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We apply our recently developed time-transformation method for studying the propagation of few-cycle optical
pulses inside a nonlinear Kerr medium after taking into account that changes in the refractive index vary with
the electric field as E2 and not by its average over an optical cycle. Our technique correctly predicts carrier-wave
shocking and generation of odd-order harmonics inside a Kerr medium, the two features found earlier with directly
solving Maxwell’s equations using the finite-difference time-domain (FDTD) methods. We extend our method to
study the impact of a finite response of the Kerr nonlinearity on harmonic generation and to include chromatic
dispersion that cannot be ignored for ultrashort pulses. We show that nonlinear effects can help in controlling
the width of an ultrashort pulse, even though it cannot propagate as a fundamental soliton. Our time-transformation
method provides an alternative to the FDTD technique, as it deals with the electric field directly but does not require
step size to be a small fraction of the wavelength, resulting in much faster computation speeds. © 2013 Optical
Society of America
OCIS codes: 190.5530, 320.7110.

The development of ultrafast optical technology enables
the generation of ultrashort pulses containing only a few
cycles of the electromagnetic field. Many applications
require propagation behavior of such short pulses inside
a dispersive nonlinear Kerr medium. Although the non-
linear Schrödinger equation, derived from Maxwell’s
equations using the slowly varying envelope approxima-
tion [1], cannot be used for such short pulses, a general-
ized version of this equation has been used with success
for pulses as short as single cycle [2]. However, in this
envelope-based approach, the Kerr nonlinearity is in-
cluded using the form n � n0 � n2hE2�t�i for the refrac-
tive index, where n2 is the Kerr parameter and the
average is over a few optical cycles. Although it is pos-
sible to extend the envelope approach further by adding
additional nonlinear terms [3], it is common to employ
the finite-difference time-domain (FDTD) method and
solve Maxwell’s equations directly in the time domain
[4]. The FDTD approach shows that the use of E2�t� in
place of its average leads to carrier-wave shocking and
generation of odd-order harmonics when a pulse propa-
gates inside a Kerr medium [5]. However, the use of
FDTD algorithm requires a step size that is a small frac-
tion of wavelength λ. As a result, its use becomes time
consuming for distances much longer than λ.
We recently developed a time-transformation techni-

que to propagate the pulse through a Kerr medium by
performing a nonlinear mapping of the electric field. This
approach does not require step sizes much shorter than λ
[6]. Chromatic dispersion can be easily included into this
approach [7]. However, in our previous work, we used
hE2i in including the Kerr nonlinearity. Here we apply
the time-transformation method to study propagation
of few-cycle pulses with n � n0 � n2E2�t�. Our approach
correctly predicts the formation of carrier-wave shocking
and generation of harmonics and agrees fully with the
FDTD approach. We then extend our analysis by includ-
ing both the chromatic dispersion and a finite response of
the Kerr nonlinearity.

In the time-transformation method, propagation
through a nonlinear medium of length L is governed
by [7]

Eout�t� �
Z

∞

−∞
h�t − t0 − Td�Ein�t0�dt0; (1)

where Td�t0� represents the delay of a temporal slice lo-
cated at t0. We convert this equation into a convolution

Eout�t� �
Z

∞

−∞
h�t − t1�E0�t1�J�t1�dt1; (2)

by the nonlinear temporal mapping t1 � t0 � Td�t0�. Here
h�t� is the Fourier transform of the frequency response
function H�ω� � exp�in0�ω�ωL∕c� and the Jacobian of
the time transformation is given by J�t1� � dt0∕dt1.

The time delay has two parts, Td � Tl � Tnl. The linear
part, Tl � n0L∕c, comes from the linear part of the refrac-
tive index, and the nonlinear part for a Kerr medium is
given by

Tnl�t� �
n2L
c

Z
t

−∞
R�t − t0�E2�t0�dt0; (3)

where R�t� is the third-order nonlinear response function
of the medium. It is important to stress that the length L
in Eq. (3) should be a small fraction of the nonlinear
length [1]. In practice, the nonlinear medium is divided
into multiple sections, and Eq. (2) is used repetitively
to propagate the pulse through each section. Because
of the use of E2 in Eq. (3), instead of its cycle-average
value, Tnl oscillates at a frequency twice that of the input
field. As will be seen later, these rapid oscillations gen-
erate odd-order harmonics within the Kerr medium.

As a simple test of the validity of our time-
transformation method, we first consider a nondispersive
Kerr medium. We assume that the Kerr medium responds
instantaneously and use R�t − t0� � δ�t − t0� in Eq. (3). The
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input field oscillating at the frequency f c � 200 THz has a
Gaussian envelope with a width parameter T0 � 5 fs:

Ein�t� � E0 exp�−t2∕�2T2
0�� cos�2πf ct�: (4)

The peak amplitude E0 of the electric field is set by
the maximum nonlinear phase shift it experiences,
ϕmax � 2πf cn2E2

0L � 0.3.
Figure 1 shows the electric fields and corresponding

optical spectra at the input and output ends of the Kerr
medium using our approach and compares them with
those obtained with the FDTD method. The agreement
between the two is excellent. The output electric field
is distorted because of carrier-wave shocking [5], which
happens mainly near the pulse center, where the Kerr
effect is the strongest. The distortion of the electric field
is due to the generation of odd-order harmonics that are
seen clearly in Fig. 1(b) up to 9f c. Physically speaking, a
Kerr medium modulates the refractive index in a
periodic fashion at 2f c, creating a moving index grating,
which creates spectral sidebands seen in Fig. 1(b).
Mathematically, the change in the refractive index can be
expressed as

Δn � 1
2
n2E2

0 exp�−t2∕T2
0��1� cos�4πf ct��: (5)

The first term (without f c) is responsible for self-phase
modulation, while the second term generates odd-order
harmonics.
The instantaneous response of a Kerr medium is

clearly an approximation because any electronic re-
sponse should be delayed by some finite time. While this
approximation is justified for relatively wide pulses, it
becomes questionable for ultrashort pulses. To relax it,
we introduce a finite response time τk for the Kerr
nonlinearity through a commonly used Debye model
[8]. It assumes the following exponential form of the
response function R�t� in Eq. (3):

R�t� � τ−1k exp�−t∕τk�: (6)

In the limit τk � 0, R�t� is reduced to a δ function, as
expected. We performed a series of simulations where
we reduced τk from 2 to 0.05 fs, while keeping all other
parameters the same as in Fig. 1. Figure 2 shows how the
peak amplitudes of the third, fifth, and seventh harmo-
nics vary with τk. As seen there, the amplitudes of all
harmonics decrease almost exponentially as τk increases
(notice the semi-log nature of the plot), but the rate of
decrease is different for different harmonics. The third
harmonic decreases the least [8], and the rate becomes
larger for higher-order harmonics. This behavior can be
understood by noting that the Δn in Eq. (5) oscillates at a
frequency of 400 THz. In order to resolve these dynamics,
the response time should be well below 2.5 fs.

We now consider the case of a dispersive Kerr medium
since dispersion cannot be ignored for ultrashort pulses.
As is well known, optical solitons can form in a disper-
sive Kerr medium with a delicate balance between the
nonlinear and dispersive effects and when pulses with
a specific shape and peak intensity are launched. It is
not expected that this balance will persist for few-cycle
pulses that are effected by higher-order effects, such as
self-steepening and higher-order dispersion. Nonethe-
less, it is possible that pulses will remain close to their
original shape. To see this effect numerically, we consid-
er an optical pulse with a sech-shape envelope and re-
place the Gaussian factor in Eq. (4) with sech�t∕T0�
and use T0 � 10 fs. In order to include higher-order dis-
persive effects for such ultrashort pulses, we employ the
Lorentz model for the dielectric constant of the Kerr
medium in the form

ε�ω� � ε∞ � ω2
0�εs − ε∞�

ω2
0 − iδω − ω2 : (7)

The four parameters appearing in this model are chosen
as εs � 5.25, ε∞ � 2.25, ω0 � 6 × 1014 rad∕s, and
δ � 2 × 109 s−1. The second-order dispersion parameter
β2 of such a Kerr medium varies from −4 to −20 ps2∕m
over the frequency range 180–220 THz, a range that in-
cludes f c � 200 THz used in our simulations. The peak
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Fig. 1. (Color online) (a) Electric fields and (b) optical spectra
at the input (dashed blue curves) and output ends of a nondis-
persive Kerr medium using our new approach (dot-dashed red
curves) and the FDTD method (solid yellow curves).
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Fig. 2. (Color online) Changes in the relative amplitudes of the
first three harmonics with the Kerr response time τk. In all
cases, the amplitude decreases almost exponentially with
increasing τk.
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amplitude E0 in Eq. (4) is chosen to satisfy the
soliton-formation condition [1] and is found using
n2E2

0 � 0.0182.
To see whether soliton-like features persist, we propa-

gate the few-cycle pulse in such a dispersive Kerr
medium for distance up to 150 μm and compare the
results with the case when nonlinearity is removed by
setting n2 � 0. Figure 3 shows the electric field of the
pulse in these two cases at distances of 50 and
150 μm, corresponding to 4LD and 12LD, respectively,
where LD � T2

0∕jβ2j is the dispersion length [1]. In a dis-
persive medium without any nonlinear effects (n2 � 0),
pulse broadens rapidly as expected [Fig. 3(a)]. However,
when Kerr nonlinearity is include, pulse width remains
close to its original shape, indicating soliton-like propa-
gation [Fig. 3(b)]. It is also clear from Fig. 3 that the pulse
does not maintain its original shape fully and develops a
long tail whose origin is related to the presence of higher-
order dispersive effects and self-steepening. A weak
“daughter” pulse that oscillates at a much higher fre-
quency can also be seen in Fig. 3. The origin of this
daughter pulse lies in the odd-order harmonics generated
by the Kerr nonlinearity (see Fig. 1). In the nondispersive
case, all frequency components overlap temporally, lead-
ing to carrier-wave shocking. In a dispersive medium, be-
cause of a frequency-dependent group velocity, various
harmonics travel at different speeds and form a daughter
pulse, which separates from the main pulse. This separa-
tion becomes larger at longer distances, as seen in Fig. 3.
As a further check of the accuracy of our results, we

solved the same propagation problem with the FDTD
method. The central inset in Fig. 3 compares the FDTD
results at a distance of 50 μm with those obtained by the
time-transformation method. Both the amplitudes and
phases of the transmitted electric field agree quite well.
However, the time-transformation method has a distinct
advantage over the FDTD technique in terms of the com-
putation speed. In our tests (using MATLAB, version 7.8),
our method was more than 10 times faster than the FDTD
method for attaining the same accuracy for the results
shown in the inset of Fig. 3. The reason is that the section

length in our method is not related to the temporal reso-
lution employed.

In conclusion, we apply our recently developed time-
transformation method for studying the propagation of
few-cycle optical pulses inside a nonlinear Kerr medium
with n � n0 � n2E2�t�. Our technique correctly predicts
carrier-wave shocking and generation of odd-order har-
monics, the two features found earlier with the FDTD
method. The time-transformation method makes it rela-
tively easy to take into account a finite nonlinear re-
sponse time. We used this feature to study the impact
of a finite response time of the Kerr nonlinearity on har-
monic generation. As a further extension, we include
chromatic dispersion using a Lorentz model so that dis-
persion to all orders can be included for few-cycle pulses.
We show numerically that nonlinear effects can help in
controlling the width of an ultrashort pulse, even though
it cannot propagate as a fundamental soliton. Our time-
transformation method provides an alternative to the
FDTD technique as it deals with the electric field directly
but does not require step size to be a small fraction of the
wavelength, resulting in much faster computation
speeds. It should prove quite useful in the fields of non-
linear optics, ultrafast optics, and terahertz optics dealing
with single or few-cycle pulses.
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Fig. 3. (Color online) Electric fields of a 10 fs optical pulse after it has propagated for 50 μm (4LD) and 150 μm (12LD) in a (a) linear
and (b) nonlinear dispersive medium. (Inset) Comparison of the time-transformation (dashed red) and the FDTD (solid yellow)
methods in the nonlinear case; an expanded view of the daughter pulse is also shown.
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