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Abstract
We investigate the influence of the phase front curvature of an input light beam on the
transverse localization of light, choosing an evanescently coupled disordered one-dimensional
semi-infinite waveguide lattice as an example. Our numerical study reveals that a finite phase
front curvature of the input beam does indeed play an important role and it could degrade the
quality of light localization in a disordered dielectric structure. More specifically, a faster
transition from the ballistic mode of beam propagation due to diffraction to a characteristic
localized state is observed in the case of a continuous wave (CW) beam whose phase front is
plane, as compared to one having a curved phase front.
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(Some figures may appear in colour only in the online journal)

1. Introduction

The concept of transverse localization of light [1] in
disordered, one-dimensional (1D) and two-dimensional (2D)
discrete optical systems has attracted a great deal of interest
in view of its underlying interesting physics, and potential
novel applications [2, 3]. It is known that, with deliberately
introduced disorder, light confinement occurs only in a
plane perpendicular to the direction of light transport, both
in temporarily realized [4] and in permanently formed
lattices [5]. With the ongoing intensive research on photonic
bandgap structures and discrete photonic systems, study
on light localization has emerged as an important field of
contemporary research in the context of disordered optical
structures [4–11]. In a recent study, we have shown that this
phenomenon of light localization is independent of the input
beam shape, taking the example of an evanescently coupled
1D disordered waveguide lattice [7]. Interactions between the
initially chosen transverse phase of the propagating beam and

multiple scattering that takes place with propagation along the
disordered sample could significantly change the interference
property, which is the key to light localization, and hence we
expect that an input beam with a curved phase front could
play an important role in the localization of light. However,
no study in this direction has been reported to date.

In this paper, we numerically investigate the effect of
the input beam having a finite phase front curvature on its
localization in a disordered coupled waveguide lattice.

2. Numerical modeling of light localization in a
disordered waveguide lattice

We consider an evanescently coupled waveguide lattice
consisting of a large number (N) of unit cells, and in which
all the waveguides spaced equally apart are buried inside a
medium of constant refractive index n0 [12, 13]. The overall
structure is homogeneous in the longitudinal (z) direction
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Figure 1. (a) Schematic of the refractive index disordered
waveguide lattice with different colors indicating different refractive
indices; (b) ballistic mode of propagation through a perfectly
ordered lattice; (c) transition to a localized mode after propagation
through a 20 mm (L) long 20% disordered lattice.

along which the optical beam is assumed to propagate, as
shown in figure 1(a). The perturbation in the refractive index
1n(x) (over the uniform background of n0) due to disorder in
this 1D waveguide lattice is assumed to be of the form

1n (x) = 1np (H(x)+ Cδ(x)) (1)

where C is a dimensionless constant, whose value governs the
level/strength of disorder; the periodic function H(x) takes the
value 1 inside the higher index regions and is zero otherwise;
1n (x) consists of a deterministic periodic part 1np of
spatial period3 and a spatially periodic random component δ
(uniformly distributed over a specified range varying from 0
to 1). This particular choice of randomly perturbed refractive
indices in the high index as well as low index layers enables
us to model the diagonal and off-diagonal disorders in order
to study the localization of light [5]. In our modeling, we
have ignored any disorder in the spatial periodicity [7, 14,
15]. Wave propagation through the lattice is governed by
the standard scalar Helmholtz equation, which under paraxial
approximation could be written as

i
∂A

∂z
+

1
2k

(
∂2A

∂x2

)
+

k

n0
1n (x)A = 0 (2)

where A(x, z) is the amplitude of an input CW optical
beam having its electric field described as E(x, z, t) =
Re[A(x, z)ei(kz−ωt)

]; k = n0ω/c. To study the effect of having
a curved phase front of an input beam on the phenomenon of
transverse localization of light, the initial field amplitude of
such an input Gaussian beam centered at x0 is assumed to be
of the form

A(x) = A0 exp[−(1− iB) ((x− x0)/ω0)
2
] (3)

where the parameter B represents the phase front curvature,
and ω0 is the characteristic spot size of the Gaussian beam. In
the case of a CW beam having a plane phase front as the input,
for which B = 0, equation (2) yields localized exponential
solutions [1, 7].

We solve equation (2) with the scalar beam propagation
method which we have implemented in Matlab R© and consider

input beams characterized with different values of the
B-parameter. Details of the modeling methodology have been
discussed in [7]. Our chosen waveguide array consists of 150
evanescently coupled waveguides, each of 7 µm width and
separated from each other by 7 µm (i.e. the center-to-center
spacing is 14 µm). Such a waveguide array is realizable
through laser inscription in glass for direct observation of
localized light [14]. We deliberately choose a relatively small
refractive index contrast along with a relatively long unit-cell
period compared to the wavelength (3� λ) to ensure that the
bandgap effects remain negligible.

The value of 1np was chosen to be 0.001 over and
above that of the background material of refractive index
n0 = 1.46. To appreciate transverse localization of light in
a disordered optical medium, we present in figure 1 results
for the propagation of an input CW beam with a plane phase
front at an operating wavelength of 980 nm. figure 1(a) depicts
the array of waveguide lattices chosen for simulation study
while figures 1(b) and (c) respectively correspond to C = 0
(indicating the absence of disorder) and C = 0.2. The input
beam is assumed to cover a few lattice sites around the
central unit cell at the input plane; the chosen beam width ω0
(FWHM) was 12 µm (>width (7 µm) of an individual lattice
site). From figure 1(c), a clear signature of a transition to a
localized state after an initial ballistic mode of propagation
can be seen as the beam propagates along the length through
the disordered waveguide lattice.

3. Results and discussion

In order to investigate quantitatively the effect of having
a finite phase front curvature of the input beam on its
localization in a disordered medium, we have studied the
beam dynamics for different lengths of the lattice and
for different values of the B-parameter (incorporated in
equation (3)). A measure of the localization is assumed to be
quantifiable through decrease in the average effective width
(ωeff; as defined in [7])

P ≡

[∫
I(x,L)2dx

]/[∫
I(x,L) dx

]
2

ωeff = 〈P〉
− 1

(4)

of the propagating beam after including the statistical nature
of the localization phenomenon in a finite system; here 〈· · ·〉
represents a statistical average over several realizations of the
same level of disorder. After a certain propagation distance,
depending upon the strength of disorder and lattice aspect
ratio, ωeff is almost unchanged with characteristic statistical
fluctuations. It is worth pointing out that physically as we
increase the value of the C-parameter, the total number of
localized eigenstates supported by a particular realization
of the disordered lattice increases for a given length [5],
which eventually favors a smaller ωeff value. Naturally, a
larger value of ωeff in the localized regime as well as an
increase in the localization length [4, 7] of an eigenstate
in a disordered medium would imply degradation in the
quality of localization. The results of such an effect due
to a finite curvature of the input beam’s phase front are
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Figure 2. Variation in the ensemble averaged effective width (ωeff)
of a Gaussian beam (of initial FWHM 12 µm) with propagation
through the disordered waveguide lattice. The curves are labeled in
terms of the disorder parameter C for three different values of the
phase front curvature parameter B. The error bars are the statistical
standard deviations for the effective beam widths over 200
realizations.

illustrated in figure 2. This plot of ωeff (ensemble averaged
over 200 different realizations of a particular level of disorder
and normalized with respect to ω0) with L clearly reveals
degradation in the quality of localization with propagation
for a finite value of the parameter B in the chosen disordered
waveguide lattice.

For a waveguide lattice with a given strength of disorder,
the localized eigenchannels supported by the lattice are given.
A light beam having a finite input phase front curvature
would preferably excite one of the extended (non-localized)
natural eigenstates of a finite disordered lattice along with the
localized states in a few cases while performing the ensemble
averaging over different realizations of the disorder. Hence,
figure 2 essentially depicts the interplay between the strength
of disorder and the phase front curvature of an input beam
in the disordered lattice of finite length. We have plotted,
as a sample result, the beam dynamics for three different
B-parameters when the values of C are set at 0.2, 0.4 and 0.6.
It may be noted that a similar trend was seen in our numerical
simulations for negative values of the B-parameter.

To allow appreciation of the above-mentioned degrada-
tion in the evolution of localization, in figure 3 we have plotted
the ensemble averaged (over 100 realizations) output intensity
profiles from a 15 mm long disordered waveguide lattice of
the above kind for B = 0 as well as a finite B-parameter (both
positive and negative) when the level of disorder is set at C =
0.2. The plots in figure 3 correspond to an intermediate regime
of propagation, in which both diffraction and localization are
simultaneously present, before it attains a localized state. If
we compare the plots corresponding to finite B relative to the
plot for B= 0, this particular trend also indicates that the finite
B has a detrimental effect on the simultaneous suppression of
the ballistic side lobes to achieve characteristic localized tails.

Figure 3. Comparison of the building up of a central peak
(a transition towards the localized state) and suppression of ballistic
side lobes from (a)–(c); this clearly indicates a significant effect on
the localization transition due to the initial curved phase front of the
light beam. Side lobes are more prominent in the case of
propagation of an input beam with finite phase fronts.

Hence, it can be concluded that an input beam with a plane
phase front would favor a faster transition to localization in
comparison to a beam with a finite phase front curvature.

To provide a deeper appreciation of this effect on the
degree of localization, we estimate the so called localization
length (lC) characteristic of a localized state in a particular
disordered lattice [4]. To obtain lC, we averaged 100 output
intensity profiles for a given value of C and then performed
a three-point moving average to smooth further the resulting
profile, as mentioned in [7]. As a particular localized state
carries the signature of a corresponding disordered optical
system, in general the state is not symmetric on either side
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Figure 4. Localization lengths (lC) on either side of a localized
state have been plotted as a function of the curvature parameter (B)
for the same Gaussian input beam profile along a 15 mm long lattice
geometry with 60% disorder. Due to the characteristic asymmetry of
a localized state around its peak, some difference in the variation of
the localization length with B on either side of the peak of the
profile is evident from (a) and (b). Bars show possible errors
encountered during the curve fitting.

of the peak. The corresponding variation of lC (fitted on either
side of the peak of the output intensity profile) for various
B-parameters is shown in figure 4. These plots also confirm
the advantage of a plane phase front over a curved one from
the localization point of view. It is obvious that the larger the
absolute value of the initial phase front curvature, the stronger
the degradation in the quality of localization. These results
should form useful guidelines when undertaking experimental
studies on the localization of light in a disordered dielectric.

3.1. The effect of the input beam width

Until now, we have chosen an input beam with a width
ω0, which covers nearly four sites (high and low index) of
the lattice, to excite the eigenmodes supported by the same
disordered waveguide lattice. Naturally, the input excites only
those eigenmodes that are localized near the spatial location of
the excitation. In this subsection, we investigate the influence
of the width of an input excitation while investigating the
effect of a finite phase front curvature on the phenomenon of
transverse localization of light. For this study we choose two
different input beam widths that cover a single site and nearly
18 sites of the lattice. As before, the values of the B-parameter
were chosen to be 0, ±0.6, and the level of disorder was set at
20%. This choice of relatively small C (less than the threshold
for localization) was made so as to visualize the evolution of
the effective beam width with propagation for different values
of B in the intermediate regime of transition from ballistic to a
localized state. The influence of a finite phase front curvature
of the input beam is prominent in this regime. In figure 5,
we have plotted the variation in ωeff (normalized with respect
to ω0) as a function of the propagation length for the two
different input beam widths. figure 5(a) corresponds to the

Figure 5. Variation of the ensemble averaged effective width (ωeff)
of a Gaussian beam with two different input FWHMs with
propagation through the waveguide lattice for C = 0.2. The error
bars are the statistical standard deviations for the effective beam
widths over 250 realizations. The chosen input widths cover:
(a) about one site of the lattice; (b) ∼18 sites of the lattice.

case when the input beam width ω0 (3 µm) covers only
one waveguide of the lattice; it could be seen that after the
propagation of only a few mm of the sample length, the ωeff
corresponding to the B-parameter (±0.6) approaches nearly
the same final value, whereas for B = 0 the beam evolves to
a ωeff which is much smaller relative to the previous value.
Next, we choose a much broader input beam of ω0 (60 µm)
that covers nearly 18 lattice sites and the corresponding
propagation dynamics is shown in figure 5(b). Interestingly,
to explain the behavior depicted in figure 5, we may need
to analyze the results in terms of the transverse wavenumber
(k⊥) which is inversely proportional to the width (ω0) of the
input beam [4]. This k⊥ is large when the input beam is
narrow and simultaneously if we introduce the phase front
curvature as defined in equation (3), the phase of the input
beam strongly oscillates along the transverse profile of a
localized mode. As a result, the input beam does not excite
the localized modes efficiently. Apparently, the effect of this
inefficient coupling as compared to the case for a plane phase
front is likely to increase the ωeff of the beam. In contrast,
according to equation (3), the phase is more likely to be
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homogeneous for an input beam with relatively large ω0 and
closer to the case for a plane phase front. Hence, we observe
a different propagation dynamics of the beam as compared
to figure 5(a). We have also verified that for an intermediate
stage of the above two cases, when we consider an input
beam with ω0 (22 µm)which covers nearly seven lattice sites,
there is a trend similar to what are shown in figures 5(a) and
(b). We may mention that the overall trend of ωeff variations
for the three different cases (as shown in figure 5) remains
almost unchanged with increasing number of averagings and
the nature of variations of individual curves establishes the
fact that the transverse wavenumber plays a key role when
studying the effect of phase front curvature, whereas the tall
error bars present in the plot carry the signature of the beam
dynamics in the regime of transition from a ballistic to a
localized state. Thus figure 5 presents the influence of the
input beam width when studying the effect of a finite phase
front curvature and reveals that a sufficiently broad input beam
can lessen the adverse effect of input phase front curvature.

4. Conclusion

We have studied the significance of a finite initial phase front
curvature of an optical beam in the context of transverse
localization of light in a 1D coupled disordered waveguide
lattice. The results of our extensive numerical simulations
reveal that on an average, the presence of an initial phase front
curvature tends to degrade the effect of transverse localization.
These results should be of interest in designing experiments
related to the study of the transverse localization of light in a
disordered medium. Also, an appropriate choice of the initial
phase front can enable us to control the flow of light inside the
disordered discrete photonics structures. Hence, we envisage
that the initial phase front of a light beam will introduce a new
degree of freedom for manipulating the confinement of light
in disordered optical systems.
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