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Abstract: A promising design of Ge11.5As24Se64.5 nanowires for
supercontinuum generation is proposed through numerical simulations. It
can be used for generating a supercontinuum with 1300-nm bandwidth.
The dispersion parameters upto eighth-order are obtained by calculating
the effective mode index with the finite-element method. We have inves-
tigated dispersion curves for a number of nanowire geometries. Through
dispersion engineering and by varying dimensions of the nanowires we
have identified a promising structure that shows possibility of realizing
a wideband supercontinuum. We have found significant variations in its
bandwidth with the inclusion of higher-order dispersion coefficients and
indicated the possibility of obtaining spurious results if the adequate number
of dispersion coefficients is not considered. To confirm the accuracy of
dispersion coefficients obtained through numerical computations, we have
shown that a data-fitting procedure based on the Taylor series expansion
provides good agreement with the actual group velocity dispersion curve
obtained by using a full-vectorial finite-element mode-solver.
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1. Introduction

Supercontinuum (SC) generation using nonlinear effects in optical waveguides has been a topic
of considerable interest in nonlinear optics over the last decade as its use provides an opti-
cal source with properties such as large bandwidth, brightness, high coherence, and potential
compactness. Broadband supercontinuum sources have found many applications in the field of
spectroscopy, bio-imaging, pulse compression, optical coherence tomography, and high pre-
cision frequency metrology [1]. Highly nonlinear waveguides in combination with a mode-
locked laser are used to produce such a source through the process called SC generation. SC
generation relies on the interplay of various nonlinear effects such as self-phase modulation,
cross-phase modulation, soliton dynamics, Raman scattering, and four-wave mixing, and it re-
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quires an optical waveguide with suitably designed group velocity dispersion (GVD), including
a zero-dispersion wavelength (ZDW) close to the pump wavelength [2]. To generate a SC with a
large bandwidth ranging from ultra-violet (UV) to mid-infrared (MIR) regions with high bright-
ness, numerous efforts have focused on fused silica fibers. However, the intrinsic transmission
window of fused silica makes SC expansion beyond 2.2 µm a challenging task [3]. Silicon (Si)
offers a high Kerr nonlinearity and is attractive for generating SC using Slicon-on-insulator
(SOI) nanowires [4-6]. Although Si has low losses in the near infrared, it has some disadvan-
tage in the telecommunication band centered at 1550 nm where it is affected by two-photon
absorption (TPA) and free-carrier absorption (FCA), both of which clamp spectral broadening
of SC and limit the achievable bandwidth [7].

In recent years chalcogenide glasses are emerging as promising nonlinear materials in the in-
frared (IR) region extending from 1 to 5 µm. Such glasses have a number of unique properties
which make them attractive for fabricating planar optical waveguides, including low nonlinear
absorption, low TPA, no FCA, and fast response time because of the absence of free-carrier
effects [8-11]. Their high refractive index (2-3) and broad infrared transparency (0.6-15 µm)
[12] make them attractive for waveguide fabrication in the field of telecommunications, opti-
cal sensing, and MIR sciences. A major advantage of the chalcogenide glasses is their large
ultra-fast third-order nonlinearity. These materials are highly suitable not only for nonlinear
applications but also for making compact active and passive devices in the MIR region [13-15].
Moreover a specific chalcogenide glass Ge11.5As24Se64.5 has excellent film-forming properties
and high thermal and optical stability under intense illumination [16]. Motivated by such use-
ful properties, interest has grown in designing and optimizing planar waveguides made from
Ge11.5As24Se64.5 glass for SC generation, parametric amplification, wavelength conversion,
and signal regeneration [17-20].

In this paper, numerical simulations are used for demonstrating broadband SC generation in
a highly nonlinear nanowire made from Ge11.5As24Se64.5 chalcogenide glass. The propagation
loss (α) and Kerr nonlinear refractive index (n2) were taken to be 3.2 dB/cm and 8.6× 10−18

m2/W, respectively for the fundamental transverse electric (TE) mode [14]. Various geome-
tries of chalcogenide nanowires with optimized waveguide dimensions are investigated to tai-
lor dispersion and to obtain the ZDW close to the pump wavelength. We carry out simulations
for different promising nanowire structures and proposed an optimized design for SC genera-
tion among these structures. Using our optimized nanowire, a broadband SC can be generated
extending from 1200 nm to around 2500 nm by employing 1550 nm pump pulses of 50 fs
(FWHM) duration with 25 W peak power. In all simulations the waveguide length is 18 mm.
We also analyzed the effect of higher-order dispersion coefficients, upto eighth-order (β8) term,
on SC and found significant changes to occur in the SC bandwidth when higher-order disper-
sion terms are included in numerical simulations.

2. Theory

The structure of the Ge11.5As24Se64.5 nanowire is shown in Fig. 1 as an inset. The wavelength-
dependent linear refractive index n of Ge11.5As24Se64.5 glass over the entire wavelength range
used in the simulation are given by the Sellmeier equation [16],

n2(λ ) = 1+
5.78525λ 2

λ 2−0.287952 +
0.39705λ 2

λ 2−30.393382 , (1)

Here λ is the wavelength in micrometers.
Dispersion of the waveguide plays an important role in determining the supercontinuum

spectrum. Ideally dispersion near the pump wavelength should be small in magnitude as well
as relatively flat in nature [26]. Chalcogenide glasses generally have smaller material disper-
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sion than silicon. However, to obtain the ZDW close to the pump wavelength, relatively larger
waveguide dispersion is required to offset the material dispersion, resulting in a waveguide that
supports more than one mode. To reduce higher-order modes, a polymer cladding with a re-
fractive index value of 1.51 is often used in place of air cladding [13] as it reduces the index
contrast between the core and cladding of the nanowire. We use a finite element (FE) based
mode-solver to calculate the effective index (neff) as a function of frequency, which is sub-
sequently used for numerically calculating GVD as well as all other higher-order dispersion
parameters. Spectral broadening of a SC mainly depends on these dispersion parameters and
the nonlinear coefficient, γ , which in turn depends on the nonlinear refractive index of the ma-
terial, n2 and effective mode area of the waveguide. Optimized mode area, Aeff can be obtained
by using our FE mode-solver [23] and using this Aeff a relatively large nonlinear co-efficient
can be realized [3].

The FE approach used here is based on the vector-H-field formulation, since it is one of
the most accurate and numerically efficient approaches to obtain the modal field profiles and
mode propagation constants β (ω) of various quasi-TE and quasi-TM modes. The full-vectorial
formulation is based on the minimization of the full H-field energy functional [23],

ω
2 =

∫∫ [
(∇×H)∗.ε̂−1(∇×H)+ p(∇.H)∗(∇.H)

]
dxdy∫∫

H∗.µ̂Hdxdy
, (2)

where H is the full-vectorial magnetic field, * denotes a complex conjugate and transpose, ω2

is the eigenvalue (ω being the angular frequency), p is a weighting factor for the penalty term
to eliminate spurious modes and ε̂ and µ̂ are the permittivity and permeability tensors, respec-
tively. The two-dimensional cross-section of the waveguide is discretized by using a large num-
ber of triangular elements. All three components of the magnetic fields can be represented as
piece-wise polynomials within the elements. With a proper choice of waveguide discretization
we can accurately calculate the energy functional by integrating it over each element.

To study supercontiuum generation, simulations were performed using a generalized nonlin-
ear Schrödinger equation (GNLSE) for the slowly varying envelope of the pulse [4,13]:

∂

∂ z
A(z,T ) =−α

2
A+ ∑

m≥2

im+1

m!
βm

∂ mA
∂T m + i

(
γ + i

α2

2Ae f f

)(
1+

i
ω0

∂

∂T

)
×
(

A(z,T )
∫

∞

−∞

R(T ) | A(z,T −T ′) |2 dT ′
)
, (3)

where A is the electrical field amplitude, α is the linear propagation loss of the waveguide,
βm(ω) = dmβ

dωm

∣∣
ω=ω0

(m≥ 2) is the mth order dispersion parameter, and T = t− z
vg

is the retarded

time frame moving with the group velocity vg =
1

β1(ω0)
at the pump frequency ω0. The nonlinear

coefficient is γ = n2ω0
cAeff(ω0)

, where n2 is the nonlinear refractive index and c is the speed of light
in vacuum, Aeff(ω0) is the effective area of the mode at the pump frequency ω0, and α2 =
9.3× 10−14 m/W is the two-photon absorption coefficient [13]. Finally the material response
function includes both the instantaneous electronic response (Kerr type) and the delayed Raman
response and has the form

R(t) = (1− fR)δ (t)+ fRhR(t), (4)

hR(t) =
τ2

1 + τ2
2

τ1τ2
2

exp
(
− t

τ2

)
sin
(

t
τ1

)
, (5)

where fR = 0.031, τ1 = 15.5 fs, and τ2 = 230.5 fs for our Chalcogenide material [22,26,28].
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Fig. 1. Variation of neff of the fundamental quasi-TE mode with the mesh size and improve-
ment realized with the Aitken extrapolation technique. Geometry of nanowire is shown as
an inset.

3. Numerical results

Before performing supercontinuum simulations, accuracy of the finite-element modal solutions
is tested. It is well-known that accuracy of numerical solutions depends on several discretiza-
tion parameters. For our optical waveguides, solution accuracy depends on the finite number
of elements used to characterize it. From the FE modal solution we have obtained the propa-
gation constant β (ω) which was used for calculating neff = λβ (ω)/2π of the waveguide. As
the dispersion of waveguide depends on neff which varies with λ , the accuracy of GVD also
required testing as well as all higher-order dispersion coefficients calculated from it. Variation
of the effective index, neff with the number of mesh divisions N used is shown in Fig. 1 by a
solid black line for the fundamental quasi-TE mode of a waveguide designed with the width and
thickness, W = 700 nm, H = 500 nm and the operating wavelength of 1550 nm. The same value
of N was used in both transverse directions. It can be observed that, as N increases, neff first
increases rapidly and then reaches a constant value asymptotically. It should be noted that when
a 100× 100 mesh is used neff is accurate to 3rd decimal place, and the accuracy is increased
to 4th decimal place when mesh size is increased to 500×500. A powerful extrapolation tech-
nique [21] was used to test the accuracy of modal solution for this nanowire structure. Aitken’s
procedure [21] extrapolates from three successive values of neff with a fixed geometric mesh
division ratio in both the transverse dimensions of a waveguide:

n∞
eff = neff(r+1)−

[neff(r+1)−neff(r)]
2

neff(r+1)−2neff(r)+neff(r−1)
, (6)

We have plotted the extrapolated values of n∞
eff in Fig. 1 by a red-dashed line. Using Eq. (6), for

instance, we calculate Aitken’s value from three neff values of 2.20901, 2.21377, and 2.21503
for N = 50, 100, and 200, respectively. From these three values, the extrapolated more accurate
value is 2.21548. It is possible to get similar accuracy without using Aitken’s extrapolation, but
it would take a mesh finer than 1000×1000 to get it. Figure 1 clearly illustrates the convergence
of raw FEM results and the advantage of using an extrapolation technique.

The GVD parameter, D(λ ) = −λ

c
d2neff
dλ 2 (ps/nm/km), is calculated numerically from the ef-

fective index obtained with FE method. Accuracy of the resulting curve is shown in Fig. 2
for three different mesh sizes for the same nanowire structure with W = 700 nm, H = 500
nm. The resulting dispersion curves nearly overlap since they are related to changes in the neff

#224834 - $15.00 USD Received 13 Oct 2014; revised 18 Nov 2014; accepted 22 Nov 2014; published 5 Dec 2014 
(C) 2014 OSA 15 Dec 2014 | Vol. 22, No. 25 | DOI:10.1364/OE.22.031029 | OPTICS EXPRESS 31033 



Fig. 2. GVD for the fundamental quasi-TE mode as a function of wavelength for the
naowire structure with W = 700 nm and H = 500 nm. The black-solid, red-dashed, and
blue-dotted correspond to a mesh size of 200×200, 300×300, and 600×600, respectively.

values rather than their absolute values. At the 1550 nm wavelength, GVD for three different
meshes are calculated as 29.60 ps/nm/km, 30.49 ps/nm/km, and 30.94 ps/nm/km, respectively.
The small differences among these dispersion values do not result in significant changes in
the SC spectrum. However, we have observed through numerical simulations that the third and
higher-order dispersion parameters have significant effect on the SC generation. In the follow-
ing numerical results we have used an appropriate mesh size and we are confident about the
accuracy of numerically simulated results.

Next, to realize a ZDW close to the pump wavelength and to make dispersion slightly anoma-
lous at this pump wavelength, we vary the dimension of Ge11.5As24Se64.5 nanowires. In one set,
thickness of the waveguide is kept constant at 500 nm and its width is varied as shown in Fig.
3(a). This figure shows dispersion curves having two ZDWs, with anomalous dispersion be-
tween these two ZDWs but both the peak value and slope of these curves increases as the width
is increased. It can be observed from this figure that the 1st ZDW point with a positive slope
shifts from left to right, and the 2nd ZDW with a negative slope also shift towards right but with
a larger margin when W is increased. In this case the overall anomalous range also increases.
Figure 3(a) clearly illustrates that the ZDW of the waveguide can be realized close to the pump
wavelength by varying the width of that waveguide. In the other set of dispersion curves shown
in Fig. 3(b), thickness of the waveguide is varied while keeping its width constant at 700 nm.
In this case, ZDWs shift in the opposite directions, but the long one shifts more than the shorter
one. It can be observed that the peak value of D increases when H is increased. Figures 3(a) and
3(b) indicate that the lower ZDW of a waveguide can be made to fall near the pump wavelength
by adjusting the waveguide dimensions W and H.

To study SC generation one can solve Eq. (1) either in the time domain or in the frequency
domain. We have tested both approaches, and they yield similar results. In this work, we have
used time-domain formulation for our simulations using a split-step Fourier method, as this
is the most commonly reported approach. Initially a waveguide with W = 700 nm and H =
500 nm is considered for SC generation. This nanowire structure is selected because the GVD
of this structure is nearly flat near the pump wavelength of 1550 nm. Higher-order dispersion
coefficients βm (m ≥ 2) upto eighth-order (β2 to β8) were calculated numerically from the
dispersion curve. Our aim here is to study the effect of higher-order dispersion coefficients
βm (m ≥ 2) terms on the supercontinuum bandwidth, and how the numerically simulated SC
spectrum is modified with the inclusion of successive higher-order dispersion terms. Using the
FE mode-solver, we obtain Aeff = 0.28 µm2 for our nanowire and this Aeff yields γ = 123
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Fig. 3. GVD curves for the fundamental quasi-TE mode calculated from the neff values for
(a) different W and same H and (b) different H and same W. Vertical dotted line represents
the wavelength λ = 1550 nm.

/W/m. For numerical simulations a TE polarized 50 fs FWHM secant pulse is launched with
the peak power of 25 W. We include wavelength independent propagation loss of 3.2 dB/cm
[13] for the 18 mm long nanowire. Simulations have been carried out to test the effect of each
higher-order dispersion (β3 to β8) terms successively and the generated spectra are shown in
Fig. 4. With the addition of third-order dispersion term, the SC broadens from 850 nm to 3550
nm (black curve) resulting in a -60 dB bandwidth of around 2700 nm. The equivalent -20 dB
bandwidth for this case is 1500 nm. However, after the addition of the fourth and other higher-
order dispersion coefficients, the SC spectrum becomes narrower. Spectral narrowing converges
slowly with the further addition of higher-order dispersion terms, and the spectra with βm upto
7th and 8th terms are almost identical. For our nanowire structure the final supercontinuum
extends from 1200 nm to 2100 nm.

Another set of results for the same nanowire structure (W = 700 nm and H = 500 nm) is
shown in Fig. 5. As the pump lies in the anomalous GVD regime, SC generation is mainly
dominated by the soliton fission process. For the soliton order, N = 8.13, soliton fission occurs
at a distance of Lfiss = 2.6 mm, mainly because of perturbation induced by third and higher-
order dispersions. To understand the spectrum broadening process we have considered terms

#224834 - $15.00 USD Received 13 Oct 2014; revised 18 Nov 2014; accepted 22 Nov 2014; published 5 Dec 2014 
(C) 2014 OSA 15 Dec 2014 | Vol. 22, No. 25 | DOI:10.1364/OE.22.031029 | OPTICS EXPRESS 31035 



Fig. 4. Changes in SC spectra with the successive addition of higher-order dispersion terms
for the nanowire of dimensions W = 700 nm and H = 500 nm.

upto β3, β4, and β8 separately in this figure. When only third-order dispersion is added, multi-
ple fundamental solitons are produced after the fission, whose spectra shift toward the longer
wavelength side (stoke-side) because of intrapulse Raman scattering, producing multiple spec-
tral peaks in the spectrum. In addition, non-solitonic radiation (NSR) in the form of dispersive
wave is also generated but its spectrum lies on the shorter wavelength side (anti-stokes) of the
input spectrum. When even-order dispersions such as β4, β8 terms are added, it is well-known
that NSR is generated on both sides of the input spectrum. It is evident from Fig. 5 that the
final SC depends strongly on how many dispersion terms are included, and one should include
dispersion as accurately as possible to avoid spurious results.

To show sensitivity to the waveguide geometry, we consider another nanowire structure with

Fig. 5. Temporal intensity (top), spectral density (middle) and spectrogram (bottom) in-
cluding terms upto β3 (left column), upto β4 (middle column), and upto β8 (right column).
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Fig. 6. Same as Fig. 4 except for a different nanowire with W = 775 nm and H = 500 nm.

W = 775 nm and H = 500 nm, having its ZDW closer to the pump wavelength compared to the
previous structure. For this waveguide, with Aeff = 0.31 µm2 obtained by the FE technique, γ =
114 /W/m. After evaluating various dispersion coefficients from dispersion curve and keeping
all other parameters the same, we have performed numerical simulations for dispersion terms
upto β8 successively. Figure 6 shows the resulting SC spectra and should be compared to Fig.
4. Unlike the previous structure interestingly we observe for this nanowire that SC spectrum
gets broaden significantly when the β4 term is added. However, after the addition of fifth and
higher-order dispersion terms, SC spectrum again starts to become narrower. In this case, the
SC extends from 1200 nm to 2400 nm when third-order dispersion in included, yielding a
bandwidth of 1200 nm (1100 nm bandwidth at -20 dB). However, when fourth-order dispersion
is added, the SC spectrum broadens upto 4600 nm generating bandwidth of 3400 nm (2950 nm

Fig. 7. Same as Fig. 5 except for a different nanowire with W = 775 nm and H = 500 nm.
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Fig. 8. Dispersion curve obtained with FE method (black) fitted the Taylor expansion upto
β8 for the nanowire W = 775 nm and H = 500 nm.

bandwidth at -20 dB). On the other hand, with the addition of fifth and higher-order dispersion
terms, spectrum becomes narrower. With the addition of β8 term, the SC converges and has
a final bandwidth of 1200 nm (1150 nm bandwidth at -20 dB). Spectrum obtained with upto
β7 term is not shown in Fig. 6 as this is almost identical to that of upto the β8 term. The
spectrograms and density plots corresponding to Fig. 6 are shown in Fig. 7. For the soliton
order, N = 10.74 and the soliton fission length, Lfiss = 3.8 mm, the same phenomena occur after
the addition of third-order dispersion. When the β4 term is added, the Raman induced frequency
shift (RIFS) reduces gradually as solitons spectra shift towards the second ZDW located at
1865 nm. Since β3 is positive near the first ZDW but becomes negative near the second ZDW,
the change in sign of β3 changes the frequency associated with NSR generated during soliton
fission and the RIFS is completely suppressed near the second ZDW. This phenomena has been
called the spectral recoil effect [24,25]. According to energy conservation, as RIFS stops at the
second ZDW, because of the spectral recoil effect soliton loses its energy to NSR that is red-
shifted and lies in the infrared region beyond the second ZDW. The red-shifted NSR is mainly
responsible for generating much larger SC bandwidth after addition of the β4 term. This is
also evident from spectral density and spectrogram shown in Figs. 7(e) and 7(h), respectively.
This large SC bandwidth reduces considerably after addition of β5 and higher-order terms.
Once again, we note that a premature truncation of the Taylor series can lead to spurious and
misleading results.

It should be noted that the dispersion of a waveguide is a strong function of the operating
wavelength, and its nature determines the extent of the SC generation. However, Eq. (3), uses
βm values at the central frequency ω0. By taking adequate number of higher-order terms one
hopes to mimic the actual wavelength dependent D(λ ), but when a limited number of βm terms
are used, the resulting dispersion curve may be very different than the actual one. To confirm
the accuracy of the GVD coefficients obtained from the FE mode-solver, we plot in Fig. 8 the
GVD curves for the nanowire structure W = 775 nm, H = 500 nm obtained with the curve
fitting method, using the Taylor series expansion and adding successively higher-order disper-
sion terms. However, as shown in Fig. 2, wavelength dependent dispersion D(λ ) can also be
directly calculated over the whole wavelength range; this curve is shown by a black line in Fig.
8. It is apparent from the figure that the GVD curve obtained from curve fitting closely matches
with the actual GVD when dispersion upto eighth-order is included. This gives us confidence
in claiming that the results obtained by truncating the Taylor series at the β8 term represent the
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Fig. 9. Numerically simulated SC spectra for nanowires with the dispersion curves shown
in Fig. 3 by including dispersion terms upto β8.

situation one will observe in actual experiments.
To study the impact of device geometry, we have carried out rigorous simulations for multiple

GeAsSe planar structures whose width varies from 700 to 800 nm, and some of the results were
shown in Fig. 9. For this set, their GVD curves are shown in Fig. 3(a). Dispersion coefficients
upto β8 term included for all simulations shown in Fig. 9. For the nanowire structure with W =
800 nm, H = 500 nm which has its ZDW very close to the pump wavelength, it can be observed
from Fig. 9 that the SC extends over 1300 nm (1250 nm bandwidth at -20 dB) covering a
wavelength range from 1200 nm to 2500 nm, which is more than the bandwidth achieved by
other nanowire structures with widths less than 800 nm.

4. Conclusions

To take advantage of dispersion engineering, the Ge11.5As24Se64.5 nanowire can be designed in
such a way that it exhibits anomalous dispersion near a chosen pump wavelength and generates
broadband supercontinuum at low pump powers in the form of a compact device. As numer-
ically generated SC spectra critically depends on the dispersion properties of the nanowire
waveguide, we have also discussed how the accuracy of dispersion is affected with the choice
of the mesh size used for the FE technique. We have numerically studied SC generation in such
nanowires by dispersion engineering and discussed the effects of higher-order dispersion coeffi-
cients from β3 to β8 terms on their SC bandwidths. We have considered five nanowire structures
with widths in the range of 700 to 800 nm (same 500 nm thickness). As shown in Fig. 3(a),
that all five of them exhibit anomalous dispersion at a pump wavelength of 1550 nm and all
have two ZDWs. We have carried out numerical simulations for all five nanowire structures and
optimized the design to realize a wider bandwidth for SC generation. In Ref. [1,2,27] it is rec-
ommended to use β (ω)−β (ω0)−β1(ω0)(ω−ω0) instead of βm(ω) = dmβ

dωm

∣∣
ω=ω0

(m≥ 2) for
calculating the total dispersions. To implement dispersion using the first approach, one needs
to know the propagation constant β (ω) over the whole frequency range of the supercontinuum.
This approach may not appropriate for microstructured fibers with air holes within its cladding
[2]. The second approach is often used because it is easier to determine higher-order dispersion
parameters at a particular wavelength using the Taylor series expansion and one does not need
to know about β (ω) over the whole SC bandwidth. Our work highlights the effects of higher-
order dispersion coefficients on the SC spectrum and identifies changes that occur with addition
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of each successive dispersion coefficient in numerical simulations. In earlier simulation-based
works on SC generation, sometimes the Taylor series expansion has been truncated after the
third-order or fourth-order term. We have shown that this may not produce an accurate SC
spectrum and more higher-order dispersion terms may need to be included to obtain a reliable
SC spectrum. In our work propagation losses for nanowires were taken to be 3.2 dB/cm [13].
Recent work has shown that this can be reduced to around 1.5 dB/cm through process improve-
ments [14]. Our conclusions are not affected if this lower value of loss is used for simulations.
Finally several GeAsSe structures are studied, and one optimized structure, with W = 800 nm
and H = 500 nm, shows that large bandwidth of SC using chalcogenide nanowires is possible.
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