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Parametric gain control of a pulse in birefringent photonic crystal fibers
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Propagation of a modulationally amplified Gaussian pulse is considered inside a birefringent optical fiber. We
show analytically that, in addition to a reduction in the parametric gain and a change in the pulse’s group velocity,
the third-order dispersion allows the generation of a temporal Airy-shaped pulse. Furthermore, pulse spreading
in the temporal domain and chirping in the spectral domain both can be controlled through an interplay between
third-order dispersion and modulational instability.
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I. INTRODUCTION

The process by which a homogeneous state breaks up into a
periodic state is known as modulational instability (MI) [1,2].
During its 40-year history, MI has been reported in both the
space and time domains using numerous physical systems,
including hydrodynamics, plasma physics, nonlinear optics,
and Bose-Einstein condensation, just to cite a few. From
a technological point of view, MI plays an important role
in telecommunication systems. Indeed, in the experimental
evidence for its occurrence in optical fibers, MI was shown to
initiate pulse-train generation [3]. Since then, other potential
applications of MI have been reported in the context of
fiber-optic parametric amplifiers [4,5], supercontinuum (SC)
generation [6], and optical rogue-wave formation [7].

In the context of fiber optics, MI is physically understood
as a balance between the nonlinear and linear dispersive
effects experienced by an optical field during its propagation.
Mathematically, the propagation of light in a single-mode
fiber is commonly modeled by the nonlinear Schrödinger
(NLS) equation, and MI can only rise in the anomalous
group-velocity-dispersion (GVD) regime. However, in the
normal-dispersion regime the phase-matching condition un-
derlying MI can be realized by adding an additional degree of
freedom to the system. For example, Coen and Haelterman
[8] predicted and experimentally observed that MI can be
produced in a normally dispersive optical fiber by applying
specific boundary conditions. An intrinsic characteristic of the
optical fiber can also be used to obtain a supplementary degree
of freedom. Indeed, the usual scalar NLS model results from a
simplification that assumes that the polarization state of light
does not change during its propagation. It is well known that
real fibers exhibit modal birefringence with random changes
in its magnitude and orientation along the fiber length.

In specifically designed photonic crystal fibers (PCF), the
built-in birefringence can be made much larger than random
birefringence variations, and one must consider the vectorial
nature of wave propagation in such strongly birefringent fibers.
In this case, the copropagating orthogonally polarized fields
are found to exhibit the MI in cases of both normal and
anomalous GVD [9–12]. From a theoretical point of view the
case of orthogonally polarized fields has the advantage that it
can be easily compared to the case of two continuous-wave
(cw) pumps interacting inside an ideal optical fiber through
cross-phase modulation [12].

In cases of both normal and anomalous GVD, MI gain was
commonly thought to be unaffected by odd-order dispersion
experienced by light during its propagation in a nonlinear Kerr
medium. In fact, the MI gain is generally obtained through
a standard linear stability analysis applicable only when the
process is initiated by a monochromatic extended perturbation
(cw pumping). Very recently, it has been shown that a proper
accounting of the linear distortion effects and interactions
experienced by different spectral components of a pulse yields
a dramatic reduction of the MI gain in the presence of the
third-order dispersion (slope of the GVD curve) [13].

In this paper we are interested in the third-order dispersion
(TOD) effects on the pulse-seeded modulational instability
process in a weakly birefringent fiber. We show that, in
addition to a reduction of the MI gain previously predicted,
distortion of the pulse shape under the TOD effects is
described by an Airy function. More importantly, we show
here that the pulse characteristics (width, chirp, etc.) can
be controlled by an interplay between TOD and MI. This
paper is organized as follows. In Sec. II, we recall the
vectorial equations governing the propagation of orthogonal
components of an arbitrary polarized light in a single-mode
birefringent fiber. The background of linear stability analysis
and general solutions of the linearized equation, given an
initial perturbation, are presented. Section III is devoted to
explicit calculations of the shape of a modulationally amplified
Gaussian pulse, and the results are compared with numerical
investigations of the vectorial equations in Sec. IV. Finally,
the main results are summarized in Sec. IV.

II. POLARIZATION INSTABILITY

We start with the coupled generalized NLS equations
satisfied by the orthogonally polarized components of a pulse
in a lossless, birefringent optical fiber [9–12]:
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Here U (z,τ ) and V (z,τ ) stand for the two orthogonal
components of an arbitrary polarized optical field E (z,t) at
the carrier frequency ω0, i.e.,

E (z,t) = 1
2 [U (z,τ ) x̂ + V (z,τ ) ŷ] ei(β0z−ω0t) + c.c.,

where β0 = (β0x + β0y)/2 is the average propagation constant,
�β = (β0x − β0y)/2 = 2π/LB is a measure of the modal bire-
fringence, and LB is the birefringence length. The nonlinear
parameter γ is proportional to the nonlinear refractive index
responsible for the Kerr effect, and the dispersion operator
β(i ∂
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) is given by
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Since we consider in this paper optical fibers with a relatively
low birefringence, the group velocities β1x and β1y are
nearly identical, and we set (β1x ≈ β1y = β1). Introducing
Ū = U exp (i�βz/2) and V̄ = V exp(−i�βz/2), the coupled
equations describing the left and right circular polarizations
A± = (

Ū ± iV̄
)
/
√

2 are analogous to that of cross-phase
modulation [12].

Equations (1) have a homogeneous cw solution correspond-
ing to a constant-power mode whose polarization state is
oriented along one of the principal axes. In what follows,
we choose this polarization state along the y axis, which
represents the fast (slow) axis for �β > 0 (�β < 0). Then
the cw solution is given by (U0,V0) = [0,

√
P0 exp (iγ P0Z)],

where P0 is the mode power. To examine the stability of this
state, let us introduce the perturbations to U0 and V0 in the
following form:

U (Z,τ ) = u (Z,τ ) , (2a)

V (Z,τ ) = [
√

P0 + v (Z,τ )]eiγP0Z, (2b)

with u (Z,τ ) and v (Z,τ ) taken to be small in comparison
to P0 and Z = z − τ/β1. Inserting Eqs. (2) in Eqs. (1) and
linearizing in u and v, we obtain the following uncoupled
equations:

∂ū
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where we have set ū = u exp [i (�β − γ0) Z] and γ0 = γP0.
Equation (3b) is typically obtained when the scalar NLS
equation is considered. Since we are concerned here with the
normal-dispersion region, this equation excludes polarization
instability of perturbations of the fast-axis component. Hence,
the polarization instability in this case can be completely
described by its component along the x axis.

In the frequency domain, Eq. (3a) together with its complex
conjugate can be written in the form
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where M (	) = i [β (	) + �β − γ0/3] and β (	) is the
Fourier transform of the dispersion operator. Looking for
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we find that the eigenvalues λ can be written in the form

λ± = −iβa (	) ± g (	) , (4)

where g (	) = [βs (	) + �β] [2γ0/3 − �β − βs (	)] and we
have defined the symmetric and asymmetric parts of β (	)
as βa = [β (	) − β (−	)] /2 and βs = [β (	) + β (−	)] /2.
Since we are interested in the amplification (or damping)
of perturbations, we should consider only the eigenvalues
with a nonzero real part, which correspond to g (	) � 0. The
corresponding solutions can be written as

˜̄u (Z,	) = F (Z,	) ˜̄u (0,	) + G (Z,	) ˜̄u∗ (0, −	) , (5)

with
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Keeping the dispersion terms up to third order, β (	) can be
written as β (	) = β2	

2/2 + β3	
3/6. Then we have βa (	) =

β3	
3/6 and βs (	) = β2	

2/2. Next, defining a dimensionless
parameter p = P0/Pc with Pc = 3 |�β| /2γ , the parametric
gain g(	) takes the explicit form
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where μ = sgn(�β) = ±1 and 	c1 = √
2|�β|/β2. For μ = 1

corresponding to the polarization state along the fast axis, the
instability band is given by −	c1

√
p − 1 � 	 � 	c1

√
p − 1,

and the maximum gain is obtained at 	c = 	c1
√

(p − 2)/2.
Modulation instability with 	c �= 0 is possible only when p �
2; otherwise, for p � 2, 	c = 0. When the polarization is
along the slow axis μ = −1, one may observe two sidebands
such that −	c1 � 	 � 	c1

√
p + 1 and −	c1

√
p + 1 � 	 �

	c1, and the gain is maximum at 	c = ±	c1
√

(p + 2)/2. In
this case, modulation instability occurs whenever p � 0. In
the following we show how the TOD affects drastically the
dynamics as soon as perturbations are localized (in the form
of pulses).

III. TIME-DEPENDENT PERTURBATIONS

According to Eq. (5), we can compute the output solution
given any known form of the initial perturbation. To stress on
the effects of the TOD, we consider a simple case for which
analytical calculations can be performed. More specifically,
we set the initial perturbation in the form of a Gaussian shape,

ū (Z = 0,τ ) = ū0 exp

[
−

(
τ

2τ0

)2

+ i	0τ

]
, (8)
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whose Fourier transform is given by

˜̄u (Z = 0,	) = 2
√

πτ0ū0 exp
[ −τ 2

0 (	 − 	0)2
]
. (9)

Assuming the spectral bandwidth of the Fourier transform
to be smaller than the MI bandwidth and the central frequency
	0 to be close to the most amplified frequency, we write 	0 =
	c + δω, with |δω| � |	c|. Consequently, the parametric gain
can be represented by its Taylor expansion

ga (	) = gc + g′′

2
(	 − 	c)2 + O{(	 − 	c)3}, (10)

with gc = g (	c) and g′′ = ∂2g (	) /∂	2
∣∣
	c

. The eigenvec-
tors U and V take the form

F (Z,	) � Fc = exp

[
i
β3

6
	3Z

]
cosh[ga (	) Z] , (11a)

G (Z,	) � Gc = i exp

[
i
β3

6
	3Z

]
sinh[ga (	) Z] . (11b)

Considering only the growing parts of the eigenvectors,
we obtain the following explicit solution for the amplified
perturbation [14,15]:
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π

exp

[
i
β3

6
	3

cZ + p

2
|�β|Z − (δωτ0)2

]{
ei	cτ

∫ ∞

−∞
exp

[
iAω− − i

3
Bω3

− − (1 + iC) ω2
−

]
dω−

+ ie−i	cτ

∫ ∞

−∞
exp

[
iA∗ω+ − i

3
Bω3

+ − (1 − iC∗)ω2
+

]
dω+

}
, (12)

where we have set ω± = (	 ± 	c) τ0 and
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Performing the integrals, we finally obtain
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where

ū+ = eiψ Ai[(1 − AB − C2 + 2iC)B−4/3], (15a)

ū− = e−iψ∗
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and Ai (x) is the Airy function. In contrast to the solution
obtained in the context of pulse spreading [14], here all
functions of the propagation length appearing in Eq. (14)
are proportional to the TOD, suggesting that almost all
characteristics may be affected by the latter. In addition,
interplay between MI and pulse size allows further degrees
of freedom for tuning the effects of the TOD. Of course in
the expression (12), the drastic impact of TOD on the
characteristics (e.g., amplitude, size, group velocity) of the
output are included but hidden. However, for small or large
values of B [see (13b)] asymptotic expressions can be found
[14]. This approach is developed in the following and the
predictions are compared with numerical simulations.

IV. NUMERICAL RESULTS

For numerical investigations we consider a birefringent
fiber with a beat length of 2 m and γ value of 0.05 W−1 m−1.
Figure 1 shows solution (14) for increasing values of β3 after
one beat length. We also plot on the same graphs the results of
numerical integration of Eqs. (1).

As can be expected and seen in Fig. 1, the numerical solu-
tions are in very good agreement with analytical predictions.
Note that in this range of parameters our solution is different
from the one predicted in [13]. Indeed, the main expected
result is a drastic reduction of the gain in the presence of the
TOD. This reduction of the gain is accompanied by a change
in the group velocity and a spreading of the pulse in time. The
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FIG. 1. (Color online) (left) Slow-axis power |u(τ )|2 as a function
of β3. (right) The pulse profiles (left axis) and instantaneous frequency
shift (right axis) for β3 = 0.05, 0.02, and 10−5 (from top to bottom).
The parameters are β2 = 0.06 ps2/m, τ0 = 0.5 ps, P0 = 4Pc, and
perturbation is initialized to u0 = 1nW . Red (dark gray) and yellow
(light gray) lines are produced from numerical integration of Eqs. (1)
and analytical predictions from (14), respectively.
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FIG. 2. (Color online) Numerical [yellow (light gray) lines] and
analytical [red (dark gray) lines] pulse shapes along the slow axis
after 2 m for (a) τ0 = 0.5 ps and (b) 0.25 ps. The other parameters
are the same as in Fig. 1.

origin of these effects can be understood by considering the
dependence of A, B, and C on the TOD parameter. For the
sake of simplicity, let us consider δω = 0. Then, A is nothing
but the time variable normalized by the initial pulse width.
Notice that time origin is now given by τmax = (β3	

2
c/2)Z.

This shift is the result of a TOD-induced change in the group
velocity of the pulse.

The impact of TOD on the pulse profile results from a
competition between the terms coming from B and C. Let us
focus first on the case C = 0. This condition can be achieved
when β2 = 0 or 	c = 0. However, since the presence of β2 is
necessary for the MI gain process, we will consider only the
case 	c = 0, which corresponds to 1 � p � 2 when �β > 0.
B measures the propagation distance in units of the TOD length
defined as LTOD = 2τ 3

0 /β3. Figure 2(a) shows the analytical
and numerical profiles for Z/LTOD < 1. As can be seen
from Fig. 2(a) the pulse profile remains Gaussian. However,
when Z/LTOD > 1 Airy oscillations become relevant, and the
pulse displays an asymmetric profile seen in Fig. 2(b). In the
spectral domain, a temporal Airy profile is known to introduce
a frequency chirp. A typical evolution of the instantaneous
frequency of the output beam is shown in Fig. 1 (see left
axis of left panel). We can observe that the nonlinear chirp on
the signal frequency is very well described by our analytical
predictions.

Let us now investigate the effects of C when the propagation
distances are much smaller than LTOD. When �β > 0, the real
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FIG. 3. (Color online) Amplitudes |ū±| on the slow axis after
1.6 m for p = 2.1 [yellow (light gray) lines], corresponding to 	c =
2.3 THz, and p = 4 [red (dark gray) lines], corresponding to 	c =
10.2 THz, (left) with and (right) without the TOD term. The other
parameters are the same as in Fig. 1.

Hyperbolic secant initial condition

0.05

0.10

0.15

0.20

0.25×10−4

-5 0 5 10-10
τ (ps)

(b)

Dirac function initial condition

| U
|2

(a
rb

. 
un

it
s)

0

0.4

0.8

1.2

-10 -5 0 5 10
τ (ps)

(a)
1.6×10−4

|U
|2

(a
rb

. 
un

it
s)

0

FIG. 4. Output intensity |U | on the slow axis after 1.6 m for p =
2.1, corresponding to (a) a hyperbolic secant and (b) Dirac function
initial conditions. The other parameters are the same as in Fig. 1.

and imaginary parts of C can be consider independently since
the TOD appears in the real part [see Eq. (13c)]. Keeping
Z/LTOD < 1 and the mismatch parameter δω = 0, the impact
of C can be singled out by varying 	c by means of p and
considering the propagation with or without the TOD term. In
Fig. 3 we show the impact of the real and imaginary parts of
C on ū± by increasing the input power and, consequently, 	c.
As can be seen from Fig. 3, in the absence of the TOD term
[right graph; Re(C) = 0], there is no significant change on the
profile of the envelope when the imaginary part of C increases.
In contrast, in the presence of the TOD [left graph; Re(C) �= 0]
we observe that the envelope spreads out, suggesting that the
major contribution of C to the pulse spreading comes from
the real part, representing an interplay between the TOD and
the MI frequency.

Finally, we emphasize that the results obtained here are not
specific to the Gaussian shape of the initial condition. Figure 4
illustrates the pulse dynamics generated from two different
initial conditions, namely, a hyperbolic secant [Fig. 4(a)] and
a Dirac δ function [Fig. 4(b)]. As can be seen from Fig. 4, in
both cases Airy oscillations develop.

V. CONCLUSIONS

We have carried out a theoretical description of the MI
inside a birefringent fiber in the presence of the TOD term
and a pulse-shape localized perturbation. Although the general
case is characterized by an Airy-shaped profile, our result is
consistent with previous results for a small value of the ratio
between the propagation length and the TOD length. We have
shown that the interplay between the TOD term and MI is
responsible for a spreading of the pulse. The latter is very
sensitive to the size of the initial pulse-like perturbation. In
addition, our analytical results show that the pulse spreading
can also be controlled by the input pump profile. We have
also shown that the frequency chirp coming from the temporal
Airy profile is rather nonlinear, and our predictions provide a
good description of the phenomenon. Finally, we can assert
that a birefringent fiber is a good medium for investigations
of coupling between the MI and higher-order dispersion terms
as it offers more degrees of freedom than a standard fiber.
Finally, since almost all laser beams emit Gaussian pulses, the
method can be successfully applied to a wide class of nonlinear
multicomponent systems subject to time-reversal symmetry
breaking.
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