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We consider propagation of an electromagnetic (EM) wave through a dynamic optical medium whose refractive
index varies with time. Specifically, we focus on the reflection and transmission of EM waves from a temporal
boundary and clarify the two different physical processes that contribute to them. One process is related to
impedance mismatch, while the other results from temporal scaling related to a sudden change in the speed of
light at the temporal boundary. Our results show that temporal scaling of the electric field must be considered
for light propagation in dynamic media. Numerical solutions of Maxwell’s equations are in full agreement with
our theory. © 2014 Optical Society of America
OCIS codes: (260.2110) Electromagnetic optics; (120.5700) Reflection; (120.7000) Transmission.
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Propagation of an electromagnetic (EM) wave through a
time-varying medium is an old research topic. As early as
1958, this phenomenon was investigated theoretically
in the microwave region [1]. In addition to the generation
of a backward-propagating wave, it was predicted
that the frequency of the incident wave shifts linearly
with changes in the refractive index [1–8]. Several experi-
ments have confirmed such frequency shifts [9–11].
Recently, it was discovered that frequency shifts also
occur in the optical regime when light is transmitted
through dynamic optical structures in the form of pho-
tonic crystals or microring resonators [12–16]. The term
“adiabatic wavelength conversion” is often used for such
a frequency shift. In the context of plasmas, it is also
called photon acceleration [17].
Published literature contains two different sets of

expressions for the reflection and transmission coeffi-
cients of EM waves at a temporal boundary. One set
was derived by Morgenthaler in his 1958 paper using spe-
cific boundary conditions [1] and has been used in many
other studies since then [3,4,6,9,17,18]. The other set was
presented in 1975 using different boundary conditions in
the context of plasma [2] and has also been used by
others since then [5,8,10,11]. So far, there has been little
discussion on the connection between these two differ-
ent sets of reflection and transmission coefficients.
In this Letter, we revisit this topic and focus on the re-

flection and transmission of light at a temporal boundary.
We show that two different physical processes contribute
to them. One process is related to impedance mismatch,
while the other results from temporal scaling related to a
sudden change in the speed of light at the temporal boun-
dary. The temporal scaling is similar to time dilation of
relativity and it leads to “stretching” or “compressing”
of temporal slices as light traverses the temporal boun-
dary. Our theory reveals the origin of difference in the
sets of reflection and transmission coefficients found
in the literature and shows under what conditions they
can be used in practice.
Before proceeding, we should clarify the meaning of a

“temporal boundary.” The concept of a spatial boundary

between two physical media is quite clear. It is well
known that reflection happens when an EM wave strikes
a spatial boundary between two optical media with
different refractive indexes. In this case, the Fresnel’s
equations provide expressions for the reflection and
transmission coefficients [19]. Now imagine the situation
in which refractive index of a medium is uniform in space
but changes suddenly everywhere at a specific instant of
time. In this case, we have a temporal boundary with a
discontinuity of the refractive index on its opposite sides.
This Letter focuses on such a temporal boundary. We
emphasize that we are not considering a moving medium
in which a spatial boundary moves with time.

Figure 1 shows what happens to a plane wave, polar-
ized along the x axis and propagating along the z axis, as
it approaches a temporal boundary located at t � t0,
where the refractive index changes from n1 to n2. Before
the boundary (t < t0), the plane wave is propagating at a
speed c∕n1. At the boundary (t � t0), its speed changes to
c∕n2, and at the same time a reflected wave is created
with its electric and magnetic field oriented as shown
in Fig. 1. The reflected wave will be generated only
if the medium impedance changes at the temporal
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Fig. 1. Schematic illustration of reflection and transmission of
an EM fields at a temporal boundary where the refractive index
changes from n1 (left panel) to its final value n2 (right panel)
at t � t0.
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boundary, i.e., if η1 � �μ1∕ε1�1∕2 is different from
η2 � �μ2∕ε2�1∕2, where ε and μ represent the dielectric
permittivity and magnetic permeability of the medium,
respectively, and the subscripts 1 and 2 denote these
quantities before and after the temporal boundary
located at t � t0.
In the following discussion, we denote the electric and

magnetic fields before t � t0 as Ein and Hin. After the
index change, the transmitted and reflected electric
fields are denoted by Et and Er , respectively, with a
similar notation for the magnetic field (see Fig. 1).
Transmission and reflection at a temporal boundary
can be characterized by coefficients similar to Fresnel’s
equations at a spatial boundary. However, there is
considerable confusion in the published literature as
two different sets of expressions exist for the transmis-
sion and reflection coefficients. We review briefly the ori-
gin of this discrepancy.
Both cases start from Maxwell’s equations. In the ab-

sence of free charges and currents, these are given by

∇ × E � −
∂B
∂t

; ∇ ×H � −
∂D
∂t

; (1)

∇ · D � 0; ∇ · B � 0; (2)

where the electric displacement D and magnetic induc-
tion B are related to the EM fields E and H as D � εE
and B � μH. The two sets of expressions differ in their
choice of the boundary conditions that the four fields
must satisfy across the temporal boundary.
One approach argues that the quantities D and B

should remain continuous across the temporal boundary
in view of the presence of their time derivatives in Eq. (1):

D�t � t−0 � � D�t � t�0 �; B�t � t−0 � � B�t � t�0 �: (3)

These boundary conditions ensure that Maxwell’s
equations remain valid for all times, including the instant
t0 when the refractive index changes suddenly. In this
case, the transmission and reflection coefficients for
the electric field are found to be

rDB ≡
Er
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These equations were first derived in [1] and have been
used extensively since then [3,4,6,9,17,18].
In the second approach, one insists on the continuity of

the electric and magnetic fields, E and H, and assumes
that they cannot change abruptly at t0 when the refractive
index of the medium changes at a temporal boundary:

E�t � t−0 � � E�t � t�0 �; H�t � t−0 � � H�t � t�0 �: (6)

This assumption leads to another set of expressions for
the reflection and transmission coefficients for the elec-
tric field:
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These results were first obtained in 1975 in the context of
plasma [2] and have been used in several works since
then [5,8,10,11].

Clearly, only one set of these coefficients can be right
as Eqs. (3) and (6) cannot be satisfied simultaneously at a
temporal boundary. The question is which one? Here we
show that Eq. (3) is the correct choice, as also expected
intuitively on the physical ground. To fully understand
what happens at a temporal boundary, we need to con-
sider the special case in which the refractive index is
changed such that the impedance η does not change
across the temporal boundary (η2 � μ1∕ε1 � μ2∕ε2),
and no light is reflected (rDB � 0). Naively one would
think that tDB must be 1 to meet the “expected” 100%
of transmission through the temporal boundary. [Indeed
tEH � 1, and this might be the reason that Eqs. (7) and (8)
were adopted.] However, Eq. (5) predicts tDB ≠ 1. To
claim that Eq. (3) is the correct choice, we need to under-
stand the physical origin for changes in the amplitude of
the transmitted electric field in the case of matched
impedances.

A clue is found by noting that the two sets of transmis-
sion and reflection coefficients are not independent and
can be related as

rDB � −
n1

n2
rEH; tDB � n1

n2
tEH; (9)

where ni �
������������������������
εiμi∕�ε0μ0�

p
with i � 1 or 2. The same ratio

n1∕n2 was also found to occur in our recent work [20] in
the context of time-dependent changes in the refractive
index of an optical medium.

Motivated by the discovery of adiabatic wavelength
conversion in microring resonators and photonic-crystal
waveguides [14–16], we recently developed a theory of
time transformation in dynamic optical media [20,21].
Our theory deals directly with changes in the electric
field occurring when an optical field propagates through
a medium whose refractive index changes with time. In
the case of a nondispersive linear medium, we obtained
the following analytical expression for the transmitted
field for an input field Ein�t� [20]:

Et�t� � sEin�st − sTd�; (10)

where Td is a linear transit delay and s � n1∕n2 is the
time-dilation factor related to change in the speed of light
after the temporal boundary. As we discussed in [20],
time-dependent changes in the refractive index of a lin-
ear medium affect the electric field in three distinct ways:
(1) a shift in the carrier frequency, (2) a change in the
temporal duration of an optical cycle, and (3) a change
in the amplitude of the electric field. In the case of an
optical pulse, these modifications change the carrier fre-
quency, the temporal duration, and the peak amplitude at
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the same time. Since our work assumed impedance
matching implicitly (reflection was ignored) and leads
to a correct change in the transmitted-field amplitude,
it is consistent with the boundary condition Eq. (3).
The physical origin of the time-dilation factor s is

related to the time transformation [21] that maps the
input field to the output field. More precisely, each tem-
poral slice of the electric field is either “stretched” or
“compressed” depending on whether the speed of light
decreases or increases after passing the temporal boun-
dary. Equation (10) shows that such time dilation is
accompanied with a linear scaling of the field amplitude
by the factor s. More importantly, the amplitude modifi-
cation factor s is the factor relating two sets of transmis-
sion and reflection coefficients in Eq. (9). Thus, we
conclude that the transmission coefficient in Eq. (5) is
the product of two factors that have different physical
origins. Indeed, it can be written as tDB � stEH. The factor
s is due to the time dilation, whereas the factor tEH has its
origin in the impedance mismatch across a temporal
boundary. The use of “wrong” boundary conditions in
Eq. (6) misses completely the factor s. Clearly, the boun-
dary conditions in Eq. (3) must be used since they cap-
ture both physical effects. The minus sign appearing in
Eq. (9) can be understood from our time-transformation
theory by noting each slice of the reflected electric
field reverses its propagation direction upon reflection;
this time reversal results in the factor −1 through time
transformation.
Previous works did point out changes in the optical fre-

quency across a temporal boundary, which is one of the
consequences of time dilation, but most of them focused
on the CW case. Therefore, “stretching” or “compression”
of the electric field was not discussed. Although numeri-
cal simulations in [18] showed changes in the width of an
optical pulse in dynamic media, the physical reason
behind it was not discussed in that work. Here we show
that time dilation should not be ignored, as it modifies the
amplitudes for the transmitted electric by a factor of s.
This factor is also needed to ensure the validity of the
boundary conditions given in Eq. (3).
Since Maxwell’s equations contain the whole physics,

any solution of these equations should agree with
our conclusions. To verify this, we solved them numeri-
cally using the well-known finite-different time-domain
(FDTD) method. For simplicity, we consider a one-
dimensional propagation problem where the electric
field is in the form of a four-cycle pulse (with its peak
amplitude normalized to 1) and propagates in the z
direction as a plane wave (without any diffraction in
the transverse plane). We assume that a temporal boun-
dary exists where the medium parameters ε and μ change
instantaneously.
In case 1, we increase the permittivity of the whole

medium uniformly from ε1 � 2ε0 to ε2 � 1.5625ε1 but
keep the permeability unchanged (μ1 � μ2 � μ0). Such
a change increases the refractive index by 25%
(s � 0.8). Since the impedance of the medium also
changes, a reflected wave must be generated in this case.
The electric field obtained numerically after the temporal
boundary is plotted in Fig. 2. The peak amplitude of the
transmitted field is 0.72. One can also clearly see that a
part of the pulse energy is reflected back. The peak

amplitude of the reflected field is 0.08, and its phase is
shifted by π. Using the parameter values employed in
numerical simulations, we find that Eqs. (4) and (5) give
the correct amplitude for both the reflected and transmit-
ted fields.

In case 2, we change both the permittivity and per-
meability of the medium in such a way that the imped-
ance of the medium does not change at the temporal
boundary even though the refractive index does change.
More specifically, we choose ε2 � 1.25ε1 and μ2 � 1.25
μ0 � 1.25μ1 so that the refractive index of the medium
changes again by 25%. Figure 3 shows the electric field
obtained numerically in this situation. As one might have
expected, FDTD simulations confirm that no reflections
occur in the presence of impedance matching. The
amplitude of the transmitted field is still reduced in this
case, with a peak value of 0.8, which agrees with the pre-
diction of Eq. (5). Clearly, this reduction is not related to
energy transfer to a reflected wave because no reflection
occurs. As we discussed earlier, this reduction is related
to the prediction of time transformation theory in
Eq. (10). Indeed, one can immediately verify that
s � n1∕n2 � 0.8, in agreement with the numerically
obtained value of 0.8 in Fig. 3. Amplitude changes of
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Fig. 3. Electric field of a four-cycle pulse after propagation
across a temporal boundary with impedance matching. No elec-
tric field is reflected back. The amplitudes of the reflected and
transmitted fields agree with Eqs. (4) and (5).
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Fig. 2. Electric field of a four-cycle pulse after propagation
across a temporal boundary. Reflected wave is generated
because of impedance mismatch. The amplitudes of the re-
flected and transmitted fields agree with Eqs. (4) and (5).
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transmitted light due to stretching or compressing of
temporal slices, to the best of our knowledge, was first
pointed out by us in [20]. (For a discussion of energy con-
servation under such conditions, we refer to [14]).
To take a closer look at how the transmitted field

changes in the preceding two cases, we plot in Fig. 4
the transmitted electric fields in case 1 (red curve)
and case 2 (green curve) on top of the input electric field
(purple curve). The prediction of time-transformation
theory [Eq. (10)] in case 2, shown with a dotted black
curve, is in excellent agreement with FDTD simulations.
More specifically, the amplitude of the field is modified
by a factor of 0.8; the carrier frequency is also modified
by the same factor with the corresponding change in the
duration of an optical cycle. When the impedance is not
matched across the temporal boundary (case 1), the
transmitted field looks almost the same as in case 2.
The only difference is that its amplitude is further
reduced from 0.8 to 0.72. This reduction is solely due
to reflection and its magnitude is given by tEH � 0.9 given
in Eq. (8). The FDTD simulations shown in Figs. 2–4
confirm the conclusion reached earlier based on the
time-transformation method that Eqs. (3)–(5) provide
correct description of reflection and transmission of
an EM field at a temporal boundary.
In conclusion, this Letter focuses on the reflection and

transmission of EM waves at a temporal boundary and
resolves a discrepancy that have existed in literature
for more than 40 years. We show that the results based
on the continuity of D and B across a temporal boundary
provide the correct physical description. Using our
recently developed time-transformation theory, we were

able to show that two different physical processes con-
tribute to the transmitted field. One of them is related to
the impedance mismatch. The other one has its origin in
time dilation occurring because of a sudden change in the
speed of light. Our time-transformation theory provides
an analytic expression for the transmitted field under
such conditions. It can be applied to pulses of any
durations (as short as a single cycle) and shows that
the transmitted pulse undergoes not only an amplitude
change but also experiences a change in its width
together with a shift in its carrier frequency. Numerical
solutions of Maxwell’s equations are in full agreement
with our theory. Our results provide physical insight
and should be useful in many diverse areas of physics
involving propagation of EM radiation at frequencies
ranging from microwaves to x rays.
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Fig. 4. Comparison of transmitted electric fields in cases 1
(red curve, impedance changes) and 2 (green curve, impedance
matched). Dotted black curve shows the analytic prediction
based on Eq. (10). The input electric field is shown for compari-
son with a purple curve. FDTD simulations confirm our predic-
tion and agree fully with our time transformation theory.
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