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Abstract—We investigate theoretically nonlinear transmission
in space-division multiplexed (SDM) systems using multimode
fibers exhibiting rapidly varying birefringence. A primary objec-
tive is to generalize the Manakov equations, well known in the case
of single-mode fibers. We first investigate the case where linear
coupling among spatial modes of the fiber is weak and derive new
Manakov equations after averaging over random birefringence
fluctuations. Such an averaging reduces the number of intermodal
nonlinear terms drastically since all four-wave-mixing terms
vanish. Cross-phase modulation terms still affect multimode
transmission but their effectiveness is reduced. We verify the ac-
curacy of new Manakov equations by simulating the transmission
of multiple 114-Gb/s bit streams in the PDM-QPSK format over
different modes of a multimode fiber and comparing the numerical
results with those obtained by solving the full stochastic equations.
The agreement is excellent in all cases studied. A major benefit
of the new Manakov equations is that they typically reduce the
computation time by more than a factor of 10. Our results show
that birefringence fluctuations improve system performance by
reducing the impact of fiber nonlinearities. The extent of improve-
ment depends on the fiber design and how many spatial modes are
used for SDM transmission. We also consider the case where all
spatial modes experience strong random linear coupling modeled
using a random matrix. We derive new Manakov equations in this
regime and show that the impact of some nonlinear effects can be
reduced relatively to single-modes fibers. Finally, we extend our
analysis to multicore fibers and show that the Manakov equations
obtained in the strong- and weak-coupling regimes can still be
used depending on the extent of coupling among fiber cores.

Index Terms—Birefringence, fiber nonlinearity, Manakov equa-
tion, multicore fiber, multimode fiber, space-division multiplexing.

I. INTRODUCTION

ECENT work on the fiber-capacity limit [1]-[3] has in-

dicated that the continued use of single-mode fibers for
modern telecommunication systems may not be able to support
the growing data-traffic demand in the near future [4], [5]. Al-
though more single-mode fibers can be deployed as a short-term
solution, it is important to look for alternative solutions for the
next generation of optical transmission systems. The impres-
sive bit-rate increase of the last two decades was made pos-
sible by exploiting diverse properties of electromagnetic fields
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through wavelength-division multiplexing (WDM) in combina-
tion with phase modulation formats and polarization-division
multiplexing (PDM). Recently, multimode fibers have become
the focus of attention [6], [7]; they permit multiplexing over
different spatial modes of the same fiber through space-divi-
sion multiplexing (SDM). Recent work has focused on demon-
strating the feasibility of the SDM technique and how digital
signal processing (DSP) can help to compensate linear distor-
tions of the received signal [8], [9]. However, nonlinear penal-
ties are often the limiting factor for modern telecommunication
systems and their understanding in the case of multimode fibers
is still very limited compared to the case of single-mode fibers.

In this paper we follow an approach similar to that in [10]
and derive in Section II a new set of multimode nonlinear
equations by representing the two polarization components
of each spatial mode through a Jones vector. We use them
to study the effects of fiber’s random birefringence between
the two polarization states of the same mode using random
Jones matrices in two important cases of practical interest
that we refer to as the weak- and strong-coupling regimes.
In the weak-coupling regime, linear coupling among distinct
spatial modes is small compared to the birefringence-induced
coupling between the two polarization components of the same
spatial mode. In contrast, two types of random coupling are
comparable in the strong-coupling regime. Even though no
mode coupling occurs in ideal multimode fibers, real fibers al-
ways exhibit some coupling between any pair of spatial modes
because of external factors such as cabling, bending, twisting,
and core-size variations occurring during fiber fabrication.
In practice, some modes of multimode fibers may be weakly
coupled while others are strongly coupled. For instance, it
was observed in [8] that the LP11a spatial mode was strongly
coupled to the LP11b mode but only weakly coupled to the
LPO1 mode. The strong- and weak-coupling regimes studied in
this work represent two extreme cases for practical systems.

It is well known in the case of single-mode fibers that rapidly
varying birefringence results in an averaging effect that reduces
the strength of nonlinearities: mathematically, this averaging
is described by the Manakov equations [11]-[13] whose use
also reduces computation time during numerical simulations.
The single-mode Manakov equations cannot be used for mul-
timode fibers as they do not include the intermodal nonlinear
effects. In Section III, we derive a new set of Manakov equa-
tions for multimode fibers in the weak-coupling regime by av-
eraging over all possible polarization states [11]. In Section IV,
the impact of rapidly varying birefringence on a specific SDM
transmission system is studied through numerical simulations.
In Section V, we consider the strong-coupling regime that has
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attracted theoretical attention to obtain an understanding of sto-
chastic effects such as random differential group delays [14] or
random mode-dependent losses [15]. Mecozzi et al. recently ob-
tained Manakov equations for multimode fibers in the strong
coupling regime [16]. Following a different approach based on
random matrix theory, we obtain similar results and compare the
system performance in the weak- and strong-coupling regimes.
In Section VI, we consider the case of a multicore fiber where
linear coupling depends on the core spacing. We show that Man-
akov equations obtained here in the weak-coupling regime are
valid as long as the length scale of the birefringence fluctua-
tions is 100 times shorter than that of linear coupling. We also
show that Manakov equations obtained in the strong-coupling
regime can be used when the coupling length is comparable to
the length scale of birefringence fluctuations.

II. NONLINEAR PROPAGATION IN MULTIMODE FIBERS

We simplify the analysis in [10] by neglecting longitudinal
components of modal fields and assume that two linearly po-
larized components of each spatial mode have the same spatial
distribution (see [8]). We write the total electric field in the spec-
tral domain as a sum over M distinct spatial modes of the fiber:

M

E(r,y,zw) = Y e AL (2. w0)F(2,9)/ VN,

m=1

where A,,(z,0) = [Apx(z,w)Any(z,w)]T is the Fourier
transform of the slowly varying field envelope of the mth mode
in the Jones-vector notation. The superscript T denotes the
transpose operation and a tilde denotes a frequency-domain
variable. The mth spatial mode has the spatial distribution
F,.(z,y) and the propagation constant 3,,(w), expressed in
the form of a 2 x 2 diagonal matrix to account for fiber bire-
fringence, i.e., B8,, = diag[fu.x Fmy]. The modal distributions
in (1) satisfy the orthogonality condition and are normalized
such that

// (z,9)F (2, y)dz dy = ’Hlmﬁmgr (2)

YrrL

N,. = (1/2)epTen (’Im in (1) represents the power carried by
the mth mode, L,, = (R /Tett) [f |Fon|?(z, y)dz dy, € is the
vacuum permittivity, i, the effective index of the mode m,
and n.g is the effective index of the fundamental mode. In this
paper, we employ the terminology of LP modes obtained in the
weakly-guiding approximation, but allow for the possibility of
different propagation constants for the modes that are degen-
erate in that approximation (such as LP11a and LP11b modes).
Each frequency component of the optical field satisfies the
following equation:
w ~ ~
2 EWw) = M w),

V2E(w) + nd(x, y) —w? P 3)

where no(z, y) is the refractive index profile of the multimode

fiber and PN (w) is the Fourier transform of the third-order

nonlinear response [18]:

€ @3 ywT * | o(mH
YO[ETE)E" + 2(EYE)E).

PN = )

Here, x® is the third-order nonlinear susceptibility of silica and
the superscript ! denotes the Hermitian conjugate.

We assume that the modal spatial distribution is not perturbed
by PN or by small variations of the refractive index along z.
In that case, F,,, (i, y) satisfies the eigenvalue equation

w?

Vo (z,y) + ( S ng (. y) — m]> Fo(z,y) =0, (5)
where j = x,y refers to the two orthogonal polarizations of
the mth spatial mode. In the case of an ideal fiber with perfect
cylindrical symmetry, 3,,,x = [y . In practice, all fibers exhibit
some birefringence that fluctuates along the fiber length on a
length scale ~100 m. In the remainder of this section, we con-
sider a sufficiently short fiber section and assume birefringence
remains constant along its length. Multiple randomly oriented
birefringent fibers segments are treated in subsequent sections.

To isolate the evolution of a specific spatial mode, say the pth
mode, we substitute (1) in (3), multiply both sides with ', and
integrate over the transverse z-y plane. The resulting equation
is then converted to the time domain by following a standard
procedure and expanding 8,(w) in a Taylor series around the
carrier frequency wg [19]. The final result can be written in the
form

()A. 1 aAp /82]7 a Ap
92 = WBoy = Or) Ay (ﬂ r q;y,,) a2 e
"Y #*
+1 Z flmnp_ m) Al +2 (AFAm) An} ) (6)

tmn

where A, (z,t) is the slowly varying envelope of the pth
mode expressed in a reference moving frame at a group ve-
locity vg, and g, is a reference propagation constant. Further,
ﬁﬂp = ﬂp(wo)’ :Blp = aﬂp/adeo’ and 62]? = azﬂp/aw2|wo
are respectively the propagation constant, inverse group ve-
locity and group-velocity dispersion (GVD) of the pth spatial
mode. We assume here that the two polarization components
of a spatial mode may have different group velocities but have
the same GVD.

The nonlinear parameter in (6) is defined in a fashion similar
to single-mode fibers, v = 3kox ) /(degcin?q AST), where ko =
wo/c and ASH is the effective area of the fundamental mode. The
nonlinear coupling among spatial modes is governed by

ATH ' * *
75 | | FiFEuFdedy. ()

](lm np — m

Equation (6) governs propagation of arbitrarily polarized
light in the spatial mode p within the Jones-matrix formalism.
It includes all third-order nonlinear effects (both intramodal
and intermodal types) as well as dispersive and birefringence
effects. Fiber losses can also be included by adding the term
—(ap/2)A, on its right side, where the loss parameter ¢, can
be different for different modes.

III. MANAKOV EQUATIONS IN WEAK-COUPLING REGIME

Equation (6) does not prescribe how constant birefringence
evolve along the fiber length. In practice, owing to fiber imper-
fections such as a nonuniform core whose shape varies along the
fiber, birefringence varies rapidly and seemingly randomly on a
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length scale that is expected to be short compared to the effec-
tive lengths associated with the GVD and various nonlinearities.
This feature can be implemented numerically by rotating the
principal axes of the fiber periodically after a distance shorter
than the length scale of birefringence fluctuations. Such an ap-
proach is needed when polarization-mode dispersion (PMD) is
of concern. However, a numerical solution of (6) requires a rel-
atively small step size and is quite time-consuming.

In the case of single-mode fibers, this problem has been
solved by adopting the well-known Manakov-PMD equations
[11], [12]. The idea is that, as a rapidly varying birefrin-
gence changes continually the state of polarization (SOP) of
propagating light in a random fashion, one can average the
propagation equation itself over all polarization states. We can
follow the same procedure for multimode fibers by assuming
that the SOP of each spatial mode evolves randomly and inde-
pendently of other modes. This approximation can be justified
by noting that, as spatial distributions of various fiber modes are
different, the influence of local stress and fiber imperfections
may also be different from one spatial mode to another. Even if
some correlation exists in the SOP evolution of different spatial
modes over short distances, it is unlikely that it will persist after
a sufficiently long propagation distance. Fiber imperfections
also cause some linear coupling among spatial modes. In this
section we assume this coupling to be so weak that it can be
neglected. We have verified numerically that our results remain
unaffected when small random mode couplings are included.

A rapidly varying fiber birefringence can be tracked using the
transformation

Ap(z) = RP(Z)AP(Z) 3

where R, (#), a unitary matrix belonging to the group U(2), is
a Jones matrix of the form

R,(:) = |

Ta1p

T12p
o, } )
where 7, ;, are random variables. An important issue is how to
construct R,, to ensure that the SOP probability for the pth mode
is uniformly distributed over the entire Poincaré sphere. We use
the following procedure applicable to the general case of n X n
matrices [27]: pick a matrix M whose all elements are normally
distributed (with zero mean) and apply a QR decomposition,
M = RT, such that T is an upper triangular matrix with posi-
tive diagonal entries. Then, R is a Haar matrix whose elements
are uniformly distributed over U(n).

The use of (8) in (6) leads to the following equation for A :

A, OA, B, 9?A,

5a = '0Boy Ay — 8Py, 5 -1t + N (10)
where {
50y, = R (B, — )R, —REZE (1)
5,31p E(ﬂm 1/vg, )Ry, (12)
and the nonlinear term is given by
NP_IZf,,lmn ([ATRIR,,A,,] RIR; A},
" +2[A'R/'R,,A,]RIR,A,). (13)
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Equation (10) is stochastic because R, (z) is a random ma-
trix that changes along the fiber length on a length scale asso-
ciated with birefringence fluctuations. As a result, the birefrin-
gence parameters appearing there vary randomly. In addition,
the intramodal and intermodal nonlinear couplings also become
random. To obtain the Manakov equations, we average (10) over
all possible realizations of the matrix R.,,. Averaging over bire-
fringence amounts to assuming that other phenomena that pro-
duce z-dependent variations occur over a much longer length
scale in comparison to the length scale of polarization fluctua-
tions within each spatial mode.

Let us focus first on the nonlinear terms in (13). The matrix
multiplications appearing there can be expressed as

RITRm — |:(z’lm ljlm:| RZHR' L= |:(gim bin,

ml )

} (14)

mi  Clm

where we have defined the following quantities:

Am = ,,.’1"11 T 1m + l";ll T21m (15)
bim = 710 T12m + 7511 T22m (16)
Clm = l’;ll T21m + l";Zl T29m (17)
Ut = 7111 "11m + 721 T21m (18)
bim = T111 T12m + T211 T22m (19)
Clm = 7211 "21m + 7221 T22m - (20)

Using (14) in (13), the nonlinear terms for the x-polarized pth
mode become:

JVPX =1 Z fplmn%

imn

(2 [alm [m ‘A A

+ blm a“pnAle
+ a‘lmb;nAlx

+blmb A*A my ny]
+ |:alm pnAle Anx + bmlapnAlyA A*

mx*inx
~ * o) *
+ blm,apnAlem,yAnx + Clma AI} A A

+ &lm B;nAlemxA:y + l;* lb AlyA A*

m mx

*Alemy Any + ('lmbpnAly Aln\ ATL}i| ) (21)

We are interested in finding the ensemble average, or the
expectation value denoted by (), of various coefficients ap-
pearing in (21). When the subscripts [, m, p, n correspond to
different spatial modes (I # m # p # n), the coefficient
@14nGpr 1s @ sum of products of functions 7117, "11m: 110, T11p
and 7217, 721, T21n, T21p, all of which are independent random
variables with zero mean. As a result, (@, ) = 0. With the
same kind of reasoning, we find that all terms in (21) average to
zero, except those containing the combinations

Anx + bml A* A A nx
A + Cim ¢ pnAly A
Anv + bmlbpnA* A

N *
Any =+ clmupnjg A

{J>|

my my

b=

mx mx ny

b=

my

-i_i)lrnb)k

pn

* ~ sk 1
(bppbpp> = <a’ppapp> = g (22)
Cm'ma’pp = C'rn'ma’PP = a’ppa’pp = Cppa’pp = 1 (23)
~ oK 7 7% 1
<apmapm> = <bpmbpm> = 5 (24)
" 1
<ampa“pm> - <bpmbpm> = 5 (25)
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These equations are obtained using the properties of Haar ma-
trices, which are given by (35) to (37) in the case of 2M x 2M
matrices and assuming that R; are independent random unitary
matrices. Finally, by gathering the nonzero terms both in N
and \V,,y, we obtain the following Manakov equation for the pth
mode:

OA, - oA, Bop OZA,,
Ep +<6ﬂ0p>AP+<6ﬂ1p>W 'S o
8+ o e
=y fmvpp§‘Ap| + Z fmmpp§|Am| Ap, (26
m+#p
with

1
<6ﬂ0p> = 5(51»: + ﬁpy) = B, 27
_ 1 0ﬁpx éwpy 1
(6B1,) = 3 ( o |, + Do WO) - ; (28)

These generalized Manakov equations are deterministic,
as they do not contain any rapidly fluctuating terms. Aver-
aging over birefringence fluctuations amounts to evaluating
the overall effect of random birefringence after a sufficiently
long propagation distance. For instance, the average group
velocity of the two polarization components is given by (28).
In practice, they propagate with group velocities varying
around this average value, resulting in the PMD effects. The
fluctuations around the average are given by 68, — (68;,)
and can be included if PMD effects are of interest. In the same
way, nonlinear PMD [12] can be studied by adding the term
N, — {N,). By including these rapidly varying terms to (26),
one can obtain the generalized Manakov-PMD equation.

Equations (26) represents an extension of the standard Man-
akov equations for multimode fibers that takes into account
random polarization birefringence within each spatial mode.
The first nonlinear term represents the intramodal nonlinear
effects, it occurs for single-mode fibers as well with the same
coefficient 8/9. The second nonlinear term is new. Its origin
lies in the intermodal nonlinearities among various fiber spatial
modes. The averaging over random birefringence fluctuations
reduces the factor of 2 that is associated with XPM to a lower
value of 4/3.

The new Manakov equations (26) obtained for multimode
fibers can be solved numerically much faster than (10) and they
should help considerably in understanding nonlinear propaga-
tion of SDM systems. However, before it can be used with con-
fidence, we need to ensure that its predictions agree with those
of (10). In the next section we verify this by considering a spe-
cific SDM system.

IV. NUMERICAL SIMULATIONS

In this section we compare the performance of a specific SDM
system under three different conditions. In the case of no bire-
fringence, we solve the deterministic equation (6) numerically
with the split-step Fourier method. Birefringence is included ei-
ther by solving explicitly the stochastic equation (10) using new
random matrices at each step [20] or by solving the new set
of generalized Manakov equations (26). We use a step size of

100 m in all cases although larger step sizes could have been
used in the Manakov case. This step size corresponds to an av-
erage nonlinear phase shift of less than 0.01 rad per step and it
was verified that smaller step sizes lead to the same results.

In the following simulations, we assume that each spatial
mode carries two single-wavelength channels through PDM (no
WDM) at a bit rate of 100 Gb/s with 14% FEC overhead, re-
sulting in a symbol rate of R, = 28.5 Gbaud for the QPSK
format. Each PDM-QPSK signal is constructed from an inde-
pendent random bit stream that is Gray-mapped onto the QPSK
symbols. The pulse shape corresponds to a raised-cosine spec-
trum with a roll-off factor of 0.2. Each PDM-QPSK signal is
made of 2'® modulated symbols with 217 samples per polariza-
tion. The injected power per spatial mode is P;,, = 7 dBm. This
value is deliberately high in order to observe large nonlinear
impairments so as to represent a very stringent test of the new
Manakov equations.

The 1000-km transmission line consists of 10 sections of
100-km multimode fiber, each section being followed by an
ideal erbium-doped fiber amplifier (EDFA) that can compen-
sate for the span losses of 0.2 dB/km (assumed to be the same
for each spatial mode). To save computation time, we do not add
noise during amplification but add the total noise at the end of
the fiber link such that it corresponds to the amplified sponta-
neous emission (ASE) added by all EDFAs. To justify this pro-
cedure, we compared the system performance with full simu-
lations that added noise after each amplifier and found that the
location of the noise did not make a noticeable difference.

We focus on a step-index multimode fiber with a core diam-
eter of 12 um and a numerical aperture of 0.2 (A = 0.01).
Such a fiber has the V parameter of 5 at 1550 nm, and it sup-
ports LPO1, LP02, LP11, LP21 modes, resulting in a total of 6
spatial modes when we take into account two-fold degeneracy
of the LP11 and LP21 modes [17]. Table I presents the spatial
distributions F,,, (z, y) of different spatial modes supported by
the fiber. Each spatial mode has its own propagation constant,
modal group velocity and chromatic dispersion /7. We choose
the reference values {3, and v, to correspond to the fundamental
mode of the fiber. With this identification, (68;,,) is the differen-
tial modal group delay (DMGD) of the pth mode. Table II lists
the values of DMGD together with DD and the effective mode
area AT for all spatial modes. The value of nonlinear coeffi-
cientis vy = 1.4 W 'km ! in all our simulations.

At the receiving end, the symbol stream is coherently de-
tected by polarization-diversity 90-degree hybrid, followed by
analog to digital converters. We assume an ideal DSP scheme
that compensates perfectly all linear impairments (such as chro-
matic dispersion, group-velocity mismatch, mode mixing, and
polarization mixing). This is justified in practice since modern
equalizers can remove most, if not all, linear impairments [21].
It also lets us present our results in a way that is independent of
the type of equalizer employed.

Fig. 1 shows the bit-error rate (BER), averaged over all prop-
agating spatial modes when SDM is employed, as a function of
the optical signal-to-noise ratio (OSNR) [1] after 1000 km when
114-Gb/s bit streams are transmitted on different combinations
of spatial modes. Solid and dashed curves compare predictions
of our new Manakov equations (26) with of the full stochastic
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TABLE I
SPATIAL DISTRIBUTIONS OF THE MODES SUPPORTED BY THE STEP-INDEX AND
GRADED-INDEX FIBERS USED IN NUMERICAL SIMULATIONS

Graded-index fiber

Spatial distribution shapes Step-index fiber

LPOI HGOO
LPIla, LPIIb |  HGOI, HG10
O LP02 HG02+HG20

LP21a, LP21b HGl1l1a, HG11b

TABLE 11
DMGD, DISPERSION D, AND EFFECTIVE MODE AREA A® OF VARIOUS
SPATIAL MODES SUPPORTED BY THE STEP-INDEX MULTIMODE FIBER

DMGD [ns/km] | D [ps/(km-nm)] | AT [um?]
LPO1 0 25 80
LP11 6.5 27.3 76
LP02 9.9 2.3 83
LP21 12 20.8 86
-1 T T T T T
V LPO1
& [ LPO1 & LP11a
1.5F O LPO1 & LP11a & LP02| ]

Iogm BER

12 14 16 18 20 22
OSNR [dB]

Fig. 1. Calculated BER versus OSNR when a step-index few-mode fiber is
used to transmit 114-Gb/s PDM-QPSK signals over 1000 km using one (trian-
gles), two (squares), or three (circles) spatial modes (BER is averaged in the case
of multiple spatial modes). Solid curves obtained using Manakov equations (26)
overlap completely with dashed curves obtained using the stochastic equation
(10); the dotted curves show the zero-birefringence case using (6). Back-to-back
case (no fiber) is also shown for reference.

equations (10); their complete overlap indicates that our new
Manakov equations should prove useful for SDM systems as its
use reduces considerably the computation time.

To study the impact of random birefringence on system per-
formance, we also show in Fig. 1 with dotted curves the case
of an ideal multimode fiber (no birefringence) by solving (6)
numerically. It is evident that birefringence actually improves
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Iog10 BER

¥ LPi1a, LP11b b
O LP21a, LP21b |

12 14 16 18 20 22
OSNR [dB]

Fig. 2. Calculated BER versus OSNR for individual spatial modes after 1000
km transmission of 114-Gb/s PDM-QPSK signals. Solid curves show the case
when all 6 spatial modes are used through SDM, while dashed curves are ob-
tained when signal is launched into one spatial mode of a multimode fiber (no
SDM).

system performance in all cases by lowering the BER slightly.
This improvement in BER is easily understood if we recall that
the averaging over rapidly varying birefringence leads to (26) in
which the nonlinear coefficient associated with the SPM intra-
modal nonlinearities is reduced from 1 to 8/9. Note also that, for
the chosen configurations of transmitted spatial modes, inter-
modal XPM effects are averaged out because of a large differ-
ential group delay among spatial modes [22], [23]. The reason
behind the large BER degradation observed in Fig. 1 in the case
of 3 co-propagating spatial modes (LP01+LP11+LP02) is re-
lated to a relatively small value of the dispersion D for the LP02
mode that degrades the performance of that mode (see Table II).

Fig. 2 shows the calculated BER for each spatial mode in
two cases. Solid curves show the case when all 6 spatial modes
are used through SDM, while dashed curves are obtained when
signal is launched into one spatial mode of a multimode fiber
(no SDM). The BER degradation between these two cases is
due to the inter-modal XPM. We observe that LPO1 and LP02
spatial modes suffer little from inter-modal XPM because of
their nondegenerate nature. In contrast, both LP11 and LP21
modes suffer considerably from inter-modal XPM because of
their degenerate nature that allows mode pairs such as LP11a
and LP11b to propagate at the same group velocity. The non-
linear inter-modal XPM coefficient is found to be 0.35 for the
LP11 pair and 0.92 for the LP21 pair. This relatively large value
for the LP21 pair is responsible for the large BER degradation
seen in Fig. 2. We should stress that these results neglect any
linear coupling among degenerate modes. In practice, degen-
erate modes can couple strongly, resulting in an averaging effect
that will reduce such large inter-modal XPM penalties.

In a step-index multimode fiber, various spatial modes prop-
agate with different group velocities. This DMGD introduces
linear degradations (similar to PMD) that must be compensated
at the receiver. In practice, the equalization complexity grows
in proportion to the magnitude of DMGDs. One way to reduce
the DMGD problem is to employ a graded-index fiber for which
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-1 T T T r T
V¥V HGO0O0
[] HGOO & HGO1
15l : O HGOO & HGO1 & HG02+HG20
\0
\
G -2
(a1}
o
5
= 25
-3 - —_—
12 14 16 18 20 22

OSNR [dB]

Fig. 3. Same as Fig. 1, but using a graded-index multimode fiber.

DMGD nearly vanishes for all modes supported by the fiber. It
is thus important to study how the system performance in Fig. 1
will change if the step-index multimode fiber used there were re-
placed with a graded-index multimode fiber. For this purpose,
we focus on a graded-index fiber whose refractive index varies
quadratically inside the core (with a parabolic shape). In such
idea fibers, all spatial modes propagate with the same group ve-
locity [17].

For numerical simulations, we consider a graded-index fiber
with a core diameter of 17.4 pm. Such a fiber supports sev-
eral Hermite-Gauss modes listed in Table I with D = 21.5
ps/(km-nm) for all modes and v = 1.4 W—'km~!. As before,
we assume no linear coupling occurs among the fiber modes. For
a fair comparison with the LP02 mode of a step-index fiber, we
consider a spatial distribution corresponding to the sum of the
HGO02 and HG20 spatial modes. Fig. 3 shows the BER as a func-
tion of OSNR under the same conditions used in Fig. 1, except
that the graded-index fiber replaces the step-index fiber. A com-
parison of two figures shows several interesting features. First, a
rapidly varying birefringence results in a larger improvement in
the case of graded-index fibers. Since all spatial modes have the
same group velocity, the inter-modal XPM effects are enhanced
in a graded-index fiber. The effect of rapidly varying birefrin-
gence results in the reduction of the XPM coefficient from 2
to 4/3, which improves system performance. Second, nonlinear
penalties for graded-index fibers are larger in the two-mode case
but become considerably smaller in the three-mode case. This
can be explained by noting that all spatial modes have here the
same GVD of 21.5 ps/(km-nm). In the case of our step-index
fiber, the LP02 had a very small dispersion parameter, resulting
in poor performance for this spatial mode.

Finally, we come to possibly the main advantage of using the
new Manakov equations (26). We have seen that its numerical
predictions give virtually identical results compared to those
obtained by solving (10). From a practical standpoint, the use
of Manakov equations is preferable because it requires much
less computational time. One reason is that the number of non-
linear terms is drastically reduced. For instance in the case of
3 propagating modes, there are 81 nonlinear terms in (10) but

TABLE III
COMPUTING TIME IN SECONDS FOR 1000-KM TRANSMISSION OF 114-GB/S
CHANNELS OVER MULTIPLE MODES WITH A 100-M STEP SIZE

Number of modes, M 1 2 3 4
Manakov Eq. (26) 270 | 800 | 1600 | 2800
unaveraged Eq. (10) | 720 | 7600 | 16000 | 31000

only 3 nonlinear terms are needed in (26). In general, there are
M?® — 1 intermodal nonlinear terms for a M -mode fiber while
there are M — 1 intermodal nonlinear terms for each gener-
alized Manakov equation. A second reason is that a solution
of (10) requires computation of an exponential matrix of size
2M x 2M, M being the number of spatial modes, which is a
time-consuming numerical operation. As a result, the reduction
in computing time depends on the value of M. This is evident
in Table III, which shows the computation time obtained on a
desktop computer using the MATLAB software (version 2007b)
for 1000-km propagation of 114-Gb/s channels with a step size
of 100 m and a temporal grid size of 2!7. Computation time is
reduced by nearly a factor of 10 even for M = 2, with larger re-
ductions occurring for larger values of M . For the sake of com-
parison, identical step sizes were used in both cases. However, a
much larger step size can be used in the Manakov case because
step size is set by the nonlinear effects which usually occur on a
length scale much longer than that of birefringence fluctuations.
Taking this into account, the use of the new Manakov equations
should reduce the computing time by a factor of more than 100
in most cases of practical interest.

V. MANAKOV EQUATIONS IN STRONG-COUPLING REGIME

The Manakov equations (26) are obtained in the limiting case
of no linear coupling among spatial modes. As mentioned be-
fore, in practice, some linear coupling occurs invariably in any
multimode fiber. In general, the strength of coupling may vary
for all mode pairs and is likely to be strongest for nearly de-
generate modes. Because it is difficult to address the general
problem of mixed coupling, it is assumed often that all modes
are strongly coupled [3], [14], [15]. We also adopt the strong-
coupling regime and derive new Manakov equations in this sit-
uation. More specifically, we employ 2M x 2M random uni-
tary matrices to account for random couplings among M spatial
modes, with two polarization states per mode.

Before applying such matrices to the nonlinear propagation
equations (6), we need to rewrite it in a fully vectorial form.
By introducing A = [AT ... AT]T as the column vector con-
taining 2M field envelopes. We obtain

oA
dz

1\o4 BydA
= Bo =)A= (Bl - r) e

+ // o (ATFOA) FOr A

+2 (ARFOA) FO A ds dy (29)
where F*) is a 2M x 2M matrix such that
k k
F{) F)
FR =1 (30)
% k
ngf)1 FEV)M
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whose M? elements are 2 x 2 block matrices such that

p@_ !

1) _ *
F,.' = F, F; I, b —(Iilj)lm FyF, I,

€2))

(I T )1/2

where 7,7 = 1... M and I is the 2 x 2 identity matrix.

The matrices By, By and By are 2M x 2M diagonal ma-
trices containing respectively the propagation constants, inverse
group velocities, and dispersion parameters of each mode. &, =
trace(Bg)/2M and 1/v,, = trace(B1)/2M represent respec-
tively the average values of the propagation constant and inverse
group velocity.

Following the procedure used in Section III, we apply the
substitution A = RA in (29) and obtain

+//% ﬂ%%mm@ﬁmwm%*

+ﬂﬁHR?ﬂ”RAyﬂ”ALMdy (32)
where

580:78%Bo—ﬁgn-wﬁﬂ%§7 (33)

681:7?%81——£JR“ (34)

Vg,

Here, R is a random 2A{ x 2M rotation matrix whose ele-
ments 7;; satisfy the following relations [28]:

1+ brpr

124 ' 2 P B
<|T'L"’| |T1k | > 2M(21M —+ 1) (35)
1 k£ K
m 'm, B 36
rimPrem ) = rr s =1 mpm GO
<Tki7‘kjrk’i7‘k’;j> = (2M T 1)2AM(2M — 1) i # 7 (37)

After averaging (32) we obtain the following Manakov equa-
tion in the strong-coupling regime:

o PA oo
5. + v vyr| A7 A (38)
where 3; = trace(Bz)/2M is the average GVD and
_ i 32 Jrkn (39)
95 6M(2M + 1)

Equations (38) and (39) are in agreement with the results in [16]
obtained using a different procedure in a more general case.

These Manakov equations result in having all spatial modes
propagate, on average, with the same group velocity v,, . How-
ever, in practice, fluctuations of the mode velocities around
v,, could be significant, due to incomplete averaging of group
velocities. One can account for them by adding rapidly varying
terms that correspond to the DMGD fluctuations given by
RUBIR — 1/v,, as in Eq. (34) (similar to the PMD case
discussed in Section III).
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Fig. 4. Averaged BER versus OSNR after 1000 km of propagation over a
graded-index fiber when 114-Gb/s PDM-QPSK signals are transmitted using
one, three, and six spatial modes. Square and diamond markers represent the
weak- and strong-coupling regimes, respectively. The dotted curve shows the
back-to-back case (no fiber).

A comparison of the magnitudes of various nonlinear coef-
ficients appearing in (26) and (38) reveals that system perfor-
mance improves in the high-coupling regime as the number of
spatial modes increases. This feature suggests that multimode
fibers supporting 2M modes exhibiting strong-coupling regime
may perform better than M single-mode fibers supporting 2 po-
larization modes under certain conditions.

Using the same parameter values used in Section IV,
Fig. 4 presents numerical results for 1000-km transmission
over a graded-index fibers supporting one, three, and seven
Hermite-Gaussian HG,,,,, spatial modes. In the case of a
three-mode fiber, data are transmitted on the HG00, HGO01 and
HGI10 spatial modes. In the case of a seven mode-fiber, data
are transmitted on the six spatial modes presented in Table 1.
Comparison of the weak- and strong-coupling regimes shows
that, as expected, the BER curves in the two cases coincide
when only one spatial mode of the fiber is used. However,
the high-coupling regime results in better BER performance
when data is transmitted using multiple spatial modes. Another
difference is that the performance is degraded in the weak-cou-
pling regime as the number of spatial modes increases whereas,
somewhat surprisingly, performance is nearly the same for
three or six spatial modes in the high-coupling regime.

VI. MULTICORE FIBERS

Future SDM systems may also make use of multicore fibers
in which each core supports a single spatial mode, but modes
in different cores can couple strongly if these cores are rela-
tively close to each other. In this case, the coupling strength de-
pends on the physical distance among its cores and its magni-
tude varies exponentially with this distance.

For numerical simulations, we consider an ideal 3-core fiber
having identical, and equidistant single-mode cores in an equi-
lateral triangular configuration. There are three spatial modes
F,,, each associated with the field propagating in one core. The
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Fig. 5. BER (averaged over the cores) as a function of coupling length L. when
114-Gb/s PDM-QPSK bit streams are transmitted over 1000 km (solid curve).
Dashed lines show the limiting BER in the weak- and strong-coupling regimes.

nonlinear propagation equation is given by (6), provided we add
the linear-coupling term ¢ Y, ¢mpA,, on the right side of this
equation. The coupling coefficients are defined as

ki / /
260 ImIp /2 m

where n,, (., y) is the spatial distribution of the refractive index
of the isolated cores in which the spatial mode m propagates and
(3o is the propagation constant.

Equation (40) is obtained using a coupled-core approach,
which assumes that spatial distribution of the electric field
propagating in one core, is not perturbed by the presence of
other cores [24]. Because of the symmetry of the three-core
fiber considered here, all coupling coefficients are identical
and we can replace g,,, with a single parameter g. Each core
of the fiber has a core diameter of 8.2 ym, with A = 0.003
and v = 1.4 W~ lkm~1. With these design parameters, inter-
modal nonlinear coefficients are negligible [25]. We modify the
strength of linear coupling by adjusting the distance between
fiber cores. It is useful to present the results in terms of the
coupling length L. = 7/(3¢q), which represents the distance at
which maximum linear power transfer occurs among the cores.
A rapidly varying birefringence in each core is included by
applying (8) and changing the rotation matrix randomly after
each 100 m step. These intra-core perturbations affect the linear
coupling such that the exchange of power between the cores
becomes stochastic.

Fig. 5 shows the BER as a function of coupling length (solid
blue curve) when 114-Gb/s independent random bit streams are
simultaneously transmitted through all three cores. The limiting
BERs in the weak- and strong-coupling regimes are shown for
comparison by dashed black lines. The injected power per core
is 8 dBm, and the OSNR at the receiver is set to 20 dB in all
cases.

When coupling length is comparable to the length scale L
of birefringence fluctuations (here 0.1 km), there is a large per-
formance improvement compared to the single-core case. This
improvement can be understood by noting that a rapid power
transfer among various modes induced by a strong linear cou-
pling and birefringence-induced polarization mixing helps to

F F* dx dy,

mep

(40)

Gmp =

mitigate nonlinear effects. It can be observed that performance
is identical to that of the strong-coupling regime. When the cou-
pling length becomes much larger than L ¢, the effects of linear
coupling are averaged out by rapidly varying birefringence, and
the nonlinear propagation in each core of the 3-core fiber be-
haves similarly to that in single-core fiber [25]. This occurs in
Fig. 5 for L. > 10 km and the BER approaches the limit set in
the weak-coupling regime.

The main point of Fig. 5 is that the new Manakov equations
derived in this paper can be used with success for multicore
fibers in certain cases. When cores are far enough apart that
L. > 100L s, Manakov equations in the weak-coupling regime
are valid. When L, =< Ly, Manakov equations in the strong-
coupling regime can be used. These results also suggest that in
the case of multimode fibers, Manakov equations (26) are also
valid when the coupling between spatial modes, resulting from
fiber imperfections, occurs on a length scale 100 times larger
than that of birefringence fluctuations and that (38) is valid when
they occur on the same or shorter length scale.

VII. CONCLUSION

In this paper we have focused on SDM systems using multi-
mode or multicore fibers and derived a set of nonlinear propa-
gation equations satisfied by the bit stream transmitted through
each optical mode in the presence of fiber dispersion, random
birefringence, and nonlinearity. We first expressed these equa-
tions in Jones vector form in the slowly varying envelope ap-
proximation so that both polarization components of each mode
can be treated simultaneously and we then used them to investi-
gate the performance of SDM systems designed with multimode
fibers exhibiting modal birefringence that varies randomly on
a length scale smaller than the length over which nonlinear ef-
fects become important. The effects of fluctuating birefringence
were included through random Jones matrices. As expected, in-
termodal nonlinearities are present and can degrade system per-
formance for multimode fibers. There are as many as M3 — 1
intermodal nonlinear terms for an M -mode fiber.

Since numerical simulations based on such stochastic non-
linear propagation equations are generally computationally in-
tensive, we generalized the Manakov equations, well known in
the case of single-mode fibers, to the case of multimode fibers.
We considered the weak linear coupling case first and averaged
over birefringence fluctuations following a procedure similar to
that used in the original derivation of the Manakov equations for
single-mode fibers. We found that averaging over birefringence
fluctuations reduces the M* — 1 intermodal nonlinear terms to
only M — 1 terms because all FWM-type terms disappear. The
XPM-type terms remain but their effectiveness is reduced be-
cause the well-known factor of 2 is reduced to 4/3.

We verified the validity of our generalized Manakov equa-
tions by simulating the transmission of multiple 114-Gb/s bit
streams in the PDM-QPSK format over different modes of a
multimode fiber and comparing the numerical results with those
obtained by solving the full set of stochastic equations explic-
itly. The agreement between the two methods was excellent in
all cases studied. We found that the use of the generalized Man-
akov equations can reduce computation time by at least a factor
of 10 and by a factor in excess of 100 as the number of modes
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grows. Our numerical results show that birefringence fluctua-
tions improve system performance by reducing the impact of
fiber nonlinearities. The extent of improvement depends on the
fiber design and how many modes are used for SDM transmis-
sion. We investigated both the step-index and graded-index mul-
timode fibers and considered up to three spatial modes in each
case.

We extended our theory to the case of strong random cou-
pling among various spatial modes of a multimode fiber and
derive generalized Manakov equations for this regime. We
showed though numerical simulations that the strong-coupling
regime leads to better system performance than the weak-cou-
pling regime when the number of spatial modes is at least two.
The theory also predicts that performance can improve for a
large number of co-propagating spatial modes.

Finally we studied the case of multicore fibers and discussed
the validity of the generalized Manakov equations by studying
the impact of linear coupling among various cores. We found
that the Manakov equations in the weak-coupling regime are
valid when the length scale of the random birefringence of
each core is about 100 times smaller than the linear coupling
length among the cores of a multicore fiber. We also found that
the Manakov equations in the strong-coupling regime are valid
when the length scale of the random birefringence is nearly the
same as the linear coupling length.
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