 4. As
shown in Section 5, single-mode temporal waveguides can be
designed such that a pulse trapped inside it maintains its width
even in the presence of group-velocity dispersion (GVD). The
main results are summarized in Section 6.

2. TEMPORAL TIR

To simplify the following discussion, we consider an optical
pulse in the form of a plane wave propagating inside a medium
with the dispersion relation β�ω�, where β � n�ω�ω∕c is the
propagation constant at a specific frequency ω and n�ω� is the
refractive index at that frequency. When the pulse contains
multiple optical cycles (>10), its spectral width is short enough
that β�ω� can be Taylor-expanded around its central frequency
ω0 as

β�ω� � β0 � β1�ω − ω0� �
β2
2
�ω − ω0�2; (1)
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where β1 is the inverse of the group velocity, and β2 is the GVD
parameter. The higher-order terms in this Taylor expansion can
be neglected for sufficiently wide pulses.

If the refractive index changes across a temporal boundary
located at T � T B, β�ω� will be different on each side of
the boundary. In general, the refractive index boundary may be
moving, and we consider such a situation in this paper. For a
temporal boundary that is moving with the speed vB, we work
in a reference frame in which the boundary is stationary. Using
the coordinate transformation t � T − z∕vB, where T is the
time in the laboratory frame, the dispersion relation in the
moving frame becomes

β 0�ω� � β0 � Δβ1�ω − ω0� �
β2
2
�ω − ω0�2 � βB�t�; (2)

where Δβ1 � β1 − 1∕vB is a measure of the optical pulse’s
speed relative to the boundary. The quantity βB�t� �
k0Δn�t� (k0 � ω0∕c) represents the change in the propagation
constant caused by the time-dependent index change Δn�t�.
For a temporal boundary located at t � T B, βB takes on differ-
ent values for t > T B and t < T B. For simplicity, we assume
that βB � 0 for t < T B. In this case, the dispersion curve shifts
upward if Δn > 0 for t > T B, causing different propagation
constants in the two temporal regions.

Using Maxwell’s equations together with the dispersion re-
lation in Eq. (2) and making the slowly varying envelope
approximation, we obtain [27]

∂A
∂z

� Δβ1
∂A
∂t

� iβ2
2

∂2A
∂t2

� iβB�t�A; (3)

where A�z; t� is the pulse envelope at a distance z. To simplify
our discussion, we have taken βB�t� to be a step function lo-
cated at t � T B. In practice, a temporal boundary will have a
finite rise time that may also change during propagation owing
to dispersion. The exact form of βB�t� depends on the physical
mechanism used to produce the temporal boundary. This issue
is discussed further in Section 6.

We solve Eq. (3) numerically with the standard split-step
Fourier method used commonly for nonlinear problems
[27]. Figures 1(a) and 1(b) show the temporal and spectral evo-
lutions, respectively, of a Gaussian input pulse, A�0; t� �
A0 exp�−t2∕�2T 2

0��, using parameter values T 0 � 1.5 ps,
T B � 5 ps, Δβ1 � 0.667 ps∕m, β2 � 0.05 ps2∕m, and
βB � 5.6 m−1. The value of βB used here requires an index
change of Δn < 10−6 for the temporal boundary at a wave-
length of 1 μm. The dispersion length, defined as LD �
T 2

0∕jβ2j, is 45 m for these parameter values, resulting in a pulse
broadening of only 5.4% over a distance of 15 m [27]. We
stress that our choice of parameters is arbitrary. The numerical
results and the conclusion of this paper apply for distances rang-
ing from <1 cm to >1 km with a proper choice of the pulse
width and other parameters.

The temporal evolution in Fig. 1(a) shows that the pulse
behavior across a temporal boundary is strikingly similar to
an optical beam undergoing TIR at a spatial boundary. We em-
phasize that the pulse keeps moving in the forward direction,
but its speed changes in such a way that it appears to recede
from the temporal boundary. The spectral evolution in
Fig. 1(b) shows that TIR is accompanied by a large spectral

shift that is responsible for this speed change. The spectral
changes can occur because a temporal boundary breaks sym-
metry in time. As a result, photon momentum in the moving
frame (or β 0) must be conserved while photon energy (or ω)
may change. In contrast, energy is conserved in the spatial case
while the momentum undergoes a change.

Momentum conservation is imposed at the central fre-
quency ω0 by setting β 0�ω� � β0 in the dispersion relation
given in Eq. (2) to find the reflected and transmitted frequen-
cies respectively as

ωr � ω0 − 2
Δβ1
β2

; (4)

ωt � ωi �
Δβ1
β2

�
−1�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 −

2βBβ2
�Δβ1�2

s �
: (5)

From Eq. (5), we see that the transmitted frequency becomes
complex and loses its physical meaning when the following TIR
condition is satisfied: ffiffiffiffiffiffiffiffiffiffiffiffi

2βBβ2
p

> Δβ1: (6)

Fig. 1. Evolution of pulse (a) shape and (b) spectrum in the presence
of a temporal boundary (dashed white line) for βB � 5.6 m−1.
(c) Dispersion curves for t < T B (dashed blue) and t > T B (solid or-
ange). The red-shaded region shows the spectral extent of the input
pulse and the corresponding range of the propagation constants.
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Figure 1(c) shows dispersion curves for t < T B (dashed blue)
and t > T B (solid orange). In the case of TIR, the solid curve in
Fig. 1(c) is shifted enough that momentum conservation can-
not be achieved, so the pulse must be completely reflected. This
is the temporal analog of the well-known phenomenon of total
internal reflection. Since the GVD parameter β2 can take either
positive or negative values, temporal TIR exhibits much richer
behavior than its spatial counterpart. In particular, it can occur
even when the refractive index is increased across the boundary
(βB > 0), provided β2 is also positive. The well-known space-
time analogy shows that the case of anomalous dispersion
(β2 < 0) corresponds to the usual diffraction in space, so the
refractive index must decrease across the boundary for TIR to
occur [28].

3. EXAMPLE OF A TEMPORAL WAVEGUIDE

We now ask what happens when an optical pulse is located
between two temporal boundaries that both move at the same
speed and satisfy the TIR condition given in Eq. (6). If the
group velocity of the pulse differs from that of the temporal
boundaries, we expect that the pulse will travel toward one of
the temporal boundaries and be reflected completely. Since the
spectrum of the reflected pulse will be shifted as indicated in
Eq. (4), it will move away from that first boundary with a new
group velocity. However, unlike the single boundary case, the
pulse will now arrive at the second temporal boundary, where it
will once again experience TIR, but this time its center fre-
quency will shift back to the initial value. This process should
repeat itself, trapping the pulse between the two temporal
boundaries. This behavior is analogous to that of an optical
beam inside two spatial boundaries that form the core of a con-
ventional waveguide such that the beam undergoes TIR multi-
ple times as it travels through the waveguide. Because of this
analogy, we refer to the configuration with two temporal boun-
daries as a temporal waveguide. The trapping effect has been
previously examined in the context of soliton fission [24,29],
and we stress that the temporal waveguide does not require op-
tical nonlinearities.

To explore the behavior of an optical pulse inside such a
temporal waveguide, we launch a Gaussian pulse (T 0 � 1.5 ps)
with its peak located in the middle of a 10 ps wide temporal
waveguide and study how the pulse shape and spectrum evolve
along a 100 m long optical fiber by solving Eq. (3) numerically.
Figure 2 shows the temporal and spectral evolutions using the
same parameters as Fig. 1, i.e., Δβ1 � 0.667 ps∕m, β2 �
0.05 ps2∕m, and βB � 5.6 m−1 for jtj > 5 ps but 0 for
jtj < 5 ps. Notice that with this choice of βB, the refractive in-
dex is smaller inside the core of our temporal waveguide.

Figure 2 shows how the optical pulse bounces back and
forth between the two temporal boundaries, where it is com-
pletely reflected as predicted by the TIR condition in Eq. (6).
The reflection at the top boundary is accompanied by the fre-
quency shift of Δνr � −4.24 THz (see Fig. 1), which changes
the relative group velocity of the pulse so that it now moves
toward the lower temporal boundary located at t � −5 ps.
When the pulse is totally reflected at this boundary, its center
frequency is shifted back to its original value, and it begins
to travel at its original group velocity toward the top temporal

boundary. This process repeats multiple times with further
propagation. Temporal fringes near the two boundaries are a
consequence of the spectral shifts required for TIR to occur.
Indeed, the 0.23 ps fringe spacing correlates perfectly with
the 4.24 THz spectral shift.

One may ask whether the 1.5 ps pulse can remain confined
within the 10 ps time window indefinitely, while maintaining
its original shape and size. In Fig. 2(a), we see that the pulse
broadens noticeably after 50 m. Broadening occurs because the
dispersion length is 45 m for the parameter values used here.
We cannot make dispersion negligible because TIR does not
occur in its absence. The GVD also causes certain wavelengths
to reflect sooner, leading to the sloped appearance of the spec-
trum during propagation, as seen in Fig. 2(b). The predicted
behavior is analogous to that observed in spatial multimode
waveguides designed with a core whose size is much larger than
the beam width. Since the 10 ps core of our temporal wave-
guide is much wider than the 1.5 ps pulse, multiple modes are
excited, which interfere with each other as the pulse propagates
down the medium. This suggests that we should analyze the
optical modes supported by temporal waveguides.

4. MODES OF A TEMPORAL WAVEGUIDE

The spatial modes of planar waveguides have been extensively
studied [3,4]. By definition, the shape of an individual mode
does not change during propagation. To develop an analogous
theory for the modes of a temporal waveguide, we seek solu-
tions to Eq. (3) that do not change with propagation except

Fig. 2. Evolution of the (a) shape and (b) spectrum of a Gaussian
pulse (T 0 � 1.5 ps) inside a 10 ps wide temporal waveguide. Dashed
horizontal lines show the temporal boundaries that form the wave-
guide core.
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for a phase shift. Therefore, we assume a modal solution of
the form

A�z; t� � M �t� exp�i�K z − Ωt��; (7)

where M�t� is the temporal shape of the mode, K is the rate at
which the mode accumulates phase during propagation, and Ω
is a frequency shift such that ω0 �Ω becomes the new central
frequency of the mode. There is no spatial analog of this fre-
quency shift. It is needed in the temporal case because the first
derivative in Eq. (3) is related to the speed at which the pulse
approaches a temporal boundary.

Substituting Eq. (7) into Eq. (3) and equating the real and
imaginary parts, we obtain

�Δβ1 � β2Ω�
dM
dt

� 0; (8)

d 2M
dt2

� 2

β2

�
K −ΩΔβ1 −

β2Ω2

2
− βB

�
M � 0: (9)

From Eq. (8), we find that the frequency shift Ω must be
chosen as Ω � −Δβ1∕β2. This corresponds to a pulse that will
propagate at the same speed as the two temporal boundaries.
A spectral shift is necessary if the mode were to remain confined
with the temporal waveguide.

Using this value for Δβ1 to replace Ω in Eq. (9), the mode
shape is governed by the simple equation

d 2M
dt2

� 2

β2

�
K � �Δβ1�2

2β2
− βB

�
M � 0: (10)

To be as general as possible, we assume that βB takes different
values for jtj < T B, t > T B, and t < −T B. We label these
three values as βB0, βB1, and βB2, respectively. The temporal
waveguide becomes symmetric when βB1 � βB2.

To solve Eq. (10), we follow a procedure analogous to that
used for spatial planar waveguides [3] and write its solution in
the form

M �t� �
8<
:

B1 exp�−Ω1�t − T B�� t > T B;
A cos�Ω0t − ϕ� jtj < T B;

B2 exp�Ω2�t � T B�� t < −T B;
(11)

where the parameters Ω0, Ω1, and Ω2 are defined respectively as

Ω2
0 �

2K
β2

�
�
Δβ1
β2

�
2

−
2βB0
β2

; (12)

Ω2
1 �

2βB1
β2

−
2K
β2

−

�
Δβ1
β2

�
2

; (13)

Ω2
2 �

2βB2
β2

−
K
β2

−

�
Δβ1
β2

�
2

: (14)

The four constants B1, B2, A, and ϕ can be related by imposing
the boundary conditions that both M �t� and its derivative
dM∕dt be continuous across the two temporal interfaces. The
boundary conditions lead to the following two relations:

tan�Ω0T B − ϕ� �
Ω1

Ω0

; tan�Ω0T B � ϕ� � Ω2

Ω0

: (15)

These equations can be used to find the eigenvalue equation in
the form

2Ω0T B � mπ � tan−1
�
Ω1

Ω0

�
� tan−1

�
Ω2

Ω0

�
; (16)

where the integer m � �0; 1; 2;…� denotes the mode order.
For each value of m, the eigenvalue equation can be solved to
find the value of K for that specific mode at that value of Δβ1.
We stress that the value of K changes with Δβ1 such that
K � �Δβ1∕2β2�2 is the same for a givenmode of the waveguide.
In analogy with spatial waveguides, we call the m � 0 mode the
fundamental temporal mode of the waveguide.

For simplicity, we focus on symmetric waveguides for which
the index jump is identical at both temporal boundaries so that
Ω1 � Ω2. In this case, the eigenvalue equation takes a much
simpler form:

Ω1 � Ω0 tan�Ω0T B � mπ∕2�: (17)

We also introduce a dimensionless parameter as [3]

V � T B

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Ω2

0 �Ω2
1

q
�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2�βB1 − βB0�T 2

B

β2

s
: (18)

It plays an important role in determining the number of modes
supported by the temporal waveguide. In complete analogy
with the spatial case, the waveguide supports m modes when
V < �m� 1�π∕2. In particular, a temporal waveguide will
support only the fundamental m � 0 mode if it is designed
such that V < π∕2.

Consider the temporal waveguide used for Fig. 2. Using the
known parameter values in Eq. (18), we find that this wave-
guide has V � 74.8 and supports 48 modes. The temporal
and spectral evolutions of several modes �m � 0; 2; 10� of this
waveguide are shown in Fig. 3. As expected, the modes propa-
gate without changing their shape or spectrum. In analogy with
a spatial waveguide, the mth-order mode has m� 1 distinct
peaks inside the temporal window of the waveguide.

The new feature in the temporal case is different spectral
shifts associated with different modes. The fundamental mode
propagates with a central frequency shifted by Ω∕�2π� �
2.12 THz, which matches the frequency shift predicted by
Ω � −Δβ1∕β2. The spectra of all of the higher-order modes
(m > 0) exhibit two intense peaks located at approximately
�Ω�Ω0�∕�2π�. The two spectral peaks beat together to form
the temporal oscillations of the cosine term in Eq. (11), result-
ing in the multiple-peaked structure of the higher-order modes
(m > 0). For the highest-order mode supported by the wave-
guide, the value of Ω0 is the highest frequency offset that still
satisfies the TIR condition at both of the temporal boundaries.
In addition to the two main spectral peaks, all modes have
several lower-intensity spectral peaks that are separated by
Δν � 1∕�2T B�. These spectral peaks are caused by an inter-
ference between the evanescent tails of the mode, which are
separated in time by 2T B. For less confined modes, these
oscillations become more intense as more of the pulse energy
is contained in the evanescent tails.
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5. SINGLE-MODE TEMPORAL WAVEGUIDE

Spatial waveguides supporting a single mode have found a
variety of applications. It is therefore useful to consider single-
mode temporal waveguides. As discussed earlier, only a single
mode will propagate if the temporal waveguide is designed with
V < π∕2. From Eq. (18), we see that this condition can be
satisfied by either reducing the width of the waveguide (param-
eter T B) or by decreasing the magnitude of the index change at
the temporal boundaries. Such a waveguide will support only
them � 0mode with a temporal shape similar to that shown in
Fig. 3(a).

An important question is how an optical pulse with a shape
different from that of the fundamental mode behaves when
launched into such a single-mode waveguide. Figure 4 shows
the simulated behavior for a Gaussian input pulse with T 0 �
3.5 ps inside a 10 ps wide symmetric temporal waveguide de-
signed with V � 1.414. The pulse is launched with an initial
differential group delay of Δβ1 � 10 ps∕km. From Fig. 4(a),
we see that the pulse initially bounces off a few times at the two
temporal boundaries through TIR, losing a considerable por-
tion of its energy into the “cladding” region (outside of dashed
boundaries) in the form of dispersive waves [27]. However, it
eventually stops oscillating and acquires the shape of the fun-
damental mode supported by the waveguide. This behavior is
analogous to that which occurs when an optical beam traveling
at an angle is launched into a spatial waveguide.

The spectral evolution seen in Fig. 4(b) appears strange and
has a “chevron” shape that does not match the spectrum of the
fundamental mode. This apparent discrepancy occurs because
the total electric field at any location contains both the guided
and unguided light at different frequencies. As a result of their
interference, the simulated spectrum acquires a fringe-like
structure. Numerically, it is easy to filter out the unguided com-
ponents. Figure 4(c) shows the resulting spectrum, which ex-
hibits the expected behavior. More specifically, the spectrum

oscillates initially in a manner discussed in Section 3 but even-
tually settles down to take the shape associated with the guided
mode, with its center frequency shifted by just the right
amount (about 32 GHz).

We stress that the shift of the central frequency is not caused
by the entire pulse spectrum shifting to this value ofΩ. Figure 5
shows the early evolution of the spectrum in Fig. 4 in greater
detail. As this figure shows, a portion of the input pulse spec-
trum overlaps with the spectrum of the single-mode waveguide
and is guided. From this perspective, the efficiency with which
the pulse couples into the fundamental mode of the temporal
waveguide can be improved by launching a pulse at a frequency
shifted by Ω. This is analogous to aligning the propagation axis
of an optical beam with the axis of an optical fiber to improve
the coupling efficiency.

The reshaping of the optical pulse occurs for any pulse that
is launched into a single-mode temporal waveguide, regardless
of its temporal duration or shape. Figures 6(a)–6(c) show the
evolution of three different Gaussian pulses with T 0 � 2.5 ps,
T 0 � 5 ps, and T 0 � 10 ps, respectively. Each pulse was
launched into the same single-mode temporal waveguide used
for Fig. 4, but its spectrum was centered at the shifted fre-
quency Ω to improve coupling into the fundamental temporal
mode. The 2.5 ps pulse quickly broadens because of GVD,
filling the waveguide in less than 400 m. The pulse then loses
considerable energy into the jtj > T B regions as it reshapes it-
self into the fundamental mode of the waveguide. In contrast,
the 10 ps pulse in Fig. 6(c) narrows down as it is initially much
wider than the waveguide. Narrowing occurs because the por-
tion of the pulse outside of the guiding region is mostly shed off
through dispersion. The portion lying inside the central core
region reshapes itself until it once again matches the shape of
the fundamental mode. The 5 ps pulse in Fig. 6(b) is just wide
enough that most of its energy lies inside the temporal wave-
guide. As a result, much less energy is shed into the dispersive

Fig. 3. Evolution of shapes (top row) and spectra (bottom row) for modes with [(a), (d)]m � 0; [(b), (e)]m � 2; and [(c), (f )]m � 10 for a 10 ps
wide temporal waveguide with V � 74.8.
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wave as it acquires the shape of the fundamental mode. Clearly,
this is the optimum situation if the objective is to couple most
of the pulse energy inside a single-mode temporal waveguide.
This is analogous to improving the coupling efficiency into

optical fibers by matching the optical beam to the mode diam-
eter and numerical aperture of an optical fiber.

One may ask how the optical phase varies across the pulse. It
follows from Eq. (10) that M �t� is a real quantity, indicating a
constant phase. However, we should not forget the phase factor
in Eq. (7). If the pulse is launched with its center frequency at
ω0, the phase across the guided pulse would vary linearly in
time. The slope of this temporal phase corresponds to the fre-
quency shift Ω. However, if we shift the center frequency of the
incident pulse by Ω, the phase becomes flat in time. This is
what occurred in the case of Fig. 6. Since the phase of the wave-
guide mode is uniform in time, we may say that the pulse is
phase locked. We should stress that the phase is not constant
since it increases with z at a rate K � β2Ω2∕2; however, it in-
creases uniformly for the entire pulse duration.

6. CONCLUSIONS

We have shown that the analog of TIR at a temporal boundary
can be used to make temporal waveguides. Using numerical

Fig. 5. Early evolution of the spectrum for the guided optical pulse
from Fig. 4.

Fig. 6. Evolution of the shape of Gaussian pulses with
(a) T 0 � 2.5 ps, (b) T 0 � 5 ps, and (c) T 0 � 10 ps into the same
waveguide used in Fig. 4. Dashed horizontal lines show the temporal
boundaries that form the waveguide core.

Fig. 4. Evolution of the (a) shape and (b) spectrum of a Gaussian
pulse with T 0 � 3.5 ps inside a 10 ps wide single-mode temporal
waveguide designed with βB � 2 km−1. The spectral evolution of only
the guided pulse is shown in (c). Dashed horizontal lines show the
temporal boundaries that form the waveguide core.
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simulations, we have shown that a temporal waveguide can be
produced by two copropagating temporal boundaries that sat-
isfy the condition for temporal total internal reflection. We
were able to solve the underlying equations analytically to ob-
tain the modes of a temporal waveguide. These modes are
analogous to those of a spatial waveguide except for a crucial
frequency shift. In particular, we introduced a dimensionless
parameter V whose value determines the number of modes
supported by that waveguide. The single-mode condition
V < π∕2 is then identical to that found for spatial waveguides.

We used numerical solutions to show that the modes propa-
gate stably over long distances. Coupling into a single-mode
waveguide was studied by launching Gaussian pulses of differ-
ent widths. We discussed in detail the dynamics of how the
launched pulse reshapes its shape and spectrum to evolve into
the fundamental mode, shedding energy as dispersive waves in
the process. We also showed that pulses that more closely
match the shape and spectrum of the fundamental mode couple
more efficiently into the temporal waveguide.

Although this paper focused on the simple case of a step-
index boundary (zero rise time), most practical temporal boun-
daries will experience dispersion during propagation, leading
to changes in the boundary rise time. We have verified num-
erically that temporal boundaries with a finite rise time also
exhibit temporal modes with shapes that depend on the mag-
nitude of rise time. When we launched a mode of a step-index
boundary into a waveguide with a nonzero rise time (taken to
be 5% of the waveguide width for each boundary), the pulses
adjusted their shape and evolved toward the mode of the new
waveguide. Furthermore, the behavior of a single-mode wave-
guide remained largely unchanged for rise times as large as 30%
of the waveguide width, although the shape of the fundamental
mode changed continuously with increasing rise time of the
boundary. The precise evolution of a temporal boundary will
be determined by the exact physical mechanism used to gen-
erate the boundary. For example, when an intense pulse propa-
gating as an optical soliton is used to create a temporal
boundary through the nonlinear phenomenon of cross-phase
modulation, the temporal boundary created by it will have a
finite rise time that is unaffected by dispersion. This leads
us to conclude that the results obtained in this paper would
apply qualitatively to temporal boundaries with a finite rise
time as long as its magnitude is a small fraction (below
10%) of the waveguide’s temporal window.

Experimental confirmation of temporal TIR and the tem-
poral waveguide will be of great interest. Our estimates show
that the change in refractive index across the temporal boun-
dary can be lower than Δn � 10−6 for producing temporal
TIR. The main issue is controlling the relative speed of the
pulse with respect to the temporal boundary. A traveling-wave
electro-optic phase modulator driven by copropagating micro-
wave pulses could be used to produce the two moving temporal
boundaries. Alternatively, a pump-probe configuration using a
rectangular pump pulse could be used to produce the temporal
boundaries through cross-phase modulation but will require
pump pulses of high energies. In this case, the probe pulse
would be launched in the middle of the pump with the two
edges of the pump forming the waveguide boundaries.
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