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Abstract: Metallic spherical dome shells have received much attention in
recent years because they have proven to possess highly impressive optical
properties. The expected distinctive changes occurring owing to quantum
confinement of conduction electrons in these nanoparticles as their thickness
is reduced, have not been properly investigated. Here we carry out a detailed
analytical derivation of the quantum contributions by introducing linearly
shifted Associated Legendre Polynomials, which form an approximate
orthonormal eigenbasis for the single-electron Hamiltonian of a spherical
dome shell. Our analytical results clearly show the contribution of different
elements of a spherical dome shell to the effective dielectric function. More
specifically, our results provide an accurate, quantitative correction for the
dielectric function of metallic spherical dome shells with thickness below
10 nm.
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1. Introduction

Metallic spherical dome shells of nanometer sizes have received considerable attention because
of their anisotropic, highly tunable, and distinctive optical properties such as unique light-
focusing ability, highly enhanced localized electric field near the rims, and increased absorption
at longer wavelengths compared with their shell or sphere counterparts [1–7]. Such proper-
ties are expected to have potential applications in the diverse fields of solar energy harvest-
ing [8–10], solar glazing [11], spacer design [12,13], surface-enhanced Raman scattering spec-
troscopy (SERS) [8, 14], optical communications [15], three-dimensional nano-antennas [16]
etc. The spherical metallic dome shell, also known as a nano-cup or a semi-shell, is a thin spher-
ical metallic shell that surrounds a dielectric sphere only partly (see Fig.1). Optical properties
of such metallic dome shells depend on both its geometric dimensions and intrinsic material
properties. As a result, they can be easily tuned by varying geometrical parameters (such as
the inner or outer radius, cut-off angle, and orientation with respect to light), in addition to the
materials used for the core and the surrounding medium [2].

When dimensions of nanoparticles are large, the geometrical and material properties are in-
dependent of each other. But when these dimensions are comparable to electron’s mean free
path, intrinsic material properties such as the dielectric function become dependent on the ge-
ometric properties due to the electron confinement effects. Further reduction of the dimensions
until they become comparable to the wavelength of the electron wave function, leads to quan-
tum confinement effects. For example, Ref. [17] provides electron energy loss spectroscopy
(EELS) experiment based evidence for surface plasmon peak shifts of Ag nanospheres due
to quantum confinement effects. Further evidence of such coupling has been experimentally
observed in shapes such as nanoshells [18, 19], nanowires [20], [21] that have close geomet-
ric resemblance to dome shells. Particularly, in Ref. [19], it was experimentally observed that
thickness reductions in nanoshells caused broadening of absorbance peaks. Also in Refs. [21]
and [20] oscillatory behavior owing to quantum effects in conductance was experimentally ob-
served. Although no experimental data is available for spherical dome shells, such effects are
expected to occur with them as well.

Electron confinement results in increased scattering of electrons at the external boundaries
of the particle (so-called surface scattering) compared to the bulk metal. Quantum confinement
leads to discretization of the conduction band of metals, which also affects the motion of elec-
trons in addition to increased surface scattering [22], both of which also depend on the particle
shape [23, 24].

When the electron confinement effects are not dominant, one can safely use bulk material
properties and predict the optical response of nanoparticles by solving the Maxwell equations.
Existing analytical methods for solving Maxwell equations (such as Mie theory) can give exact
solutions only for a few highly symmetric structures such as spheres or shells. The analyti-
cal tractability of Maxwell’s equations is non-existent for reduced symmetry systems such as
spherical dome shells. As a result, numerical methods such as discrete-dipole approximation,
T-matrix method, or a finite-element method have to be used.

Also, models such as plasmon hybridization can be conceptually used to understand the
optical behavior of certain composite nanostructures. The dome shell consist of two surfaces
(inside and out), very much similar to fully spherical nano-shells considered by Prodan et al.
in Ref. [25]. In the case of a hollow dome-shell, we can explain the appearance of plasmonic
modes by considering the interaction of solid shell with a vacuum void cavity, as discussed in
Ref. [26]. Interaction of dipolar plasmon mode of the nanohole with the dipolar and quadrupolar
plasmon modes of the nanoshell leads to four plasmon modes with different energy levels.

All these methods require a critical material property as input, namely the dielectric function
of the particle. The objective of this paper is to obtain a realistic dielectric function for thin
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spherical dome shells with a small cut-off angle, considering all of the shape and size effects.
Experimentally measured dielectric values are available for bulk materials in the litera-

ture [27]. Approximate theoretical estimates have also been developed for metals based on
the classical free-electron Drude model [28]. However, these estimates require size and shape-
dependent adjustments to account for the electron confinement effects before they can be used
to obtain the optical properties of nanoparticles with reduced dimensions (below 50 nm for
gold [29] and silver [17]). Even with such corrections, they fail to accurately predict the prop-
erties of nanoparticles when the size is reduced to below 10 nm [17] and quantum confinements
effects appear.

An alternative is to use an ab initio approach based on density functional theory [30]. Such
a theory will use detailed potential information inside the nanoparticle and consider the whole
system as a quantum-mechanical many-body problem to calculate various quantities of interest.
However, a many-body approach is likely to be limited to nanoparticle sizes of less than 2 nm
due to its excessively high computational costs. Most importantly, such a full-blown numerical
analysis will lead to loss of physical insight that is very valuable to engineer these systems.
Therefore, we have adopted in this work, a much simpler single-electron model, which as-
sumes a non-interacting electron gas confined under a uniform background potential. We use
this model to obtain numerically the size and shape dependent dielectric values for thin metal-
lic spherical dome shells with thickness in the range of 2–10 nm and a small cut-off angle.
This model has been successfully adopted for other geometries such as nanospheres [17] and
nanorods as well [31].

2. Classical model for dielectric function

In general, the dielectric function of a metal has contributions from both the interband(inter)
and intraband(intra) electron transitions and can be written as,

ε(ω) = εinter(ω)+ εintra(ω), (1)

where ω is the angular frequency of incident electric field. The interband component dominates
for semiconductors but is often ignored for metals. It cannot be neglected for noble metals
(such as Ag, Au and Cu) because they exhibit more complex electronic features than other
metals owing to completely occupied d-orbital electrons [32]. The interband effects on the
permittivity coincide with the bulk values when particle dimensions are above a few nanometers
[30]. Therefore, we assume that the interband component is size independent in the 2–10 nm
range for the metals under consideration.

The intraband component in Eq. (1) corresponds to electron transitions in incompletely filled
bands, or to those in filled bands that overlap partially with an empty band. These transitions can
be triggered by photons of very small energies because the energy difference between the initial
and final electronic states is small compared to interband transitions. The intraband contribution
is well described by the Drude model and has the form [33],

εintra(ω) = 1− ω2
p

ω2 + jωγ
, (2)

where ωp is the plasma frequency, j is the unit imaginary number and γ is the damping constant.
The plasma frequency ωp depends on the electron density ne as,

ωp =

√
neq2

e

ε0μ
,
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Fig. 1. Cross section of a spherical dome shell along the xz plane with the center on the
origin. The axis of symmetry is along the z direction of a right-handed Cartesian coordinate
system.

where μ , qe and ε0 denote the electron mass, electron charge, and permittivity of free space,
respectively.

The value of γ for a bulk metal is influenced by several processes such as the Coulomb
interaction, electron-phonon interaction, and electron scattering at interfaces. In the case of
nanoparticles made of metals such as Ag and Au with sizes of 50 nm or less, the classical
Drude model incorporates the quantum-confinement effects by phenomenologically modifying
the damping constant as [29],

γ = γbulk +
Av f

Leff
,

where γbulk is the damping factor measured for the bulk metal, A is a material interface and
shape dependent factor, and v f is the Fermi velocity. Leff is the effective mean free path of an
electron, taken to be the radius for a sphere and the thickness for a shell. When the nanoparti-
cle dimensions are less than 10nm, this size-dependent correction fails to describe the quantum
effects properly. This is where the size-dependent quantum-mechanical contributions for the di-
electric function enter the picture. Quantitative characterization of these effects for the spherical
dome shells is the main focus of this paper.

3. Quantum mechanical dielectric function of a spherical dome shell

A spherical dome shell, as shown in Fig. 1, can be described by its inner radius a, outer radius
b and the cut-off angle θ ′. As our focus is on subwavelength spherical dome shells, we take the
diameter of the spherical dome shell to be small compared to the wavelength λ of the incident
electric field (b � λ ). Therefore, we can assume that the incident electric field is uniform and
does not vary spatially inside the particle [34]. In this quasi-static approximation, the response
of the spherical dome shell to the electric field is given by a spatially invariant dielectric tensor
of the general form

ε =

⎡
⎣εxx εxy εxz

εyx εyy εyz

εzx εzy εzz

⎤
⎦ .

When the principle axes of the particle coincide with the Cartesian coordinate axes, all off-
diagonal components of the dielectric tensor vanish. In addition, if we take the axis of rotational
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symmetry of the spherical dome shell along the z axis, εxx = εyy, and we are left with only two
independent components εxx and εzz. Without loss of generality, we assume that the electric
field is linearly polarized along the z direction and write it in the form E (z, t) = Ez sinωt.
Noting that the polarizability Pzz(ω) ∝ E (z, t), εzz can be expressed in the form

εzz(ω) = 1+
Pzz(ω)

ε0Ez sinωt
. (3)

To calculate the polarizability Pzz(ω), we need to use quantum mechanics. We assume the
system is in an unperturbed state for times t < 0 and its behaviour is governed by the time-
independent Schrödinger equation wave function , obtained by solving [35],

H0ψi(r) = Eiψi(r), (4)

where H0 is the unperturbed Hamiltonian and ψi(r) is the wave function corresponding the
initial state i of the system with the energy Ei. The unit r ≡ (x,y,z), is the position vector of a
point inside the dome shell. When an electric field is applied at time t = 0, the wave function
becomes time dependent, and electron transitions from the initial to final states take place owing
to this perturbation. Let f represent the final state of the electron. The time-dependent wave
function ψ f (r, t) is obtained by solving

jh̄
∂ψ f (r, t)

∂ t
=
[
H0 +H

′
(t)

]
ψ f (r, t), (5)

where H
′
(t) is the time dependent perturbation,

H
′
(t) = qezEz sinωt, (6)

with h̄ denoting the reduced plank constant. Using the standard time dependent perturbation
theory together with Eqs. (5) and (6), the solution is given by

ψ f (r, t) =
1
2

qeEz ∑
i
〈ψi(r)|z|ψ f (r)〉ψ f (r)exp(

− jE f t

h̄
)×

{1− exp[ j(ωi, f +ω)t]

ωi, f +ω
+

1− exp[ j(ωi, f −ω)t]

ωi, f −ω

}
,

where
ωi, f = (Ef −Ei)/h̄. (7)

The dipole moment induced by the transitions to state f by the application of the electric
field can be calculated using

p̄zz
f (ω) = 〈ψ f (r, t)|−qez|ψ f (r, t)〉.

Polarizability is the total dipole moment per unit volume. After considering all possible transi-
tions, it can be written as,

Pzz(ω) =
1

Vp
∑

f

p̄zz
f (ω), (8)

where Vp is the volume of the dome shell. We can now calculate the dielectric function εzz(ω).
After including the damping effects and using Eqs. (3) and (8), it can be shown that

εzz(ω) = 1+
2q2

e

ε0Vph̄ ∑
i

∑
f

|〈ψi(r)|z|ψ f (r)〉|2ωi f

ω2
i, f −ω2 − jγω

.
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After taking the interband effects into account, we can write the precding result in the form
[23,36],

εzz(ω) = εzz
inter(ω)+1+ω2

p ∑
i

∑
f

Szz
i, f

ω2
i, f −ω2 − jγω

, (9)

where we have introduced

Szz
i, f =

2μωi, f

h̄N
|〈ψ f |z|ψi〉|2, (10)

and N = neVp stands for the total number of conduction electrons within the nanoparticle. All
occupied states qualify as initial states and all unoccupied states qualify as final states. It is
assumed that all states below the Fermi energy of the metal are occupied while the states above
are unoccupied. The electron number N equals to twice the number of occupied states because
of the spin degeneracy of electrons.

Equation (9) provides the general quantum-mechanical expression for the dielectric function
of a spherical dome shell. However, The double sum in this equation is not easy to perform
if we note that the sum over i and f is actually over all quantum numbers needed to specify
the quantum state. Thus, we adopt the following strategy. Rather than calculating the complex
quantity εzz(ω), we focus on its imaginary part responsible to absorption. From Eq. (9) it can
be written as,

[εzz(ω)]im = [εzz
inter(ω)]im +ω2

p ∑
i

∑
f

Szz
i, f γω

(ω2
i, f −ω2)2 + γ2ω2

. (11)

The real part of the dielectric function can then be calculated using the Kramers–Kronig relation
[37]

[εzz(ω)]re =
2ω
π

P
∫ ∞

0

[εzz(ω ′
)]im −1

ω ′2 −ω2
dω

′
,

where P denotes the Cauchy principal value.
We now focus on how to perform the double sum in Eq. (11). It is known that he resonances

of [εzz(ω)]im occur in groups corresponding to changes in the value of the quantum number for
which the energy dependence is the greatest [23,36]. Let us call this quantum number ν and let
the difference of this quantum number between the final and initial states be Δν . A Lorenzian
profile can be fitted to [εzz(ω)]im by writing Szz

i, f as a function of Δν and introducing the group
frequency Ωzz

Δν as,

[εzz(ω)]im = [εzz
inter(ω)]im +ω2

p ∑
Δν

Szz
Δν γω

(Ωzz
Δν

2 −ω2)2 + γ2ω2
,

where
Szz

Δν = ∑
i

∑
f

�=Δν

Szz
i, f , (12)

Ωzz
Δν =

1
Szz

Δν
∑
i

∑
f

�=Δν

Szz
i, f ωi, f . (13)

The summation is restricted to all other quantum numbers and their differences between initial
and final states except Δν . This model has proven to match well with the experimental data and
the extrapolated values derived from the density functional theory approach for nanospheres of
diameters in the 2–10 nm range, as presented in Ref. [17]. In this paper, it is reported that there
is a substantial blue shift of resonance peaks in the experimental data and the density-functional
results when the diameter of nanospheres is reduced to below 10nm. This cannot be explained
by the modified Drude model but agrees well with the results derived from the analytical model
based on Eq. (12).
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3.1. Wave function of a spherical dome shell

In order to calculate Szz
Δν we have to derive expressions for the wave functions and correspond-

ing eigenenergies for electrons inside the spherical dome shell by solving the Schrödinger equa-
tion (4).

In Ag and Au nano structures with non ultra small dimensions , the behavior of conduction
electrons can be closely approximated as a free-electron gas constrained by infinite potential
barriers at the boundaries of the particle.

This enables us to describe the electronic properties of the particle in terms of a single-
electron wave function that extends over the entire particle and vanishes at the boundaries.
Considering the symmetry of our system, it is convenient to use the spherical coordinates (r, θ ,
φ ). For a spherical dome shell, the wave function ψ(r,θ ,φ) is obtained by solving

−h̄2

2μ
1

r2 sinθ

[
sinθ

∂
∂ r

(
r2 ∂ψ

∂ r

)
+

∂
∂θ

(
sinθ

∂ψ
∂θ

)
+

1
sinθ

∂ 2ψ
∂φ 2

]
+V (r)ψ = Eψ, (14)

with the the potential energy V (r) given by

V (r) =

{
0 if a ≤ r ≤ b

∞ otherwise
.

We also need to remember that for a spherical dome shell with the cut-off angle θ ′ (see Fig. 1),
the angle θ is restricted to lie in the range θ ′ ≤ θ ≤ π . Also note that all wave functions must
be orthonormal, i.e., ∫

ψκ(r,θ ,φ)[ψρ(r,θ ,φ)]∗d3Vp = δκ ,ρ , (15)

where κ and ρ are labels of the quantum states, δκ ,ρ is the Kronecker’s delta function and the
integration is over the entire volume of the dome shell.

We use the standard method of separation of variables and assume that the wave function
ψ(r,θ ,φ) can be separated into radial[R(r)], azimuthal[F(φ)] and polar[Q(θ)] components as,

ψ(r,θ ,φ) = R(r)Q(θ)F(φ). (16)

Substitution of Eq. (16) into Eq. (15) leads to the expressions:

∫ b

a
Rκ(r)R

∗
ρ(r)r

2dr = δκ ,ρ

∫ 2π

0

∫ π

θ ′ Fκ(φ)F∗
ρ Qκ(θ)Q∗

ρ(θ)sinθ dθdφ = δκ ,ρ .

Next step is to find solutions for the radial, polar and azimuthal components of Eq. (14).

3.1.1. Radial component

We can separate the radial part from the Eq. (14) as,

d2R(r)
dr2 +

2
r

dR(r)
dr

+

[
2mE

h̄2 − l(l+1)
r2

]
R(r) = 0,

where a ≤ r ≤ b and l is the azimuthal quantum number. For a thin shell we can make the
assumption (b−a)<< a. The solutions of this equation involve the Bessel and Neumann func-
tions. Using their asymptotic approximations and applying the boundary and normalization
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conditions, we find the radial part [36],

R(r) =
1
r

√
2

b−a
sin

[
nπ

b−a
(r−a)

]
(17)

and the allowed electron energy E to be

En,l =
h2

2μ

[
n2π2

(b−a)2 +
l2

a2

]
, (18)

with n ≥ 1 and l ≥ 0. From this equation it is clear that the main quantum number over which
energy changes rapidly is n because (b− a) << a. Therefore we can associate Δν in Eq. (12)
with Δn.

3.1.2. Azimuthal component

The azimuthal component of the Eq. (14) can be separated as,

d2F(φ)
dφ 2 +m2F(φ) = 0, (19)

where m is the magnetic quantum number. After considering the boundary condition

F(φ) = F(φ +2π),

and the normalization condition, the solution to Eq. (19) is given by

F(φ) =
1√
2π

exp( jmφ), (20)

where m = {· · ·−2,−1,0,1,2, · · ·}.

3.1.3. Polar component

The polar component of the Eq. (14) can be separated as,

sinθ
d

dθ

[
sinθ

dQ
dθ

]
+
[
l(l+1)sin2 θ −m2]Q = 0, (21)

where θ ′ ≤ θ ≤ π and Q(θ ′) = 0. Introducing x = cosθ we can write it in the form

(1− x2)
d2Q
dx2 −2x

dQ
dx

+

[
l(l+1)− m2

1− x2

]
Q = 0,

where we introduce the boundary point ζ = cosθ ′ such that

−1 ≤ x ≤ ζ , Q(ζ ) = 0. (22)

Solutions of Eq. (21) are known when the shell is complete so that θ ′ = 0 and x = 1. They
are known as the associated Legendre polynomials defined by [35];

Pm
l (x) =

(−1)l

2l l!
(1− x2)

m
2

dl+m

dxl+m (1− x2)l . (23)

Associated Legendre polynomials have following properties that are important for our deriva-
tion: ∫ 1

−1
Pm

l (x)Pm
l′ (x)dx =

2(m+ l)!
(2l+1)(l−m)!

δl,l′ , (24)
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(l−m)Pm
l (x) = x(2l−1)Pm

l−1(x)− (l+m−1)Pm
l−2(x), (25)

P−m
l (x) = (−1)m (l−m)!

(l+m)!
Pm

l (x). (26)

After normalization using Eq. (24), Q(x) for a complete shell is given by

Q(x) =

√
(2l+1)(l−m)!

2(m+ l)!
Pm

l (x),

l > 0, −l ≤ m ≤ l.

This solution is unusable for spherical dome shells for which θ ′ �= 0. However, for sufficiently
small θ ′, we can define a new set of linearly shifted Associated Legendre polynomials (shifted
ALP) as,

P̃m
l (x) = Pm

l (k1x+ k2), (27)

where,

k1 =
2

ζ +1
, k2 =

1−ζ
ζ +1

. (28)

These shifted ALPs enable us to write Q(x) after normalization as,

Q(x) =

√
k1
(2l+1)(l−m)!

2(m+ l)!
P̃m

l (x), l > 0, −l ≤ m ≤ l. (29)

As shown in Appendix 5, this function is orthogonal over the interval [ζ ,-1] while satisfying
the boundary condition given in Eq. (22).

∫ ζ

−1
Q̃m

l (x)Q̃
m
l′ (x)dx = 1.

From Eqs. (23), (26), (27), and (28) we can see that P̃m
l (ζ ) = Pm

l (1) = 0 when m �= 0. This
satisfies the boundary condition in Eq. (22). It also sets the lower limit of l as 1 because m = 0
is not allowed. Further, P̃m

l (x) obeys the recurrence relation derived in Appendix 5.
By substituting the radial, azimuthal and polar components, given by Eqs. (17), (20), (29)

respectively, in Eq. (16) we obtain the wave function in the form

ψn,l,m(r,θ ,φ) =

√
k1(2l+1)(l−m)!
2π(b−a)(m+ l)!

1
r

sin
[ nπ

b−a
(r−a)

]
P̃m

l (cosθ)exp( jmφ),

where the three quantum numbers satisfy n ≥ 1, l ≥ 1, and 1 ≤ |m| ≤ l.

3.2. Calculation of Szz
i, f

To obtain the dielectric function, we need to find Szz
i, f given in Eq. (11) by calculating the matrix

element 〈ψi|z|ψ f 〉, the total number of electrons N, and the frequency difference term ωi, f .
Also we have to find the valid ranges for n, l, and m to carry out the double sum indicated in
Eq. (11).

The initial state wave function ψi = ψn,l,m depends on the three quantum numbers n, l, and
m. We take the final wave function to be ψ f = ψn+Δn,l+Δl,m+Δm by changing these quantum
numbers to n+Δn, l+Δl and m+Δm. Using z = r cos(θ), the matrix element Mi f = 〈ψi|z|ψ f 〉
is calculated as,

Mi f =
∫ 2π

0
dφ

∫ π

θ ′ sinθdθ
∫ b

a
r2dr ψ(r,θ ,φ)n,l,m r cosθ [ψ(r,θ ,φ)n+Δn,l+Δl,m+Δm]

∗ (30)
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The triple integral is calculated in Appendix 5 and the final result is found to be

Mi f = δΔm,0

[√ (l+1+m)(l+1−m)

(2l+1)(2l+3)
δΔl,1

k1
+

√
(l+m)(l−m)

(2l−1)(2l+1)
δΔl,−1

k1
− k2

k1
δΔl,0

]
×

{4(b−a)[(−1)Δn −1]n(n+Δn)
π2(2n+Δn)2Δn2 +bδΔn,0

}
.

To calculate ωi, f we use its definition in Eq. (7). The initial energy Ei = En,l is given in
Eq. (18), and the final energy is given by Ef = En+Δn,l+Δl . Thus,

ωi, f =
h̄

2μ

[
Δn(2n+Δn)π2

(b−a)2 +
Δl(2l+Δl+1)

a2

]
. (31)

To calculate total number of electrons, let nf be the value of n at the Fermi level when l = 1,
which is the minimum value that l can have. From Eq. (18) we can write Fermi energy EFermi

as,

EFermi =
h̄2

2μ

[
n2

f π2

(b−a)2 +
1
a2

]
≈ h̄2

2μ

[
n2

f π2

(b−a)2

]
,

where we neglected the second term by noting that (b−a)� a for a thin shell. Since all initial
states should lie below the Fermi energy level, Using Ei ≤ EFermi, we obtain the condition
following upper bound for l:

l ≤ lmax = Int
[√

(n2
f −n2)

πa
(b−a)

]
,

where Int(x) denotes the integer part of x. The total number of electrons N can now be found
by summing over all occupied states such that n ≤ nf and l ≤ lmax. After considering the spin
degeneracy, we find

N =

n f

∑
n=1

lmax

∑
l=1

∑
−l≤m≤l

m�=0

2

= 2
n f

∑
n=1

lmax(lmax +1)≈ 4π2a2n3
f

3(b−a)2 .

By substituting the expressions for Mi f , ωi, f , and N in (10), we finally obtain

Szz
i, f = Szz

n,Δn,l,Δl,m,Δm
3(b−a)2

4π2a2n3
f

[
Δn(2n+Δn)π2

(b−a)2 +
Δl(2l+Δl+1)

a2

]
×

δΔm,0

[ (l+1+m)(l+1−m)

(2l+1)(2l+3)
δΔl,1

k2
1

+
(l+m)(l−m)

(2l−1)(2l+1)
δΔl,−1

k2
1

+
k2

2

k2
1

δΔl,0

]
×

{
16(b−a)2[(−1)Δn −1]2n2(n+Δn)2

π4(2n+Δn)4Δn4 +b2δΔn,0

}
.

The appearance of several Kronecker delta functions in this equations helps us in identifying
the range of Δm and Δl. Clearly, their only allowed values are Δm = 0 and Δl =−1,0,1. In ad-
dition, the values of n and l are limited such that n≤Int(n f ) and l ≤ lmax. One more requirement
is that Ef > EFermi. From Eq. (18), we obtain

l > g = ceil
[ πa
(b−a)

√
n2

f − (n+Δn)2 −Δl
]
,
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where ceil stands for the integer obtained by rounding upward. Since the minimum value l has
to be ≥ 1, we set lmin as max{1,g}.

3.3. Calculation of Szz
Δn and Ωzz

Δn

The final step is to calculate Szz
Δn and Ωzz

Δn as defined in Eq. (12). Recalling that Δν = Δn and
that each sum involves all three quantum numbers, we can write Szz

Δn as,

Szz
Δn =

nmax

∑
n=1

1

∑
Δl=−1

lmax

∑
l=lmin

∑
−l≤m≤l

m�=0

∑
Δm

Szz
n,Δn,l,Δl,m,Δm.

The five-fold term can not be done analytically. However, we can reduce it to a double sum over
n and l by performing the sums over m and Δm analytically. Further, terms with δΔn,0δΔl,0 and
δΔn,0δΔl,−1, that imply no change in energy level and energy emission respectively are neglected
since we are considering transitions that result only in absorption. The result is found to be

Szz
Δn =

nmax

∑
n=1

1

∑
Δl=−1

lmax

∑
l=lmin

3(b−a)2

4π2k2
1a2n3

f

{ l(5+9l+4l2)

3(3+8l+4l2)

[
H +

2(l+1)(b−a)2H
π2a2(2n+Δn)Δn

+2(l+1)
b2

a2 δΔn,0

]
δΔl,1 +

l(1+3l−4l2)

3(1−4l2)

[
H − 2l(b−a)2H

π2a2(2n+Δn)Δn

]
δΔl,−1

+2lk2
2HδΔl,0

}
, (32)

where,

H(n,Δn) =
16[(−1)Δn −1]2n2(n+Δn)2

π2(2n+Δn)3Δn3 .

Similarly, we can calculate Ωzz
Δn using Eq. (31) and (13). The result is found to be

Ωzz
Δn =

1
Szz

Δn

nmax

∑
n=1

1

∑
Δl=−1

lmax

∑
l=lmin

Szz
Δn

h̄
2μ

[
Δn(2n+Δn)π2

(b−a)2 +
Δl(2l+Δl+1)

a2

]
. (33)

The dielectric function for the spherical dome shell can now be calculated by substituting
Eq. (32) and (33) in Eq. (12).

4. Results and discussion

In this section we calculate the real and imaginary parts of the dielectric function as a function
of wavelength for a practical configuration of a metallic dome shell. We choose silver (Ag)
as the shell material owing to the availability of a wide range of data for this metal. Using
Eq. (32) and (33) we calculate the dielectric functions of a dome with a fixed cut-off angle
and compared it to that of a complete shell (Appendix 5). We also compare it to the Drude
model with size-dependent correction as given in Eqs. (1) and (2). Since the cut-off angle we
consider are relatively small, we assume that the effective mean free path of the electron can be
approximated by its value for a complete shell [29], i.e., Leff = (b−a). For similar reasons, we
used A = 1 in the calculations [34]. Values of ωp and γbulk were taken as 8.97 eV and 0.016 eV,
respectively [17]. Fermi energy of the metal was calculated using EFermi =

1
2 μv2

f , and Fermi

velocity was taken as v f = 1.39×106 ms−1 for Ag [17].
The wavelength range we are interested in corresponds to 300 to 1200 nm. Interband com-

ponent (εinter) of the dielectric function for Ag does not have a significant variation with size
when dimensions are above 2nm [30]. This allows us to use the following size-independent
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Fig. 2. Imaginary (a) and real (b) parts of the dielectric functions of spherical dome shells of
varying thickness calculated with the quantum mechanical model are shown by solid lines.
Cut-off angle is 25.8◦ (ζ = 0.9) for the spherical dome shells. Empirical values obtained
from Drude model with size dependent correction for a shell with a = 40nm and b = 45nm
is shown by the dotted-dashed line. a and b values given in the figure are in nanometers.
The dashed line and dotted line shows the experimental bulk dielectric values taken from
Refs. [27] and [38] respectively.

interband term in our permittivity model, which matches with the experimental bulk data for
this frequency range [17],;

εinter(ω) =
3.66

1− exp(4.08− h̄ω/qe)
−1.

Calculated dielectric functions of spherical Ag dome shells of four different thickness (2 to
5 nm) are shown in Fig. 2. It can be seen that oscillatory behaviour of the dielectric function
is highly dependent on the thickness of the spherical dome shell. The dot-dashed line shows
the results of the Drude model with size dependent correction for a shell with a = 40 nm and
b = 45 nm. It provides a reasonable approximation to the blue curve obtained numerically but
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fails to reproduce oscillations seen there. Also when the thickness is increased, the quantum-
mechanical dielectric function of the spherical dome shell gets closer to the experimental bulk
data values.

Behaviour of the dielectric function as we change the cut-off angle is shown by Fig. 3. It can
be seen that the imaginary part of the dielectric function increases slightly with a decreasing
cut-off angle. Also we can see that the quantum mechanical dielectric function of the spherical
shell begins approaching that of a spherical dome shell for the smallest cut-off angle. When the
cut-off angle is reduced to zero, dielectric function of the spherical dome shell we have derived
should match that of the spherical shell. For this, we have to include the l = 0 and m = 0 terms
we discarded in the calculations while calculating Szz

Δn and Ωzz
Δn since the boundary condition

for a spherical dome shell given in given in Eq. (22) is not relevant for a complete shell.
It is evident from the Figs. 2 and 3 that the influence of varying the shell thickness is much

stronger than varying the cut-off angle on the dielectric function of spherical dome shells. This
is because the quantum confinement is much stronger in the radial direction than in the polar
direction for the spherical dome shells we have considered here.

Also, it is apparent from Figs. 2 and 3 that the quantum-mechanical dielectric function can
exhibit oscillatory behavior for some parameter values, a feature absent from the Drude model
even when size dependent corrections are included. The origin of oscillation lies in the quan-
tization of the energy levels, which clearly cannot be included within the framework of the
Drude model. It can be seen from the expression for the energy levels of an electron [Eq. (18)]
that, because of the term (b− a)2 in the denominator of the first term, for thin spherical dome
shells energy difference between different states with different n values is large and therefore
cannot be ignored, as is done in classical models by replacing the sum by an integral. In other
words, when the oscillator strength weighted average transition frequency, Ωzz

Δν , is close to the
frequency of the incident electric field, the polarizability of the particle increases substantially
and results in distinctive peaks in the dielectric function.

Similar oscillatory behavior due to quantum confinement has been experimentally observed
for material properties such as conductivity in literature [20, 21].

Calculated extinction cross section of a spherical dome shell using our model and the Drude
model with size dependant correction are shown in Fig. 4. It can be seen that the oscillations
in the quantum mechanically derived dielectric function will create variations in the extinction
spectrum as well.The position of oscillations in the dielectric function and therefore, the cor-
responding variations in the extinction spectrum depends on the thickness, aspect ratio and cut
off angle of the spherical dome shell. In Fig. 4, such variations can be seen in the wavelength
range 500 - 600 nm and 900 - 1100 nm. Based on these geometric parameters, if dominant
oscillations occur close to the plasmon resonance frequency, it can shift or broaden the plas-
mon resonance in the extinction spectrum. Knowledge of such variations become important for
sensitive sensing applications such as SERS.

In addition to quantum size effects, interband effects and surface scattering we have discussed
here, dielectric functions of nano particles exhibit nonlocal effects related to in-homogeneous
distribution of surface electrons and electron spill-outs.

In Ref. [17], experimental EELS data for Ag nanospheres with dimensions in 1–10 nm range
has been well matched by a theoretical model which was developed by considering contribu-
tions to the dielectric function from screening effects due to d-electrons (inter band contribu-
tions), surface scattering and discretization electronic energy levels (quantum size effects). This
model is very much similar to the model we have developed here. In the Ref. [39], in addition
to contributions from inter band effects and quantum size effects, nonlocal effects including
electron spill-outs are considered to exlain experimental data of Ref. [17] for Ag spheres. How-
ever, in Ref. [39] they employ a much simpler model, that does not reflect energy gap differ-
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Fig. 3. Imaginary (a) and real (b) parts of the dielectric function of spherical dome shells
for four different cut-off angles (solid lines). The dielectric function of a complete shell
(θ ′ = 0) calculated with the quantum-mechanical model is shown by a dashed line, while
values obtained from the Drude model with size dependent corrections ares shown by a
dotted dash line. In all calculations a = 40nm and b = 43nm.

ences between different electronic levels, to obtain the quantum size effects. The calculations in
Ref. [17] seem to show strong agreement with experimental data, even without nonlocal effects
including electron spill-outs. Electron spill-outs result in red shifts in resonance energy. Also, it
has been shown that nonlocal effects [40, 41] on the dielectric function can become significant
for nanoshells [42] when the outer radius of the shells becomes very small (10 nm) or when the
shell thickness becomes very small (1 nm). They become less significant with the increasing
shell radius, even though the thickness is small. Since the dome shell diameter we are consid-
ering is much greater than 10 nm and thickness is >1 nm, we do not consider the these effects
on the dielectric function in our analysis.
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Fig. 4. Extinction cross section and the imaginary part of the dielectric functions of a spher-
ical dome shell calculated using our model and the Drude model with size dependent cor-
rection. The dimensions are a = 40nm, b = 45nm and cut-off angle = 25.8◦ (ζ = 0.9). For
extinction cross section calculations, the core of the spherical dome shell was taken as Si
(ε = 2.04) and the surrounding as air (ε = 1).

5. Conclusions

We have obtained the quantized energy levels and the corresponding wave functions of a free
electron inside a spherical dome shell. We used them to calculate the dielectric function of such
a dome shell with the assumption of a small cut-off angle using shifted associated Legendre
polynomials. We have compared our results with the classical Drude model, modified to include
size-dependent corrections, and also with the experimental bulk permittivity data. We have also
compared the spherical dome shell with its spherical shell counterpart using a fully quantum-
mechanical analysis to study how much the removal of a small part of the shell effects the
results.

Oscillatory behaviour seen in the dielectric function is due to the presence of discreet energy
levels in our calculations, which cannot be ignored for small dimensions. When the diameter
of the spherical dome shell is large while the cut-off angle is small, the quantum confinement
is much higher in the radial direction than in the polar direction, and the quantum-mechanical
dielectric function of the shell can be taken as a close approximation to that of a spherical
dome shell. The Drude model including the size dependent correction also provides a close
approximation in the frequency range we have considered, particularly when the oscillations
become negligible as the thickness of the spherical dome shell is increased.

Oscillatory behavior seen in the dielectric function will cause variations in the extinction
spectrum in the corresponding wavelength range.

The quantum mechanical dielectric function derived in this paper is based on the behaviour
of a non-interacting electron gas confined within a thin spherical-shape dome shell. Our results
provide an insight into how the quantum effects introduce the geometric parameters into the
dielectric function of thin spherical dome shells, at a tolerable computational cost. Study of
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such quantum effects for particles of different shapes are extremely useful for engineering real
world applications such as quantum cryptography, energy harvesters, transistor, lasers, quan-
tum computers, quantum communication systems etc. Spherical dome shells with their unique
optical properties can offer new opportunities in the design of these applications.

Appendix A: properties of P̃m
l (x)

We can prove the orthogonality of the shifted associated Legendre polynomials, Q̃m
l (x), as

follows. Let x́ = k1x+ k2. From Eq. (29) and (24) we can write

∫ ζ

−1
Q̃m

l (x)Q̃
m
l′ (x)dx =

∫ ζ

−1

√
k1
(2l+1)(l−m)!

2(m+ l)!
P̃m

l (x)

√
k1
(2l′+1)(l′ −m)!

2(m+ l′)!
P̃m

l′ (x)dx

=

√
k1
(2l+1)(l−m)!

2(m+ l)!

√
k1
(2l′+1)(l′ −m)!

2(m+ l′)!
1
k1

∫ 1

−1
Pm

l (x́)Pm
l′ (x́)dx́

=

√
k1
(2l+1)(l−m)!

2(m+ l)!

√
k1
(2l′+1)(l′ −m)!

2(m+ l′)!
1
k1

2(m+ l)!
(2l+1)(l−m)!

δl,l′

= k1
(2l+1)(l−m)!

2(m+ l)!
1
k1

2(m+ l)!
(2l+1)(l−m)!

δl,l′

= 1.

We can also obtain a recurrence relation for the shifted associated Legendre polynomials.
From Eq. (25), (27) and (28), we obtain

(l−m)Pm
l (k1x+ k2) = (k1x+ k2)(2l−1)Pm

l−1(k1x+ k2)− (l+m−1)Pm
l−2(k1x+ k2)

(l−m)P̃m
l (x) = (k1x+ k2)(2l−1)P̃m

l−1(x)− (l+m−1)P̃m
l−2(x)

(k1x+ k2)(2l−1)P̃m
l−1(x) =

(l−m)P̃m
l (x)+(l+m−1)P̃m

l−2(x)− k2(2l−1)P̃m
l−1(x)

k1(2l−1)
. (34)

Appendix B: calculation of the matrix element Mi f

The matrix element in Eq. (30) can be written explicitly as,

Mi f =
∫ 2π

0

∫ π

θ ′

{
sinθ cosθQ(θ)l,m[Q(θ)l+Δl,m+Δm]

∗F(φ)m[F(φ)m+Δm]
∗ dθdφ

}
×

∫ b

a
r3R(r)n,l [R(r)n+Δn,l+Δl ]

∗ dr. (35)

The integration involving the radial part is the same as for a spherical shell and can be performed
as [36],

∫ b

a
r3R(r)n,l [R(r)n+Δn,l+Δl ]

∗ dr =
4(b−a)[(−1)Δn −1]n(n+Δn)

π2(2n+Δn)2Δn2 +bδΔn,0.

The remaining part of the integration, which involves the polar and azimuthal components
is different from a spherical shell. It can be calculated using expressions derived for F(φ) and
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Q(θ) in Eq. (29) and (20) as follows.

∫ 2π

0

∫ π

θ ′ sinθ cosθQ(θ)l,m[Q(θ)l+Δl,m+Δm]
∗F(φ)m[F(φ)m+Δm]

∗ dθdφ

=

√
k1
(2l+1)(l−m)!

2(m+ l)!

√
k1
[2(l+Δl)+1][(l+Δl)− (m+Δm)]!

2[(m+Δm)+(l+Δl)]!∫ 2π

0

1√
2π

exp( jmφ)
1√
2π

exp [−i(m+Δm)φ ]dφ
∫ π

θ ′ sinθ cosθ P̃m
l (cosθ)P̃m+Δm

l+Δl (cosθ) dθ

= δΔm,0

√
k1
(2l+1)(l−m)!

2(m+ l)!

√
k1
[2(l+Δl)+1][(l+Δl)−m]!

2[m+(l+Δl)]!∫ π

θ ′ sinθ cosθ P̃m
l (cosθ)P̃m

l+Δl(cosθ) dθ

= δΔm,0

√
k1
(2l+1)(l−m)!

2(m+ l)!

√
k1
[2(l+Δl)+1][(l+Δl)−m]!

2[m+(l+Δl)]!

∫ ζ

−1
xP̃m

l (x)P̃m
l+Δl(x) dx.

(36)

After substituting the recurrence relation given by Eq. (34) in (36), this can be further sim-
plified as,

∫ 2π

0

∫ π

θ ′ sinθ cosθQ(θ)l,m[Q(θ)l+Δl,m+Δm]
∗F(φ)m[F(φ)m+Δm]

∗ dθdφ

= δΔm,0

√
k1
(2l+1)(l−m)!

2(m+ l)!

√
k1
[2(l+Δl)+1][(l+Δl)−m]!

2[m+(l+Δl)]!
×

∫ ζ

−1

{ [(l+1)−m]P̃m
l+1(x)+ [(l+1)+m−1]P̃m

(l+1)−2(x)− k2[2(l+1)−1]P̃m
(l+1)−1(x)

k1[2(l+1)−1]
×

P̃m
l+Δl(x)

}
dx

= δΔm,0

[√ (l+1+m)(l+1−m)

(2l+1)(2l+3)
δΔl,1

k1
+

√
(l+m)(l−m)

(2l−1)(2l+1)
δΔl,−1

k1
− k2

k1
δΔl,0

]
.

Therefore, we can write Mi f as,

Mi f =
{4(b−a)[(−1)Δn −1]n(n+Δn)

π2(2n+Δn)2Δn2 +bδΔn,0

}
×

δΔm,0

[√ (l+1+m)(l+1−m)

(2l+1)(2l+3)
δΔl,1

k1
+

√
(l+m)(l−m)

(2l−1)(2l+1)
δΔl,−1

k1
− k2

k1
δΔl,0

]
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Appendix C: quantum mechanical dielectric function for shell

The terms Szz
Δn and Ωzz

Δn for a spherical shell of small thickness can be given as [36],

Szz
Δn =

nmax

∑
n=1

lmax

∑
l=lmin

1

∑
Δl=−1

({4(b−a)2[(−1)Δn −1]2n2(n+Δn)2(l+1)

π4a2n3
f (2n+Δn)3Δn3

+
8(b−a)4[(−1)Δn −1]2n2(n+Δn)2(l+1)2

π6a4n3
f (2n+Δn)4Δn4

+
(b−a)2(l+1)2

a2π2n3
f

δΔn,0

}
δΔl,+1

+
{4(b−a)2[(−1)Δn −1]2n2(n+Δn)2l

π4a2n3
f (2n+Δn)3Δn3

− 8(b−a)4[(−1)Δn −1]2n2(n+Δn)2l2

π6a4n3
f (2n+Δn)4Δn4

}
δΔl,−1

)

Ωzz
Δn =

1
Szz

Δn

nmax

∑
n=1

lmax

∑
l=lmin

1

∑
Δl=−1

Szz
Δn

h̄
2μ

[
Δn(2n+Δn)π2

(b−a)2
+

Δl(2l+Δl+1)
a2

]
.

where,

nmax =

[[√
2μ
h̄2

[
(b−a)2EFermi

π2

]]]
,

lmax =

⌊
πa

(b−a)

√
(n2

f −n2)

⌋
,

lmin = max{0,

⌈
aπ

(b−a)

√
n2

f − (n+Δn)2 −Δl

⌉
}.
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