
New approach to pulse propagation in nonlinear
dispersive optical media

Yuzhe Xiao,1,* Drew N. Maywar,2 and Govind P. Agrawal1

1The Institute of Optics, University of Rochester, Rochester, New York 14627, USA
2Electrical, Computer, and Telecommunications Engineering Technology, Rochester Institute of Technology,

Rochester, New York 14623, USA
*Corresponding author: yuxiao@optics.rochester.edu

Received July 30, 2012; revised August 28, 2012; accepted September 1, 2012;
posted September 5, 2012 (Doc. ID 173386); published September 28, 2012

We develop an intuitive approach for studying propagation of optical pulses through nonlinear dispersive media.
Our new approach is based on the impulse response of linear systems, but we extend the impulse response func-
tion using a self-consistent time-transformation approach so that it can be applied to nonlinear media as well.
Numerical calculations based on our new approach show excellent agreement with the generalized nonlinear
Schrödinger equation in the specific case of the Kerr nonlinearity in both the normal and anomalous dispersion
regimes. An important feature of our approach is that it works directly with the electric field associated with an
optical pulse and can be applied to pulses of arbitrary width. Numerical calculations performed using single-cycle
optical pulses show that our results agree with those obtained with the finite-difference time-domain technique
using considerably more computing resources. © 2012 Optical Society of America

OCIS codes: 190.5530, 320.7110.

1. INTRODUCTION
Propagation of optical pulses through nonlinear dispersive
media is studied in many contexts ranging from optical com-
munications [1] to ultrafast optics [2]. The usual starting point
is the nonlinear Schrödinger (NLS) equation, obtained from
Maxwell’s equations under the slowly varying envelope ap-
proximation (SVEA), and its predictions are quite accurate
as long as pulses are not so short that the SVEA begins to
break down [3]. Attempt has been made to modify the NLS
equation so that it could be applied to pulses as short as a
single optical cycle [4]. In recent years, attosecond pulses
are attracting considerable attention for a variety of applica-
tions [5,6]. Numerical methods that integrate Maxwell’s equa-
tions directly, such as the finite-difference time-domain
(FDTD) method, are widely used for ultrashort optical pulses
[7–9]. Although the FDTD method solves the pulse propaga-
tion problem with the least approximations, it is relatively
time-consuming and is typically useful only for propagation
distances shorter than 1 mm.

In this paper, we propose a novel intuitive approach for
studying propagation of optical pulses through a nonlinear
dispersive medium. It makes use of the impulse response
function associated with a linear system but extends it so that
it can be applied to a nonlinear medium as well. As our ap-
proach works directly with the electric field associated with
an optical pulse, it does not have any requirement on the pulse
width and could be used for ultrashort pulses containing a sin-
gle optical cycle, a region where the NLS equation is likely to
fail. The basic theory of linear systems is introduced, and the
impulse response function of a linear dispersive medium is
obtained using a standard approach in Section 2. This impulse
response function is extended to the nonlinear case in
Section 3 using a self-consistent physical approach. In parti-
cular, a nonlinear medium introduces an additional transit

time delay that is different for different parts of the optical
pulse (depending on the local intensity of each temporal
slice). Numerical examples, discussed in Sections 4 and 5
for long and short pulses, show that this new approach agrees
quite well with the generalized NLS equation and the FDTD
method in the appropriate limit. The main results are summar-
ized in the final concluding section.

2. PULSE PROPAGATION IN A LINEAR
DISPERSIVE MEDIUM
For any linear system, the input and output signals, x�t� and
y�t�, respectively, are related as

y�t� �
Z

∞

−∞

h�t; t0�x�t0�dt0; (1)

where h�t; t0� is the system’s impulse response function. For a
linear time-invariant system, the impulse response function
depends only on one single variable, the time difference,
and takes the form h�t − t0�. In this case, Eq. (1) becomes a
convolution and takes a very simple form in the frequency
domain:

~y�ω� � H�ω� ~x�ω�; (2)

where ~y�ω� and ~x�ω� are the Fourier transforms of the output
and input signals. The frequency response function H�ω� is
the Fourier transform of h�t�. Equation (2) shows that such
a linear system acts like a filter in the frequency domain.

Can the linear system theory be applied to propagation of
optical pulses through a linear dielectric medium? The answer
is not obvious because, in general, one must solve Maxwell’s
equations for the electric field E�r; t�, which is a vector
quantity that depends both on time t and spatial position r.
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The vector nature can be ignored if the polarization properties
do not change during propagation. The transverse spatial co-
ordinates can also be ignored when pulses propagate through
a single-mode optical waveguide. In the following, we assume
that both of these requirements are met and introduce a scalar
field using the relation E�r; t� � êF�x; y�E�t − z∕vg�, where ê is
the polarization unit vector, F�x; y� is the spatial distribution
of the waveguide mode, and vg is the group velocity. As illu-
strated in Fig. 1, a dielectric medium transforms the electric
field associated with the optical pulse. If we denote the input
and output fields by Ein and Eout, respectively, Eq. (1) can be
written as

Eout�t� �
Z

∞

−∞

h�t − t0�Ein�t0�dt0: (3)

Once the impulse response function of an optical medium is
known, the pulse propagation problem is completely solved.

A dispersive linear medium, whose refractive index
changes with frequency, can be thought of as a time-invariant
linear system. The impulse response function of such a med-
ium can be found easily in the frequency domain. If we con-
sider a specific frequency component of the electric field at
frequency ω, it acquires a phase shift of ϕ � β�ω�L as it pro-
pagates through such a linear medium of length L, i.e.,

~Eout�ω� � exp�iβ�ω�L� ~Ein�ω�; (4)

where β�ω� � n�ω�ω∕c is the propagation constant of light
inside a medium with the refractive index n�ω� and c is the
speed of light in vacuum. It follows from Eq. (2) that
H�ω� � exp�iβ�ω�L�. The impulse response function can
now be obtained by taking the inverse Fourier transform:

h�t� � 1
2π

Z
∞

−∞

exp�iβ�ω�L − iωt�dω: (5)

As a simple check of Eq. (5), we first consider a nondisper-
sive linear medium. In this case, β�ω� � n0ω∕c, where n0 is the
constant refractive index of the medium. By substituting this
form of β�ω� back into Eq. (5), the impulse response function
for a linear nondispersive medium is found to be

h�t� � δ�t − Tr�; (6)

where Tr � n0L∕c is the constant transit time of the medium.
Equation (6) has a simple intuitive physical interpretation. It
shows that a linear nondispersive medium delays each slice of
the electric field by a constant transit time of Tr , if we think of
the electric field as composed of a sequence of temporal
slices.

In our previous work [10], we extended this physical inter-
pretation to a dynamic nondispersive medium whose refrac-
tive index was allowed to change with time. This was done by
allowing the transit time Tr to be different for different tem-
poral slices. Such a simple theory explained quite well the
recently discovered phenomenon of adiabatic wavelength
conversion that happens in dynamic linear media. We could
even extend this approach to a nondispersive nonlinear med-
ium by treating the medium as “linear”. By allowing the transit
time Tr to depend on local intensity of the pulse, Eq. (6) is able
to predict the temporal and spectral features associated with
self-phase modulation (SPM) and self-steepening inside a non-
linear Kerr medium [11]. However, dispersive effects were
ignored in this previous work.

As seen from Eq. (5), pulse propagation inside a dispersive
medium requires knowledge of the frequency dependence of
the refractive index since β�ω� � n�ω�ω∕c. A classical harmo-
nic-oscillator model is sometimes used to find this frequency
dependence. In an alternative approach, well known in the
context of optical fibers [1], β�ω� is expanded in a Taylor ser-
ies around the carrier frequency ω0 of the pulse. If we only
retain terms up to second order in ω − ω0, we can approximate
β�ω� as [3]

β�ω� ≈ β0 � β1�ω − ω0� �
1
2
β2�ω − ω0�2; (7)

where β0 � k�ω0� and β1 and β2 are the first- and second-order
dispersion coefficients, respectively. Substituting Eq. (7) into
Eq. (5) and performing the integration, the impulse response
function for such a linear dispersive medium is found to be

h�t� �
�������������

i

2πβ2L

s
exp

��t − Tr�2
2iβ2L

− iω0�t − Tr�
�
; (8)

where Tr � β1L � L∕vg is a constant transit time and vg is the
group velocity associated with the pulse.

Strictly speaking, the response function h�t� in Eq. (3)
should vanish for t < 0 in order to ensure causality [12]. This
condition does not hold for h�t� given in Eq. (8), indicating that
one must be careful in using it. In spite of this limitation, the
Taylor expansion in Eq. (7) is widely used in dealing with non-
linear pulse propagation inside optical fibers, and it has
proved quite successful in predicting a wide variety of optical
phenomena such as soliton fission and supercontinuum gen-
eration [3]. We can justify the use of Eq. (8) heuristically by
inserting a factor of �1 − iη� in front of the quadrating term
containing β2, where η is a positive number. For any small fi-
nite value of η, jh�t�j peaks at t � Tr and becomes negligible
for t < 0. The use of such convergence factors is often helpful
for rapidly oscillating functions.

3. EXTENSION TO A NONLINEAR
DISPERSIVE MEDIUM
One important feature of Eq. (8) is that the time variable t is
shifted by Tr in both terms on the right side, a feature identical
to that appearing in Eq. (6). Although Eq. (8) cannot be simply
interpreted as a delay of the electric field slices, the same
temporal shift implies that this equation can be extended to
include the nonlinear effects by adding the nonlinear slice
delay introduced by the medium nonlinearity. As a specific
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Dielectric op�cal medium 

)(),( ωntn
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Fig. 1. (Color online) Schematic illustration of the linear system ap-
proach to optical pulse propagation. The electric field is shown for
both the input and output pulses.
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example of the nonlinear medium, we focus on the Kerr non-
linearity and replace n�ω� with n�ω� � n2I, where I�t� is the
local intensity of a temporal slice. Similar to the nondispersive
case, we include the effect of nonlinearity by replacing Tr

with Tr � Tnl, where Tnl � �n2I�L∕c is the additional delay
resulting from the nonlinearity of a Kerr medium [11]. With
this change, the impulse response function of a nonlinear
dispersive medium can be written as

h�t; t0� �
�������������

i

2πβ2L

s

× exp
��t − t0 − Tr − Tnl�2

2iβ2L
− iω0�t − t0 − Tr − Tnl�

�
:

(9)

It is important to note that the nonlinear time delay Tnl is a
function of t0 because it depends on the local intensity I�t0�
of the pulse. Because of this feature, the impulse response
function can no longer be written as a single-variable function,
rather it is a function both of t and t0.

We can make the impulse response function a single-
variable function by using the concept of time transformation
introduced in Ref. [11]. For this purpose, we introduce a
new time variable t1 as a nonlinear function of the old time
variable t0:

t1 � F�t0� � t0 � Tr � Tnl�t0�: (10)

Clearly, h�t; t0� in Eq. (9) can now be written as h�t − t1�. Using
the same transformation in Eq. (3), we can write it in the form

Eout�t� �
Z

∞

−∞

h�t − t1�E0�t1�J�t1�dt1; (11)

where E0�t1� � Ein�t0� and the Jacobian of the transformation
is given by

J�t1� � dt0∕dt1 � �1� dTnl∕dt0�−1 (12)

with Tnl�t0� � �n2L∕c�I�t0�. A major benefit of the time trans-
formation in Eq. (10) is that Eq. (11) is now in the form of
a convolution, and the integral appearing there can be calcu-
lated efficiently in the Fourier domain using the convolution
theorem. A second benefit is that one can include higher-order
dispersion terms in Eq. (7) since only the Fourier transform of
h�t� is needed to carry our the integration. In fact, dispersion
to all orders can be included by using the analytical form this
Fourier transform, H�ω� � exp�in × �ω�ωL∕c�.

Before implementing Eq. (11) numerically, we need to dis-
cuss one more issue. An implicit assumption made in writing
Eq. (9) is that the shape of the pulse does not change consid-
erably during its propagation over the length L. This require-
ment comes directly from the definition of a linear system that
the system should act as a “black box” and is not altered by the
“signal” itself. In the nonlinear case, the system is altered by
the signal because refractive index of the medium changes
locally in proportion to light intensity inside the medium. In
practice, pulse shape is not affected much over distances
much shorter compared to the dispersion length, defined
as LD � T2

0∕jβ2j, where T0 is the pulse width [3]. To cover
lengths comparable to or longer than LD, we adopt an

approach similar to that employed by the split-step Fourier
method used for solving the NLS equation [3]. Specifically,
the nonlinear dispersive medium is divided into multiple sec-
tions of length l ≪ LD, and Eq. (11) is used to propagate the
pulse through each section. At the end of each section, the
pulse intensity obtained in that section is used to calculate
the functions E0�t1� and J�t1� in the next section.

4. PULSES CONTAINING MANY OPTICAL
CYCLES
In this section we compare the predictions of our time-
transformation approach with those of the standard NLS
equation for relatively long pulses containing many optical
cycles. To simplify the following discussion, we make use
of the expansion in Eq. (7) and include dispersion up to sec-
ond order through β2. In general, both the nonlinear para-
meter n2 and the dispersion parameter β2 can take either
positive or negative values. Although our technique works
for all four possible sign combination of these two parameters,
we focus on a medium exhibiting self-focusing nonlinearity
n2 > 0 with anomalous dispersion �β2� < 0 because optical
solitons can form only in this case [3].

The NLS equation deals with the pulse envelope A�z; t�
related to the electric field associated with the pulse as

E�z; t� � Re�A�z; t − z∕vg� exp�iβ0z − ω0t��: (13)

The evolution of A�z; t� inside the dispersive nonlinear
medium is then governed by the standard NLS equation writ-
ten in a normalized form as

i
∂A

∂ξ
� 1

2
∂2A

∂τ2
� β0n2LDjAj2A � 0; (14)

where ξ � z∕LD is the distance normalized to the dispersion
length and τ � �t − z∕vg�∕T0 is the time normalized to input
pulse width T0. If we write the input field in the form
A�0; τ� � �����

I0
p

f p�τ�, where f p�τ� governs the pulse shape,
we can introduceN2 � β0n2I0LD, whereN governs the soliton
order [3]. In the following numerical simulations we choose
N � 1, a condition required for the formation of fundamental
solitons that preserve their shape for a specific input
pulse shape.

We first consider a Gaussian-shape pulse and use f p�τ� �
exp�−τ2∕2�, with T0 � 10 ps at a carrier frequency of
200 THz. Such a pulse contains more than 8000 optical cycles
in the spectral region near 1.5 μm relevant for telecommuni-
cation systems. Figure 2 compares the predictions of our
time-transformation approach with that of the standard NLS
equation (14) by plotting the pulse shape and spectrum after a
distance of z � 4LD. The input shape and spectrum are shown
by the dashed green curves. Both the pulse shape and spec-
trum change considerably inside the nonlinear medium even
when the soliton condition N � 1 is satisfied. These changes
occur because the the input pulse evolves to become a funda-
mental soliton with a “sech” pulse shape [3]. The important
feature for us is that both the shape and the spectrum
obtained with our approach (dotted black curves) coincide
perfectly with those obtained with the NLS equation (solid yel-
low curves), verifying that our method provides a correct de-
scription of pulse propagation inside a nonlinear dispersive
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medium. Although not shown in Fig. 2, our approach propa-
gates the electric field, rather than the pulse envelope, and
correctly includes all linear and nonlinear phase shifts.

The most well-known feature of the interplay of nonlinear-
ity and dispersion is the fundamental optical soliton forming
when the input pulse has “sech” shape with a peak intensity
such that to N � 1 [3]. We verify the existence of such a so-
liton by using f p�τ� � sech�τ� at z � 0. As shown in Fig. 3, the
intensity profile of the output pulse (dashed black curve) cal-
culated with our approach overlaps perfectly with that of the
input pulse (solid yellow curve) even after propagating a dis-
tance of 10LD. We verified that the fundamental soliton was
able to maintain its shape even for much longer distances.

5. PULSES CONTAINING A FEW
OPTICAL CYCLES
In this section we focus the case of pulses that contain just a
few optical cycles. For such short pulses, the self-steepening
effect, resulting from the intensity-dependent group velocity,
becomes important. Also, higher-order dispersion needs to be
considered because of a relatively broad spectrum of such
pulses. The standard NLS equation (14) cannot provide an
accurate description for short optical pulses. However, it
can be generalized by adding additional terms that represent

the higher-order nonlinear and dispersion effects. Such a
generalized NLS (GNLS) equation has the form [3]

i
∂A

∂ξ
� 1

2
∂2A

∂τ2
� iδ3

∂3A

∂τ3
� β0n2LD

�
jAj2A� is

∂

∂τ
�jAj2A�

�
� 0;

(15)

where δ3 � β3∕�6T0jβ2j� takes into account the third-order
dispersion effects governed by β3 and s � 1∕�ω0T0� is the
parameter responsible for self-steepening. We ignore intra-
pulse Raman scattering in this work.

A question one may ask is whether a fundamental soliton,
such as the one shown in Fig. 3, will maintain its shape even in
the presence of self-steepening and third-order dispersion.
Here we consider a 10 fs fundamental soliton, corresponding
to a self-steepening factor of s � 1∕�4π�. We also include
third-order dispersion using δ3 � 0.02. Figure 4 compares
the intensity profile at a distance of z � 10LD with the input
one. As seen there, even though the pulse peak moves toward
the trailing part, the shape of the pulse remains virtually un-
changed with negligible temporal broadening. The shift of the
pulse peak results from the influence of intensity-dependent
group velocity. The reason that the pulse moves as a soliton is
that the third-order dispersive effects in Fig. 4 are not strong
enough to break the balance between the SPM and group-
velocity dispersion. Notice that the predictions of the GNLS
equation agree well with our time-transformation approach.

It is well known that third-order dispersion can lead to fis-
sion of higher-order solitons and emission of dispersive waves
at a certain well-defined frequency [3]. To verify that our ap-
proach predicts these effects as well, we show in Fig. 5 the
evolution of a third-order soliton (N � 3) by plotting the tem-
poral and spectral profiles of the 10 fs input pulse over a dis-
tance of one dispersion length. As seen there, a new spectral
peak appears starting at about z ≈ 0.3LD and the pulse splits
into three parts soon after that because of the fission of the
higher-order soliton induced by third-order dispersion. The
frequency shift of �ν − ν0�T0 ≈ 5 of the blue shifted peak in
Fig. 5 agrees with the phase-matching condition associated
with the generation of a dispersive wave. We repeated these
simulations using the GNLS equation (15) and found that the
results are identical to those shown in Fig. 5.

As a final test of the usefulness of time-transformation
approach, we consider a single-cycle pulse. One important
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Fig. 2. (Color online) Shape (top) and spectrum (bottom) of a wide
optical Gaussian pulse (T0 � 10 ps) at the input end (dashed green
lines) and the output end at z � 4LD (dotted black lines). The predic-
tions of the NLS equation are shown by solid yellow lines.
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Fig. 3. (Color online) The input (solid yellow) and output (dotted
black) intensity profiles at z � 0 and z � 10LD when parameters of
the input pulse correspond to a 10 ps fundamental soliton.
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Fig. 4. (Color online) Intensity profile of a sech input pulse at dis-
tances of z � 0 (dashed green) and z � 10LD (dotted black) for para-
meters identical to those of Fig. 3 except for T0 � 10 fs, s � 1∕�4π�,
and δ3 � 0.02. Predictions of the GNLS equation are shown by the so-
lid yellow curve.
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feature of our approach is that it works directly with the elec-
tric field associated with an optical pulse without employing
the SVEA. In principle, it is capable of describing the propaga-
tion of optical pulses of arbitrary durations. Here, we choose a
sech shape pulse with T0 � 1 fs and ω0∕�2π� � 200 THz.
Such a pulse contains only one optical cycle. The self-
steepening parameter now has a relatively large value of about
s � 0.8, indicating that the electric field of the pulse will be
severely distorted during its propagation. For such short
pulses, envelope is not well defined and we study how the
electric field changes with propagation. We compare our
results with those obtained by solving Maxwell’s equations
directly with the FDTD method. In both cases, the input elec-
tric field is taken to be Ein�τ� � E0 sech�τ� cos�τ∕s�, with E0

chosen to ensure N � 1. Figure 6 shows changes in the
electric field occurring after one dispersion length, where dis-
persion parameters are identical to those used in Fig. 4. As
expected, the electric field is distorted considerably when
compared to that at the input. The FDTD result shown by
the solid yellow curve indicates that our new approach works

well in the single-cycle regime and provides results numeri-
cally much faster than the FDTD technique.

As a further check, Figure 7 shows the electric field after
the single-cycle pulse has propagated a distance of 5LD. As
seen there, compared to the input pulse, the electric field
has spread over a much larger temporal range, and its central
peak has moved considerably toward the trailing part. These
changes indicate that the traditional soliton condition fails in
the single-cycle regime because of a strong influence of
self-steepening. The FDTD method can also produce the same
result, but it requires much more computational resources
(by as much as a factor of 100 in the case of Fig. 7).

One may ask whether the GNLS equation (15) can be used
for a single-cycle pulse. As discussed in Ref. [4], this equation
can be used for pulses containing a few optical cycles. Indeed,
our numerical results confirm that it can be applied to
pulses containing a single cycle. Computational effort re-
quired by our technique is comparable to that required for
solving Eq. (15).

6. CONCLUDING REMARKS
In conclusion, we have applied our time-transformation ap-
proach, first developed in the context of a dynamic, linear,
nondispersive medium [10], for studying propagation of short
optical pulses inside a nonlinear dispersive medium. We ex-
tend the linear system theory so that it can also be used
for a nonlinear medium using the time-transformation con-
cept. A nonlinear temporal mapping permits us to include
dispersion to all orders by using an arbitrary form of the fre-
quency dependence of the refractive index. This new intuitive
approach shows very good agreement with other techniques
based on the GNLS equation and the FDTD method in the ap-
propriate limit. A major benefit of our approach over the
FDTD method is that it is much faster computationally and
can be used for propagating optical fields over longer dis-
tances. As an example, the propagation distance in Fig. 7 is
5 mm for T0 � 1 fs if we use β2 � −1 ps2∕km as a typical va-
lue. Since our time-transformation approach does not make
use of the SVEA, it can also be used for pulses of any duration.
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Fig. 5. (Color online) Evolution of a third-order soliton (N � 3) over
one dispersion length for the same parameters values used in
Fig. 4. The temporal and spectral intensities are plotted using a
50 dB color scale.
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Fig. 6. (Color online) Electric field of a single-cycle pulse (dotted
black curve) at z � LD for ω0∕�2π� � 200 THz, T0 � 1 fs, and
N � 1. Input electric field profile is depicted by the dashed green line.
Prediction of the FDTD method is shown by the solid yellow line.
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Fig. 7. (Color online) Same as in Fig. 6 but at a distance z � 5LD.
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