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Abstract
We study guided optical modes of a planar plasmonic waveguide filled with a generic
anisotropic medium. In particular, we show that both surface and oscillatory modes exist for
such waveguides and find their numbers for two specific forms of the anisotropy tensor. We
also show that lossless waveguides, characterized by a diagonal permittivity tensor, support
simultaneously both the forward and backward propagating modes (surface or oscillatory
type) with antisymmetric field patterns. Another family of guided oscillatory modes may be
supported by the waveguide if its anisotropy is created by an external magnetic field. These
new modes are asymmetric in nature, exhibit extremely low effective refractive indices and
may propagate over macroscopic distances without significant attenuation, while remaining
strongly confined to the waveguide.

(Some figures may appear in colour only in the online journal)

1. Introduction

The vast amount of traffic supported by optical fibers allows
communications of unprecedented speed and quality, limited
solely by hardware performance. It is anticipated that the
operating speed of hardware may be enhanced—to match
the network capacity—by replacing electronic circuits with
all-optical photonic chips and using light for data processing.
Unfortunately, infrared light itself cannot be confined to areas
smaller than the half of its wavelength (∼500 nm), and hence
it is unable to provide the extent of miniaturization achievable
with nanoelectronics (∼50 nm) [1]. This problem may be
solved by coupling infrared light to conduction electrons
localized in the vicinity of metal–dielectric interfaces, and
handling information in the form of surface plasmons [2–5].
The performance of a photonic circuit embodying this
concept greatly relies on the efficiency of the surface-
plasmon guidance, a topic studied extensively over the past
decade [6–10].

Among the well-explored geometries supporting surface
plasmons are circular nanowires [11–17], one-dimensional
chains of metallic nanospheres [18–23], and planar
metal–dielectric–metal waveguides [24–27] made of isotropic

and homogeneous media. One of the features found to be
common for all three structures is that their characteristic
lateral dimensions (radii for nanowires and nanospheres and
dielectric gap thickness for planar waveguides) determine
the balance between the guiding and confining efficiencies:
the smaller these dimensions, the higher the confinement
and the stronger the absorption losses. Despite substantial
research efforts devoted to the study of surface plasmons
under various conditions, there are still many issues that
remain to be clarified and merit further consideration. As a
vivid illustration of this point, we refer to the recent papers
of Feigenbaum et al [28] and Davoyan et al [29], in which
the authors revealed the existence of an additional, backward
mode guided by linear slot waveguides. The surprising thing
is that this mode had gone unnoticed for nearly 20 years since
the profound theoretical study conducted by Prade et al [30].

With the recent progress in fabrication of advanced
nanostructured composites, experimentalists and engineers
increasingly find themselves facing a lack of sufficient
theoretical descriptions of various metamaterial structures,
even though their analogs made of naturally occurring
media are well understood based on a solid theoretical
framework. The models developed for ordinary structures are
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usually inapplicable to metamaterials due to the pronounced
anisotropy of their electromagnetic properties [31]. The
metal–dielectric structures are no exception and require
re-examination when anisotropy is present.

In this paper we present the first theoretical study of
planar, plasmonic, slot waveguides filled with a generic
anisotropic material. Specifically, we analyze both the surface
and oscillatory guided modes in the case of an anisotropic
dielectric slab made of an orthorhombic crystal, and determine
the parameter values for which they propagate forward or
backward. Our results generalize as well as extend the results
of [29, 30]. Owing to the existence of backward propagating
modes, characterized by opposite directions of the phase and
group velocities, metal–dielectric–metal (MDM) structures
find use in subwavelength optical imaging [32–34]. We
also reveal a new family of quasi-static oscillatory modes
that arise in the event that the anisotropy is created by
an external magnetic field. These modes exhibit extremely
low effective refractive indices and may propagate over
macroscopic distances without significant attenuation, while
remaining strongly confined to the waveguide.

2. Maxwell’s equations and surface-plasmon modes

Figure 1 shows the planar waveguide analyzed in this paper.
It consists of an anisotropic, nonmagnetic, dielectric slab of
thickness 2h surrounded by metal claddings of permittivity
εm = ε

′
m + iε′′m. We suppose that the slab’s permittivity is

described by a constant tensor of the form

ε̂ =

εxx 0 εxz

0 εyy 0

εzx 0 εzz

 , (1)

which may account for the anisotropy that is intrinsic to the
slab or induced by external fields. In the geometry used for
figure 1, only the transverse-magnetic (TM) modes preserve
their initial states of polarization during their propagation in
the z direction. We restrict our consideration to these modes
and assume that the slab is nonabsorbing, in which case its
permittivity tensor is Hermitian, ε∗ik = εki [35].

We represent the electric and magnetic fields of a
monochromatic TM mode as

E(x, z, ω) = (x̂Ex + iẑEz) eiβ(ω)z
+ c.c.,

H(x, z, ω) = ŷHy eiβ(ω)z
+ c.c.,

where ŝ is the unit vector along the s axis, β(ω) = β ′ + iβ ′′

is the propagation constant, and ω is the mode’s frequency.
Inside the slab (|x| < h), Maxwell’s equations reduce to the
following two equations for the electric field components:

∂Ex

∂x
= 2ηEx + aEz, (2)

∂Ez

∂x
= (β − εxxϑk)Ex − iεxzϑkEz, (3)

where η = (i/2)[εxzϑk − (εxz + εzx)β/εxx], ϑ = k/β, a =
(εzzβ − ε

2
xzϑk)/εxx, k = ω/c, and c is the speed of light in

a vacuum.

Figure 1. Metal–dielectric–metal slot waveguide of thickness 2h
filled with an anisotropic medium. The waveguide edges are aligned
with the coordinate axes.

Equations (2) and (3) can be solved easily owing to their
linear nature, and their general solution can be written in the
form

Ex = [(aA1 + ηA2) sinh(qx)+ qA2 cosh(qx)] eηx, (4a)

Ez = [(bA2 − ηA1) sinh(qx)+ qA1 cosh(qx)] eηx, (4b)

where b = β − (εxx + iεxz)ϑk, q =
√

ab+ η2, and A1 and
A2 are the integration constants. The electric field of a guided
mode confined to the slab should evanescently decay inside
the metal regions |x| > h. Thus, we can write it in the form
E±x = B±ekm(h∓x), with km =

√
β2 − εmk2 and B± being

constants. Here, the ± signs of the component E±x correspond
to regions x > h and x < −h, respectively.

Using the standard boundary conditions at x = ±h
interfaces, we obtain the dispersion relation for guided TM
modes in the form

εmq = tanh(2qh)
(

iεxzηχ −
εxx

2
(χa+ ψb)

)
, (5)

where χ = km/β and ψ = [ε2
m + (εxzχ)

2
]/(ε2

xxχ). By
choosing B+ = 1, the coefficients A1, A2, and B− are given
by

A1 = − [bτS+ (qC + ηS)χ ] /q2,

A2 = [aχS+ (qC − ηS)τ ] /q2,

B− = −
[
(aS+ 2qτC/χ)bS+ (qC + ηS)2

]
e−2ηh/q2,

where S = sinh(qh), C = cosh(qh), and τ = (εm+ iχεxz)/εxx.
The magnetic field of the guided mode is related to the electric
field as Hy = (ε0ω/β)(εxxEx + iεxzEz).

3. Guided modes for a diagonal permittivity tensor

The presence of the exponential factor in equation (4)
indicates that an anisotropic plasmonic waveguide does not
generally support guided modes of a definite symmetry.
These modes may be divided into symmetric (s) and
antisymmetric (a) types only when the off-diagonal elements
vanish, i.e. εxz = εzx = 0. This can occur for uniaxial and
biaxial crystals whose crystallographic axes coincide with the
waveguide edges, as well as for isotropic crystals exposed to
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an external electric field parallel to one of the waveguide’s
edges. For example, an electrostatic field Eext = x̂E0 (E0 �

|Ex|) applied to an isotropic slab with ε̂ = εδik, alters the slab’s
permittivity in the direction parallel to the field, εxx = ε+αE2

0,
but does not change the permittivities in the y and z directions
(εyy = εzz = ε).

When the off-diagonal components of the permittivity
tensor are set to zero, equation (5) reduces to two dispersion
relations of the form

tanh(qh) = −

(
km

q

εzz

εm

)±1

, (6)

where q =
√
(εzz/εxx)β2 − εzzk2 and the ± signs correspond

to the symmetric and antisymmetric modes, respectively; the
symmetric (antisymmetric) mode is characterized by even
(odd) functions Ex(x) and Hy(x).

Similar to the isotropic case, anisotropic MDM waveg-
uides described by equation (6) support both the surface and
oscillatory guided modes [30]. The existence and properties of
these modes can be easily analyzed for zero losses (ε′′m = 0).
In this case, the two mode families are described by a purely
real or a purely imaginary value of q.

3.1. Surface modes

Following [30], we introduce the new parameters u =
h
√
β2 − εxxk2, v = kh

√
εxx − εm, and w = u/v and use them

to rewrite the dispersion relations in equation (6) as

v(w) =

√
σ

2w
ln

(
±

√
ρw+

√
w2 + 1

√
ρw−

√
w2 + 1

)
, (7)

where ρ = rxrz, σ = rz/rx, and rj = −εm/εjj > 0 (j = x, z).
According to this expression, the number of surface modes in
the entire range of kh does not depend on σ . Noting that the
parameters v and w are positive (0 ≤ w < ∞) and that the
propagation constant can be found by calculating the inverse
function w(v), one can draw the following conclusions.
If ρ ≤ 1 (i.e. ε2

m ≤ εxxεzz), then the waveguide supports
only one backward antisymmetric mode with the cutoff (see
appendix A)

(kh)sup =
rz

√
εxx − εm

. (8)

For ρ > 1 (ε2
m > εxxεzz) one symmetric mode without a cutoff

and either one or two antisymmetric modes with a lower
cutoff (kh)inf exist. Some algebra shows (see appendix B)
that for ρ ≥ 3/2 there is only one mode of each symmetry
characterized by a positive group velocity. For 1 < ρ < 3/2
two antisymmetric modes of the same frequency coexist in
the range (kh)inf < kh < (kh)sup, where (kh)sup is given in
equation (8). One of the modes (with larger β) propagates
forward and the other (with smaller β) backward. These
modes represent the two parts of the dispersion branch ωa(β)

separated by a minimum point where the average power
flow vanishes [29]. For ρ ≥ 3/2, the cutoff (kh)inf of the
antisymmetric mode coincides with (kh)sup in equation (8).
Figure 2 illustrates the above discussion. Note also that, in

Figure 2. Dispersion curves for surface-plasmon modes of an
anisotropic slot waveguide (in the absence of absorption) for two
values of σ and four values of ρ with εxx = 3 in all cases. Forward
and backward modes are marked as f and b; the shaded area marks
the region β < k

√
εxx.

practice, ρ � 1 since −ε′m for most metals is much larger
than both εxx and εzz.

3.2. Oscillatory modes

In contrast to a maximum of three surface modes that may
be supported by an anisotropic slot waveguide, a much larger
number of oscillatory modes may be guided if the plasmonic
waveguide is sufficiently thick. The existence of these modes,
with u = h

√
εxxk2 − β2 > 0, is analyzed in a similar fashion.

Equation (6) for such modes is of the form

v(w) =

√
σ

w

[
πn∓ tan−1

(
1− w2

ρw2

)±1/2]
, (9)

where 0 ≤ w < (1 + rx)
−1/2, n is an integer, and the upper

(lower) sign corresponds to the symmetric (antisymmetric)
mode. It is seen that the number of oscillatory modes depends
drastically on the parameters kh, rx, and rz. Specifically, the
lowest-order antisymmetric mode (with n = 0) exists in the
range

min(ζ1, ζ2) < kh < max(ζ1, ζ3), (10)

where ζ1 = ε
−1/2
zz tan−1√rz, ζ2 = v(wm)/

√
εxx − εm, ζ3 =

rz/
√
εxx − εm, and wm > 0 is the minimum of the function

v(w). The rest of the modes exhibit a lower cutoff given by
the expression

(kh)inf =
1
√
εzz

(
πn∓ tan−1(rz)

∓1/2
)
, (11)

in which, as before, the upper and lower signs correspond
to the symmetric and antisymmetric modes, respectively.
Equations (10) and (11) show that the waveguide does not
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Figure 3. (a) Dispersion curves for oscillatory plasmon modes of
an anisotropic slot waveguide in the absence of absorption using
εxx = 3. Forward and backward modes are marked as f and b; the
shaded area marks the region β > k

√
εxx. (b) Magnified dispersion

curve for the (m = 1) antisymmetric mode and (c) its propagation
regimes in the ρ–σ plane.

support oscillatory modes if kh < (kh)min = min(ζ1, ζ2). In a
typical case of εzz � −εm, this condition gives (kh)min = ζ1.
The mode n = 0 then exists for

ε−1/2
zz tan−1√rz < kh < rz/

√
εxx − εm. (12)

It is convenient to number the oscillatory modes
consecutively using integers m = 1, 2, 3, . . ., so that the
mode’s parity coincides with the parity of the mode number
m. This indexing scheme is established by representing the
expression in the parenthesis of equation (11) in the form
π
2 (m− 1)+ tan−1√rz. The dispersion curves of the first four
oscillatory modes are shown in figure 3(a).

The structure of the mode with m = 1 is controlled by
the parameters ρ and σ , and it deserves special consideration.
It is not hard to show (see appendix C) that this mode
propagates backward for ρ < 3/2 regardless of σ . For
3/2 ≤ ρ < ρr(σ ), where ρr(σ ) is the root of equation (C.3),
this mode consists of the forward and backward branches
shown in figure 3(b). The mode is forward for ρ > ρr(σ ).
Figure 3(c) shows all three states of the described mode in
the ρ–σ plane. While the possibility of the simultaneous
existence of forward and backward surface modes in
isotropic MDM waveguides—initially overlooked by Prade
and co-workers [30]—was recently revealed by Feigenbaum

et al [28] and Davoyan et al [29], the same feature for the
oscillatory modes has never been reported until now.

4. Oscillatory modes for magneto-optical anisotropy

In this section we focus on the case in which all off-diagonal
elements of the permittivity tensor in equation (1) do not
vanish. An important case is the one in which εxx = εyy =

εzz = ε and εxz = ε
∗
zx = −iγ . It describes the situation where

an isotropic material is exposed to an external magnetic field
parallel to the y axis (Hext = ŷH0). In this specific case, the
value of the parameter γ is determined by the field amplitude
H0 (which should be much stronger than the magnetic field Hy
of the plasmon mode), and the generalized symmetry principle
for kinetic coefficients requires γ to change its sign upon
reversing the direction of Hext [35].

The general analysis of equation (5) in the case of
magneto-optical anisotropy is quite complicated, except when
the magnetic field is relatively weak and the parameters ε, γ ,
and εm are restricted to their ‘ordinary’ values in the optical
range (ε > 1, γ � ε, and ε′′m � −ε

′
m). Then, in addition to

the modes that in the isotropic limit reduce to those following
from equation (6), a countable set of strongly asymmetric
oscillatory modes arises when a magnetic field is applied.
These modes stem from the guided modes of the lossless
waveguide and satisfy the following approximate dispersion
relation:

ϕγ k tan(2ξγ k2h/β) ≈ 2ξβ
√
−εm, (13)

in which ϕ = 1+ γ /ε and ξ =
√

3/4+ γ /ε. In deriving this
expression from equation (5), we have assumed that |β| � γ k
and γ < 1. Since these inequalities lead to k2

m ≈ −εmk2, the
skin depth δ of these modes is nearly independent of the
propagation constant (and waveguide thickness) and is given
by δ ≈ k−1(−ε′m)

−1/2. As we shall see later, the employed
approximation is well justified by the final solution.

In sharp contrast to the ordinary oscillatory modes found
earlier, the new asymmetric modes always propagate forward,
do not exhibit a cutoff, and exist regardless of the dielectric
slab thickness. This follows from equation (13), which has
real solutions for any real values of the waveguide parameters,
provided that εm < 0. In the limit h → 0, this equation is
readily solved to yield

β ≈
γ k

4ξ
√
−εm

(√
(4ξ)2ϕkh

√
−εm + [π(n− 1)ϕ]2

− π(n− 1)ϕ
)
. (14)

This result shows that the propagation length,

LSPP =

(
−ε′m

πε′′m

)
λeff, (15)

of the fundamental plasmon mode (n= 1) varies in proportion
to the effective wavelength

λeff =
λ

γ

(√
−ε′m

ϕkh

)1/2

(16)
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Figure 4. Propagation length as a function of waveguide thickness
for the first four asymmetric oscillatory modes using γ = 0.01.
Solid curves represent the exact solution of equation (5), while
square symbols show the approximate solution in equation (14).
Electric and magnetic field profiles for points (a)–(d) are shown in
figure 5. For simulation parameters, refer to the text.

of this mode, for a fixed λ = 2π/k. It is seen that both
λeff and LSPP diverge as h approaches zero. They also
diverge for γ → 0, but with a proportionality factor different
from that in equation (16). Since β decreases with n in
the absence of metallic losses, the effective wavelength and
propagation length of the modes with n > 1 also diverge
in the above two limits. In most practical situations γ �
ε, and the magneto-optical anisotropy only slightly perturbs
the symmetry of the standard SPP modes following from
equation (6).

To illustrate the preceding results with an example, we fix
the free-space wavelength λ = 1.55 µm and focus on a MDM
waveguide made of a dielectric with ε = 3 and γ = 0.01
and sandwiched between two silver layers with permittivity
εm(λ) = −104.3+ 8.1i [25]. Figure 4 shows the propagation
length LSPP of the four oscillatory modes supported by this
waveguide. The first extraordinary feature of these modes is
their almost lossless propagation over macroscopic distances
of tens or hundreds of millimeters. The effective wavelengths
of these modes are much larger than λ, as is evidenced by
the example of the lowest-order mode for which equation (15)
gives LSPP ≈ 4λeff. The ratio between LSPP and λeff grows
with increasing mode number, and for large values of n it is
given by the expression

LSPP

λeff
≈

πϕ

8ξ2kh

√
−ε′m

ε′′m
(n− 1)2,

while the effective wavelength is given by

λeff ≈
π(n− 1)

2γ ξkh
λ.

Note that the substantial propagation distances shown in
figure 4 and large values of λeff do not prevent transverse

Figure 5. Electric and magnetic field profiles for the first three
asymmetric oscillatory modes in the cases of 20 and 40 nm thick
waveguides. The four panels correspond to the four points marked
by red vertical lines in figure 4.

localization of the oscillatory modes on a subwavelength
scale, determined by the parameter δ ≈ 24 nm. It is also
important that the number of asymmetric modes supported
by a given waveguide is independent of the waveguide
thickness. These features set the newly discovered family of
guided modes far apart from the oscillatory modes of definite
symmetry, which according to equation (12) are not supported
by waveguides of thicknesses less than 400 nm (for the same
material parameters). Clearly, these new types of oscillatory
modes should prove quite useful for efficient guidance of
optical energy on the nanoscale.

Figure 5 shows the mode profiles calculated for the four
modes corresponding to the points (a)–(d) in figure 4; its
left and right columns correspond to MDM waveguides that
are 20 and 40 nm thick, respectively. One can see that the
modes are predominantly localized in the vicinity of one
of the metal–dielectric interfaces, with the mode number n
corresponding to the number of sign changes of the magnetic
field within the dielectric slab. The electric field component
x̂Ex is about two orders of magnitude smaller than ẑEz in all
four cases, and has opposite directions in the two metallic
cladding layers.

5. Conclusions

We have analyzed the existence of guided TM modes
in MDM-type plasmonic waveguides whose thin dielectric
layer consists of an anisotropic material. It was found
that both surface and oscillatory modes exist for such
waveguides but their number depends on the specific form
of the anisotropy tensor associated with the central dielectric
layer. Lossless waveguides, characterized by a diagonal
permittivity tensor, support simultaneously both the forward
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and backward propagating modes (surface or oscillatory type)
with antisymmetric field patterns.

We also analyzed the case of a non-diagonal permittivity
tensor in the situation in which the central dielectric layer
of the MDM waveguide consists of an isotropic material,
but it becomes anisotropic when an external magnetic field
is applied along the lateral direction perpendicular to the
direction of wave propagation. In this situation, we have found
that the waveguide supports a new family of asymmetric
oscillatory modes that are characterized by a relatively low
effective refractive index that depends on the strength of
the magnetic field. The most interesting, and practically
useful, property of these modes is that they can propagate
over macroscopic distances (>1 cm) without significant
attenuation, while remaining strongly confined to the slot
waveguide of subwavelength thickness (<100 nm). We
emphasize that such antisymmetric oscillatory modes are
characterized by relatively long wavelengths (|β|/k � 1),
which makes their propagation essentially quasi-static and
analogous to that occurring in a metamaterial exhibiting a
refractive index of nearly zero. The experimental study of
these modes can therefore be used to prototype the optical
behavior of such metamaterials with an index near zero.
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Appendix A

To understand the behavior of the antisymmetric surface
mode with changing parameter ρ < 1, we first calculate the
derivative of the function v(w) given in equation (7):

v′(w) =
v
[
1− (ρ − 1)w2

]√
1+ w2 −

√
ρσ

w
[
1− (ρ − 1)w2

]√
1+ w2

. (A.1)

This derivative is related to the tilt of the dispersion curve:

∂k

∂β
=

(k/β)v′

v′ + v3w/(βh)2
, (A.2)

where we assumed the permittivities to be constant and thus
neglected material dispersion.

For small values of w, we can approximate v as v ≈
√
ρσ .

In the same limit

v′ ≈
√
ρσ

(
2
3
ρ − 1

)
w

and

βh ≈
rz

√
1+ rx

.

Using these results in equation (A.2), we obtain

lim
w→0

∂k

∂β
≈

(2ρ − 3)ϑ

2ρ + 3
√
ρ/σ

. (A.3)

In the opposite limit w → ∞, we can employ the
approximations

v ≈

√
σ

2w
ln

1+
√
ρ

1−
√
ρ
,

v′ ≈ −

√
σ

2w2 ln
1+
√
ρ

1−
√
ρ
−

3
√
ρσ

2(ρ − 1)w4 ,

and βh ≈
√
σ tanh−1√ρ. Using them in equation (A.2), we

obtain

∂k

∂β

∣∣∣∣
w→∞

∼
2(ρ − 1)w2kh

3
√
ρσ

. (A.4)

Since the derivative v′(w) cannot change its sign for positive
w more than once (see appendix B), equations (A.3) and (A.4)
suggest that ∂k/∂β < 0 for ρ < 1 regardless of σ , i.e. the
antisymmetric surface mode is propagating backwards.

Appendix B

Consider next the antisymmetric surface mode for ρ > 1.
Since v(w) for this mode is even, the derivative v′(0) = 0, and
the extrema of v(w) can be found by setting the numerator
of equation (A.1) to zero. This yields the following cubic
equation with respect to the unknown W = w2:

(ρ − 1)2W3
+ (ρ − 3) (ρ − 1)W2

+ (3− 2ρ)W + 1− ρσ/v2
= 0.

The three roots of this equation depend on the specific values
of ρ, v, and σ . Only real roots are physically meaningful. For
small values of w, v2

= ρσ , and one of the roots of the cubic
polynomial must vanish, say W1 = 0. The remaining two roots
are either complex or both real. In the second case, only the
positive root, say W2 = w2

m > 0, is physically meaningful (see
figure B.1).

Since v→∞ as w approaches (ρ − 1)−1/2, the function
v(w) either grows monotonously for all w or decreases for
w < wm and then grows for w > wm. By expanding v′(w) in
Taylor series

v′(w) =
√
ρσ

(
2
3 ρ − 1

)
w

+
√
ρσ

(
4
5 ρ

2
− 2ρ + 3

2

)
w3
+ O(w5),

we see that the first situation is realized when ρ ≥ 3/2, while
the second occurs for ρ < 3/2. In the first case, only one mode
with a lower cutoff, determined by the condition v = v(0) =
√
ρσ , exists. Equation (A.3) and the limit

lim
w→∞

∂k

∂β
=

√
ρσ + 1

(−εm)(ρ − 1)
> 0 (B.1)

indicate that this mode is forward propagating. Analogously,
we conclude that in the second case two modes (forward and
backward) coexist for v(wm) < v < v(0), and one forward
mode exists for v > v(0).

6
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Figure B.1. Function v(w) for symmetric (dashed curves) and
antisymmetric (solid curves) guided plasmon modes of anisotropic
slot waveguides characterized by three values of ρ and σ = 1. Only
positive values of w are physically meaningful.

Appendix C

According to equation (9), the derivative of the function v(w)
for the antisymmetric oscillatory mode m = 1 is

v′(w) =
√
ρσ − v[1+ (ρ − 1)w2

]
√

1− w2

w[1+ (ρ − 1)w2]
√

1− w2
.

The expression for ∂k/∂β differs from that in equation (A.2)
by only a sign and is given by

∂k

∂β
= −

(k/β)v′

v′ + v3w/(βh)2
. (C.1)

Unlike the antisymmetric surface mode considered before,
now v(w) does not diverge, and the parameter w is bounded
above by the value wmax = (1 + rx)

−1/2. This results in
the following three possibilities: (i) the function v grows
monotonously for all w; (ii) v decreases for w < wm < wmax
and grows for w > wm, where wm is the nonzero root of the
equation v′(w) = 0; and (iii) v decreases monotonously for all
w. By expanding v′(w) in a Taylor series

v′(w) =
√
ρσ

(
1−

2
3
ρ

)
w

+
√
ρσ

(
4
5
ρ2
− 2ρ +

3
2

)
w3
+ O(w5),

we conclude that the first possibility is realized for ρ < 3/2,
whereas the last two occur for ρ ≥ 3/2. In the limit w→ wmax
(β → 0), the tilt of the dispersion curve approaches zero as

∂k

∂β
∼

rx(1+ rz)tan−1√rz − (1+ rx)
√

rz

σ rx(1+ rz)
√

1+ rx
(
tan−1√rz

)3 βkh2. (C.2)

This result, together with equations (C.1) and (A.3), shows
that the above three possibilities correspond to a single

backward mode, one forward mode and one backward mode,
and a single forward mode, respectively. The second and third
regimes change each other when ρ and σ (or rx and rz) are
such that

(1+ rx)
√

rz = rx(1+ rz)tan−1√rz, (C.3)

which is equivalent to the equation v′(wmax) = 0. The
dependency σ(ρ) following from this relation is plotted in
figure 3(c). In particular, ρ ≈ 1.94 for σ = 2 in figure 3(a).
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