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Abstract: We derive approximate analytic expressions for the effec-
tive susceptibility tensor of a nonlinear composite, consisting of silicon
nanocrystals embedded in fused silica. Two types of composites are consid-
ered: by assuming that (i) the crystallographic axes of different crystallites
are the same, or (ii) crystallites are oriented randomly. In the first case,
the tensor properties of the effective third-order susceptibility are shown
to coincide with those of the bulk silicon. In the second case, however,
the tensor properties of the susceptibility of the composite material are
found to be quite different due to drastic modification of light interaction
with optical phonons inside the composite. The newly derived expressions
should be useful for modeling nonlinear optical phenomena in silica fibers
and waveguides doped with silicon nanocrystals.

© 2012 Optical Society of America

OCIS codes: (999.9999) Silicon nanocrystals; (160.4330) Nonlinear optical materials;
(190.4400) Nonlinear optics, materials; (260.2065) Effective medium theory; (190.0190) Non-
linear optics.

References and links
1. R. Soref and J. Lorenzo, “All-silicon active and passive guided-wave components for λ = 1.3 and 1.6 μm,” IEEE

J. Quantum Electron. 22, 873–879 (1986).
2. J. Leuthold, C. Koos, and W. Freude, “Nonlinear silicon photonics,” Nat. Photonics 4, 535–544 (2010).
3. L. Pavesi and D. Lockwood, eds., Silicon Photonics, vol. 94 of Topics in Applied Physics (Springer-Verlag,

Berlin, 2004).
4. D. Liang and J. E. Bowers, “Recent progress in lasers on silicon,” Nat. Photonics 4, 511–517 (2010).
5. I. D. Rukhlenko, C. Dissanayake, M. Premaratne, and G. P. Agrawal, “Maximization of net optical gain in

silicon-waveguide Raman amplifiers,” Opt. Express 17, 5807–5814 (2009).
6. A. Martinez, J. Blasco, P. Sanchis, J. V. Galan, J. Garcia-Ruperez, E. Jordana, P. Gautier, Y. Lebour, S. Hernan-

dez, R. Spano, R. Guider, N. Daldosso, B. Garrido, J. M. Fedeli, L. Pavesi, and J. Marti, “Ultrafast all-optical
switching in a silicon-nanocrystal-based silicon slot waveguide at telecom wavelengths,” Nano Lett. 10, 1506–
1511 (2010).

7. I. D. Rukhlenko, M. Premaratne, and G. P. Agrawal, “Analytical study of optical bistability in silicon-waveguide
resonators,” Opt. Express 17, 22124–22137 (2009).

8. M. Paniccia, “Integrating silicon photonics,” Nat. Photonics 4, 498–499 (2010).
9. L. Pavesi and R. Turan, eds., Silicon Nanocrystals: Fundamentals, Synthesis and Applications (WILEY-VCH

Verlag GmbH & Co. KGaA, Weinheim, 2010).
10. L. Khriachtchev, ed., Silicon Nanophotonics: Basic Principles, Present Status and Perspectives (Pan Stanford,

Singapore, 2009).
11. I. D. Rukhlenko and M. Premaratne, “Optimization of nonlinear performance of silicon-nanocrystal cylindrical

nanowires,” IEEE Photon. J. 4, 952–959 (2012).

#177189 - $15.00 USD Received 1 Oct 2012; revised 27 Oct 2012; accepted 27 Oct 2012; published 6 Nov 2012
(C) 2012 OSA 19 November 2012 / Vol. 20,  No. 24 / OPTICS EXPRESS  26275



12. F. D. Leonardis and V. M. N. Passaro, “Dispersion engineered silicon nanocrystal slot waveguides for soliton
ultrafast optical processing,” Adv. OptoElectron. 2011, 751498 (2011).

13. P. Sanchis, J. Blasco, A. Martinez, and J. Marti, “Design of silicon-based slot waveguide configurations for
optimum nonlinear performance,” J. Lightwave Technol. 25, 1298–1305 (2007).

14. V. A. Belyakov, V. A. Burdov, R. Lockwood, and A. Meldrum, “Silicon nanocrystals: Fundamental theory and
implications for stimulated emission,” Adv. Opt. Technol. 2008, 279502 (2008).

15. I. D. Rukhlenko, M. Premaratne, and G. P. Agrawal, “Effective mode area and its optimization in silicon-
nanocrystal waveguides,” Opt. Lett. 37, 2295–2297 (2012).

16. D. Stroud and P. M. Hui, “Nonlinear susceptibilities of granular matter,” Phys. Rev. B 37, 8719–8724 (1988).
17. X. C. Zeng, D. J. Bergman, P. M. Hui, and D. Stroud, “Effective-medium theory for weakly nonlinear compos-

ites,” Phys. Rev. B 38, 10970–10973 (1988).
18. D. J. Bergman, “The dielectric constant of a composite material – a problem in classical physics,” Phys. Rep. 43,

377–407 (1978).
19. S. N. Volkov, J. J. Saarinen, and J. E. Sipe, “Effective medium theory for 2D disordered structures: A comparison

to numerical simulations,” J. Mod. Opt. 59, 954–961 (2012).
20. W. Cai and V. Shalaev, Optical Metamaterials: Fundamentals and Applications (Springer, New York, 2010).
21. R. W. Boyd, R. J. Gehr, G. L. Fischer, and J. E. Sipe, “Nonlinear optical properties of nanocomposite materials,”

Pure Appl. Opt. 5, 505–512 (1996).
22. J. D. Jackson, Classical Electrodynamics, 3rd ed. (Wiley, New York, 1998).
23. P. M. Hui, P. Cheung, and D. Stroud, “Theory of third harmonic generation in random composites of nonlinear

dielectrics,” J. Appl. Phys. 84, 3451–3458 (1998).
24. D. Stroud, “Generalized effective-medium approach to the conductivity of an inhomogeneous material,” Phys.

Rev. B 12, 3368–3373 (1975).
25. J. Sipe and R. Boyd, “Nanocomposite materials for nonlinear optics based on local field effects,” in “Optical

Properties of Nanostructured Random Media,” , vol. 82 of Topics Appl. Phys., V. M. Shalaev, ed. (Springer-
Verlag, Berlin Heidelberg, 2002), pp. 1–19.

26. G. L. Fischer, R. W. Boyd, R. J. Gehr, S. A. Jenekhe, J. A. Osaheni, J. E. Sipe, and L. A. Weller-Brophy,
“Enhanced nonlinear optical response of composite materials,” Phys. Rev. Lett. 74, 1871–1874 (1995).

27. R. W. Boyd, Nonlinear Optics, 3rd ed. (Academic Press, San Diego, 2008).
28. J. Wei, A. Wirth, M. C. Downer, and B. S. Mendoza, “Second-harmonic and linear optical spectroscopic study

of silicon nanocrystals embedded in SiO2,” Phys. Rev. B 84, 165316 (2011).
29. Y. Jiang, P. T. Wilson, M. C. Downer, C. W. White, and S. P. Withrow, “Second-harmonic generation from silicon

nanocrystals embedded in SiO2,” Appl. Phys. Lett. 78, 766 (2001).
30. W. L. Mochan, J. A. Maytorena, B. S. Mendoza, and V. L. Brudny, “Second-harmonic generation in arrays of

spherical particles,” Phys. Rev. B 68, 085318 (2003).
31. J. I. Dadap, J. Shan, K. B. Eisenthal, and T. F. Heinz, “Second-harmonic Rayleigh scattering from a sphere of

centrosymmetric material,” Phys. Rev. Lett. 83, 4045–4048 (1999).
32. Q. Lin, O. J. Painter, and G. P. Agrawal, “Nonlinear optical phenomena in silicon waveguides: Modeling and

applications,” Opt. Express 15, 16604–16644 (2007).
33. M. Premaratne and G. P. Agrawal, Light Propagation in Gain Media (Cambridge Univ. Press, Cambridge, 2011).
34. G. P. Agrawal, Nonlinear Fiber Optics (Academic Press, San Diego, 2007).
35. R. M. Murray, Z. Li, and S. S. Sastry, A Mathematical Introduction to Robotic Manipulation (CRC Press, Boca

Raton, FL, 1994).
36. W. Grieshaber, E. Belorizky, and M. L. Berre, “A general method for tensor averaging and an application to

polycrystalline materials,” Solid State Commun. 93, 805–809 (1995).
37. I. D. Rukhlenko, M. Premaratne, C. Dissanayake, and G. P. Agrawal, “Continuous-wave Raman amplification in

silicon waveguides: Beyond the undepleted pump approximation,” Opt. Lett. 34, 536–538 (2009).
38. L. Yin, J. Zhang, P. M. Fauchet, and G. P. Agrawal, “Optical switching using nonlinear polarization rotation

inside silicon waveguides,” Opt. Lett. 34, 476–478 (2009).
39. I. D. Rukhlenko, I. L. Garanovich, M. Premaratne, A. A. Sukhorukov, G. P. Agrawal, and Y. S. Kivshar, “Po-

larization rotation in silicon waveguides: Analytical modeling and applications,” IEEE Photon. J. 2, 423–435
(2010).
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1. Introduction

Even though silicon was recognized as an important material for photonics technology more
than 25 years ago [1], the relevant theoretical concepts have begun to be put into practice
only recently [2, 3]. A number of breakthroughs in the field of silicon photonics have made
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possible the development of a variety of functional nonlinear devices, with both active and
passive silicon elements. These devices not only can generate and amplify optical signals [4,5]
but can also modulate and switch them—either all-optically or electro-optically—at speeds
approaching hundreds of gigabits per second [6, 7]. The realization of such ultrafast silicon
photonic devices brings us closer to the moment when they will be combined with the micro-
electronics technology to build high-performance, low-cost, photonic integrated circuits [8].

A crucial step towards the development of silicon photonics was the discovery of unique
optical properties of low-dimensional silicon [9,10]. In particular, it was found that the ultrafast
Kerr effect in silicon nanocrystals (Si NCs) may be, respectively, 10000 and 100 times stronger
than that in fused silica (SiO2) and bulk silicon. Much like silicon-on-insulator waveguides,
silica glass doped with Si NCs (Si-NCs/SiO2 composite) enables tight confinement of optical
fields, while its refractive index may be tuned to any value between 1.45 and 2.2 by simply
changing the density of the Si NCs [11–13]. Furthermore, the optical response of Si NCs has
a pronounced dependence on their size, thus providing a flexibility in the engineering of their
nonlinear properties. These and other features guarantee that Si NCs can serve silicon photonics
by improving the performance of optical memories, wavelength converters, and modulators, as
well as by enabling power-efficient amplifiers and light sources [14].

Numerical modeling of light propagation through Si-NC-doped silica waveguides requires
a knowledge of the effective optical parameters of the Si-NCs/SiO2 composite [11, 15]. The
reason is that it is impracticable to study the nonlinear effects in Si NCs by solving Maxwell
equations for the whole composite while treating each NC individually. To do so, one would
have to consider more than 100000 nanocrystals per micrometer of waveguide with a 0.01-μm2

cross section, in which Si NCs of 2.5 nm diameter have a volume fraction as small as 10%. It is
evident that it would be extremely challenging to solve numerically such a nonlinear problem.

To enable theoretical studies of the nonlinear optical phenomena in a Si-NCs/SiO2 compos-
ite, we relate its effective susceptibility to the third-order susceptibility tensor of silicon and
linear permittivities of the composite’s constituents. We begin by considering the situation in
which all nanocrystals have the same orientation with respect to the macroscopic sample of the
composite. In our derivation we closely follow the effective-medium approach to the calcula-
tion of the nonlinear susceptibilities of granular matter [16]. It was initially applied by Zeng et
al. [17] to random composites featuring a weakly nonlinear relation between electric field and
electric displacement of the form D =

(
ε + χ |E|2)E, where χ is a scalar. Our derivation shows

that the values of all components of the effective susceptibility tensor are reduced (with respect
to those in silicon) by the same factor that depends on the volume fraction of Si NCs. We then
extend our analysis and calculate the effective susceptibility for a situation in which NCs are
randomly orientated in space with a uniform distribution. In this case, the anisotropy of the
nonlinear optical response of the whole composite is different from that of bulk silicon. In par-
ticular, the Raman response resulting from the vibrational subsystem of the NCs is modified
the most.

2. Identically oriented nanocrystals

2.1. Linear effective permittivity of Si-NCs/SiO2 composite

The response of both Si NCs and fused silica to a weak optical field is essentially linear and
isotropic. In this instance, the space-averaged electric displacement Dk (k = x,y,z) and space-
averaged electric field

Ek =
1
V

∫
Ek(r)dV (1)
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Fig. 1. (a) Identically oriented Si NCs embedded in a SiO2 matrix of permittivity ε2.

Nanocrystals are characterized by permittivity ε1, nonlinear susceptibility tensor χ(3)
klmn,

and volume filling factor f ; electric field (E1x,E1y,E1z) inside Si NCs is assumed to be
uniform. (b) Homogeneous Si-NCs/SiO2 composite and the space-averaged electric field
(Ex,Ey,Ez) inside it; the composite is characterized by the effective parameters εeff and
χeff

klmn.

inside the Si-NCs/SiO2 composite are related simply through the linear effective permittivity
εeff as Dk = εeffEk. If the local electric field E(r) = (Ex,Ey,Ez) is known everywhere inside the
composite, then the linear effective permittivity may be calculated using the definition [18]

εeff =
1
V

∫
ε(r)

(
E(r)
E

)2

dV, (2)

where E 2 = E 2
x +E 2

y +E 2
z and the integration is evaluated over the entire volume V of the com-

posite. The space-dependent permittivity ε(r) = ε1ϑ1(r)+ ε2ϑ2(r) is expressed here through
the permittivity ε1 of silicon and permittivity ε2 of silica, as well as through ϑ functions defined
as

ϑ j(r) =
{

1 when r is inside the jth medium;
0 otherwise.

(3)

Since no analytical expression generally exists for the local field, one often resorts to the
mean-field approch in order to calculate εeff [19, 20]. Specifically, for the Si-NCs/SiO2 com-
posite with the volume fraction f of the NCs, the effective-medium theory gives

εeff(ε1,ε2, f ) =
1
4

[
u+

(
u2 +8ε1ε2

)1/2
]
, (4)

where u = (3 f − 1)ε1 +(2− 3 f )ε2. This equation assumes that Si NCs are spherical in shape
and their mean size is much smaller than the optical wavelength; this assumption is valid for
most practical situations of interest [6, 10].

2.2. Third-order effective susceptibility of Si-NCs/SiO2 composite

To simplify the following calculation, we neglect the third-order susceptibility χ(3) of silica
completely in the following calculation. This assumption is justified in practice because χ(3)

for silicon NCs is much larger than that for silica and is valid as long as the filling factor
of Si NCs exceeds, respectively, 0.001% and 0.1% when Raman scattering and Kerr effect
are considered. We also assume the average NC diameter to be larger than the exciton Bohr
radius in bulk silicon (which is about 5 nm) and neglect the effect of quantum confinement on
the third-order susceptibility of silicon. With these simplifications, we can define the effective
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susceptibility tensor of a Si-NCs/SiO2 composite in a way similar to Eq. (2) [16, 17]:

χeff
klmn =

1
V1

∫
χ(3)

klmn(r)
Ek(r)El(r)E

∗
m(r)En(r)

E 4 dV1,

where χ(3)
klmn(r) is the third-order susceptibility of silicon (which may be a function of coordi-

nates if the crystallographic axes of different nanocrystals do not coincide) and the integration
is over the nanocrystals’ volume V1 = f V . Without knowing the exact field distribution inside
Si NCs, however, it is more practical to introduce this susceptibility using averaged fields and
displacements,

Dk = εeffEk +∑
lmn

χeff
klmnElE

∗
mEn, (5)

and resort to the effective-medium theory [21]. If we assume that the crystallographic axes x,
y, and z of all Si NCs have the same spatial orientation, as in Fig. 1(a), then the components of
the electric displacement inside the nanocrystals is given by the expression

D1k = ε1E1k +∑
lmn

χ(3)
klmnE1lE

∗
1mE1n ≡ ε̂1E1k, (6)

where the nonlinear permittivity ε̂1 of Si NCs is implicitly defined. Now χeff
klmn may be expressed

through χ(3)
klmn by invoking an approximate relation

Dk ≈ εeff(ε̂1,ε2, f )Ek, (7)

which is valid provided the nonlinear terms in Eqs. (5) and (6) are small compared to the linear
ones [17].

Expanding the function εeff(ε̂1,ε2, f ) in Taylor series about the linear permittivity of silicon,
yields

Dk ≈ εeff(ε1,ε2, f )Ek +
∂εeff(ε̂1,ε2, f )

∂ ε̂1
(ε̂1 − ε1)Ek

= εeffEk +
∂εeff

∂ε1

Ek

E1k
∑
lmn

χ(3)
klmnE1lE

∗
1mE1n. (8)

The local field E1k may be related to the averaged field Ek using an auxiliary effective permit-
tivity εaux, which satisfies the relation

εaux

∫
Ek(r)dV =

∫
ε(r)Ek(r)dV.

By differentiating both sides of this relation with respect to ε1, we obtain

Ek
∂εaux

∂ε1
=

1
V

∫
ϑ1(r)Ek(r)dV = f 〈E1k〉, (9)

where the angle brackets denote averaging over the volume of Si NCs. In a similar fashion,
Eq. (2) gives

∂εeff

∂ε1
= f

〈E2
1〉

E 2 ≈ f
〈E1〉2

E 2 =
1
f

(
∂εaux

∂ε1

)2

. (10)

#177189 - $15.00 USD Received 1 Oct 2012; revised 27 Oct 2012; accepted 27 Oct 2012; published 6 Nov 2012
(C) 2012 OSA 19 November 2012 / Vol. 20,  No. 24 / OPTICS EXPRESS  26279



1 10 100
1E-4

1E-3

0.01

0.1

1



 

 

Filling factor of Si NCs, f (%)

0.0001

eff 1

0.001
   Si-NCs/SiO
   Si-NCs/Si  N43

2

Fig. 2. Ratios εeff/ε1 and ξ are plotted as a function of filling factor f for Si-NCs/SiO2
(solid curves) and Si-NCs/Si3N4 (dashed curves) composites using ε1 = 12 with ε2 = 2.1
for SiO2 and ε2 = 4.1 for Si3N4.

In deriving this result, we have assumed that electric field is almost uniform inside the
nanocrystals, i.e., E1k ≈ 〈E1k〉. With this assumption and Eqs. (8) to (10), we obtain

Dk ≈ εeffEk +
1
f

∂εeff

∂ε1

∣
∣
∣
∣
∂εeff

∂ε1

∣
∣
∣
∣∑

lmn

χ(3)
klmnElE

∗
mEn.

The comparison of this equality with Eq. (5) shows that

χeff
klmn =

1
f

∂εeff

∂ε1

∣
∣
∣
∣
∂εeff

∂ε1

∣
∣
∣
∣χ(3)

klmn. (11)

The effective susceptibility tensor is thus obtained via a multiplication of χ(3)
klmn by the scalar

attenuation factor, which according to Eq. (4) is given by

ξ =
[(3 f −1)εeff + ε2]

2

f (u2 +8ε1ε2)
.

This result is valid to the first order in χ(3)
klmn. Since electric field is constant inside a dielectric

sphere placed in an initially uniform electric field [22], Eq. (11) becomes more accurate for
weakly interacting Si NCs, i.e., for a sample with a smaller filling factor. In the case of a larger
filling factor, an accurate relation between the third-order susceptibility of silicon and that of
Si-NCs/SiO2 composite may be obtained numerically within the framework of the generalized
effective-medium approach developed by Stroud [23, 24].

The effective permittivity and attenuation factor of the Si-NCs/SiO2 composite are plotted in
Fig. 2 as solid curves. It is seen that the components of the effective susceptibility tensor are
about 200 times smaller for a Si-NCs/SiO2 composite than those of Si NCs for moderate filling
factors of about 10%. However, thanks to the strong optical nonlinearities of Si NCs, these may
still be comparable to, and even exceed, the nonlinear coefficients in bulk silicon. For example,
the Kerr coefficient n2 at a wavelength of 1.55 μm is approximately equal to 4×10−14 cm2/W
for bulk silicon and to 2.5× 10−14 cm2/W for the Si-NCs/SiO2 composite in which Si NCs
with n2 = 2×10−12 cm2/W occupy 17% of the volume [6]. The value of neff

2 may be increased
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Fig. 3. (a) Randomly oriented Si NCs embedded in SiO2 matrix. Orientation of each
nanocrystal, with respect to the Cartesian axes α , β , and γ , is characterized by the respec-
tive directions of its crystallographic axes x, y, and z. (b) Rotation by an angle ψ ∈ [0,2π)
around a unit vector u (set by angles ϑ and ϕ) brings crystallographic axes of Si NC into
coincidence with the axes α , β , and γ .

by using a host medium with higher permittivity [25, 26]. For instance, if Si3N4 with ε2 = 4.1
is used instead of SiO2 in the above example, we obtain neff

2 ≈ 8.1×10−14 cm2/W. For f � 1,
the attenuation factor for Si-NCs/SiO2 may be approximated as ξ ≈ 81 f/(2+ε1/ε2)

4 ≈ 0.22 f
[20, 27].

It is interesting to note that Si-NCs/SiO2 composite may exhibit dipolar second-harmonic
(SH) due to the effect of NC interfaces, despite the fact that bulk silicon is a centrosymmetric
medium and can generate SH only through the quadrupolar nonlinearity [28, 29]. The theories
of SH generation by a single centrosymmetric NC and a disordered composite of such NCs
were developed in Refs. [30, 31].

It is also worth noting that Eq. (11) naturally generalizes the result of Zeng et al. [17] to the
case of identically oriented crystallites possessing a tensorial third-order susceptibility.

3. Randomly oriented nanocrystals

Consider now the situation where the crystallographic axes of different Si NCs have all possible
orientations in space, as is shown schematically in Fig. 3(a). The effective nonlinear suscepti-
bility in this case is still defined by Eq. (5), but the constitutive relation in Eq. (6) is no longer
valid for an arbitrary nanocrystal. As a result of this, each component of the effective suscepti-

bility tensor becomes dependent on several components of χ(3)
klmn, and its calculation requires a

knowledge of the exact tensorial form of the nonlinear optical susceptibility of silicon.

3.1. Nonlinear optical susceptibility of silicon

The third-order susceptibility of silicon may be represented as a sum of contributions from
bound electrons and optical phonons [32]

χ(3)
klmn(ω;ω1,ω2,ω3) = χe

xxxx(ω)Kklmn +
1
2
[H(ω1 +ω2)Rklmn +H(ω2 +ω3)Rknml ] , (12)

where χe
xxxx(ω) is a complex constant, H(ω) is the Raman gain profile,

Kklmn = (ρ/3)(δklδmn +δkmδln +δknδlm)+(1−ρ)δklδlmδmn, (13a)

Rklmn = δkmδln +δknδlm −2δklδlmδmn, (13b)

ρ = 3χe
xxyy/χe

xxxx is the anisotropy factor, and δi j is the Kronecker delta. The first term in
Eq. (12) leads to the Kerr effect and two-photon absorption, and the remaining terms lead
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to stimulated Raman scattering [33, 34]. It is important to keep in mind that these effects not
only exhibit different tensorial properties but are also characterized by significantly different
response times.

3.2. Susceptibility tensor averaging

Suppose that the crystallographic axes {x,y,z} of a certain sub-ensemble of the entire Si-NC
ensemble may be brought in to coincide with the reference frame {α,β ,γ} of the macroscopic
sample via their rotation by angles from ψ to ψ + dψ around radius vectors lying within the
infinitesimal solid angle dΩ = sinϑdϑdϕ about the unit vector u, whose position in the refer-
ence frame is determined by polar angle ϑ and azimuth ϕ [see Fig. 3(b)]. Then the transformed
susceptibility tensor characterizing the sub-ensemble can be written as

χ(3)
κλ μν = ∑

klmn

RκkRλ lRμmRνnχ(3)
klmn, (14)

where the rotation matrix is given by the Rodrigues’ formula [35]

R(ϑ ,ϕ,ψ) =

⎛

⎝
cosψ −cosϑ sinψ sinϕ sinϑ sinψ

cosϑ sinψ cosψ −cosϕ sinϑ sinψ
−sinϕ sinϑ sinψ cosϕ sinϑ sinψ cosψ

⎞

⎠

+(1− cosψ)

⎛

⎝
cos2 ϕ sin2 ϑ cosϕ sinϕ sin2 ϑ cosϕ cosϑ sinϑ

cosϕ sinϕ sin2 ϑ sin2 ϕ sin2 ϑ sinϕ cosϑ sinϑ
cosϕ cosϑ sinϑ sinϕ cosϑ sinϑ cos2 ϑ

⎞

⎠ . (15)

As discussed in Section 2.2, the contribution of the sub-ensemble of almost identically ori-
ented Si NCs to the effective third-order susceptibility of the Si-NCs/SiO2 composite is given
by the expression

χeff
κλ μν =

1
f

∂εeff

∂ε1

∣
∣
∣
∣
∂εeff

∂ε1

∣
∣
∣
∣χ(3)

κλ μν .

Its averaging over a uniform distribution of nanocrystal orientations in space yields the effective
susceptibility tensor of the entire composite,

〈
χeff

κλ μν
〉
=

1
8π2

∫ π

0
sinϑ dϑ

∫ 2π

0
dϕ

∫ 2π

0
dψ χeff

κλ μν(ϑ ,ϕ,ψ). (16)

This expression may be evaluated either directly [using Eqs. (14) and (15)] or using a gen-
eral method based on finding the rotationally invariant part of the tensor in spherical coordi-
nates [36].

Equations (14)–(16) show that the effective susceptibility tensor of the Si-NCs/SiO2 com-
posite that consists of randomly oriented nanocrystals may be conveniently split into electronic
and Raman parts, as is done in Eq. (12). The tensor properties of each part can be found by
averaging the respective tensors over the possible spacial orientations of the crystallites. This
procedure may be simplified by noticing that tensors δklδmn, δkmδln, and δknδlm are rotationally
invariant. Applying the averaging procedure defined in Eq. (16) to the triple product in Eq. (13),
we obtain

〈δklδlmδmn〉= 8
45

(δklδmn +δkmδln +δknδlm)+
1
9

δklδlmδmn.

Using the preceding result in Eq. (16), the averaged value of Kκλ μν is found to be

〈
Kκλ μν

〉
=

8+7ρ
45

(
δκλ δμν +δκμ δλν +δκν δλ μ

)
+

1−ρ
9

δκλ δλ μ δμν . (17)
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Since the susceptibility tensor of an individual Si NC has only 21 nonzero components, this
tensor also has only 21 nonzero components. The numerical factors for these components from
Eq. (17) are found to be

αααα = ββββ = γγγγ =
29+16ρ

45
≈ 1.1,

ααββ = αβαβ = αββα = . . .=
8+7ρ

45
≈ 0.375,

where we used ρ ≈ 1.27 near the 1.55-μm wavelength [32]. It is seen that the averaging of the
electronic part of the susceptibility tensor leads to about 10% increase in the values of diagonal
components and 13% increase in the values of off-diagonal components.

A similar calculation can be performed for the Raman part of the third-order susceptibility.
We find that

〈
Rκλ μν

〉
is given by

〈
Rκλ μν

〉
=

29
45

(
δκμ δλν +δκν δλ μ

)− 16
45

δκλ δμν − 2
9

δκλ δλ μ δμν . (18)

We see that the averaging over NC orientations drastically modifies the interaction of an optical
field with phonons in the Si-NCs/SiO2 composite from that in individual nanocrystals. Even
though the tensor Rκλ μν has only 12 nonzero components (equal to unity), the averaged tensor〈
Rκλ μν

〉
is characterized by 21 nonzero components. The components analogous to those of

tensor Rklmn have a value that is reduced considerably from 1:

αβαβ = αββα = βγβγ = . . .=
29
45

.

However, this reduction leads to additional 9 components of the averaged tensor to become
nonzero with values

αααα = ββββ = γγγγ =
32
45

,

ααββ = ααγγ = γγββ = . . .=−16
45

.

These results imply that the dynamics of Raman amplification in a Si-NCs/SiO2 composite
will be different from that in a silicon-on-insulator waveguide [37]. It simply follows from
the fact that, unlike the crystallographic axes of individual nanocrystals, the reference axes
associated with the composite as a whole can be chosen arbitrarily. One consequence of this
feature is that stimulated Raman scattering occurs in Si-NCs/SiO2 composites regardless of the
polarizations of pump and signal waves.

From a practical viewpoint, it is important to note that the averaging of the third-order suscep-
tibility over the orientations of Si NCs does not make the nonlinear response of the Si-NCs/SiO2

composite isotropic. This feature makes fused silica doped with randomly oriented Si NCs
an attractive medium for polarization-sensitive applications, such as optical switching [38] or
power equalization [39], that utilize nonlinear polarization rotation through cross-phase mod-
ulation. This statement does not apply to such nonlinear phenomena as thermo-optic effect [7]
and electrostriction [40], which are essentially isotropic in individual Si NCs. Since such ef-
fects are often related to free carriers generated through two-photon absorption, they develop
on nanosecond time scales and may cause the nonlinear response of the composite to vary with
pulse width.

We emphasize that our theory is only applicable to those nonlinearities of silicon that can be
described by the third-order susceptibility tensor; it does not include such effects as free-carrier
absorption, which is essentially a fifth-order effect [32].
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4. Conclusions

We have derived approximate analytic expressions for the effective third-order susceptibility of
Si-NCs/SiO2 composites consisting of nanocrystals with either identically or randomly oriented
crystallographic axes. We showed that when the orientations of the crystallographic axes in
different crystallites are the same, the effective susceptibility of the composite may be simply
obtained via a multiplication of the susceptibility tensor of silicon by a constant factor. On the
other hand, if the crystallites are oriented in space randomly, then the effective susceptibility
has tensor properties which are significantly different from those of silicon susceptibility. In
the case of the Kerr nonlinearity, the values are enhanced by 10% or more depending on the
susceptibility component.

Much more dramatic changes occur in the case of Raman susceptibility due to a modifica-
tion of the interaction between the optical field and phonons inside the composite. In particular,
some components that vanish in bulk silicon or planar silicon waveguides acquire a finite value
in the case of Si-NCs/SiO2 composites. The new form of Raman susceptibility has practical
consequences if Si NCs are used to make Raman amplifiers and lasers in place of silicon planar
waveguides. Results obtained in this paper should be useful for modeling nonlinear propaga-
tion through Si-NCs/SiO2 fibers, which are promising candidates for realization of all-optical
functions on a photonic chip.
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