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A two-input configuration for microresonators, exhibiting bistability owing to Kerr nonlinearity, could be used for
the realization of optical flip-flops with switching speeds that are not limited by thermal effects. We present design
considerations for such devices. The concept of phase switching is explained, and the results of numerical simula-
tions clarify the conditions under which it will succeed. A thermal model is presented and used to understand the
influence of the material properties and cavity structure on important operating parameters that will be relevant to
any experimental effort to realize the device. © 2012 Optical Society of America
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1. INTRODUCTION
Optical flip-flops are the key elements of all-optical memory
and buffering devices. The development of such devices re-
mains in its infancy, even though flip-flops would be valuable
in contemporary communication networks. The reason for
this is that flip-flops are not yet fast, robust, and low-power
enough to be used in the large numbers that these applications
demand. The most common means of implementing optical
flip-flops is the use of active semiconductor devices. Both
semiconductor optical amplifiers [1] and semiconductor la-
sers [2] have been widely used for this purpose. An alternative
would be to use the Kerr effect in a passive, bistable resona-
tor. This second approach has two potential advantages. First,
passive flip-flops do not require current injection and devices
that require cascading of such elements could be implemented
with lower power requirements. Second, the Kerr effect
has an almost instantaneous material response. As a result,
switching speeds are not limited by the nonlinear medium
but by the photon lifetime of the cavity, which can, in princi-
ple, be engineered to be as fast as necessary. Implementation
of Kerr flip-flops using microresonators has proven to be dif-
ficult. When the optical power in a resonator is large, material
absorption significantly heats it. The resulting thermo-optic
change in refractive index is much stronger and slower than
the Kerr effect, and as a result, switching between the “on”
and “off” states is limited to microsecond time scales [3–7].
Techniques for getting around this limitation have included
cooling the cavity to cryogenic temperatures [8] and using
pulsed input fields with temporal durations much smaller than
the cavity’s thermal response time [9].

Thermal limitations to the switching speed of an optical
flip-flop can also be overcome by using two input fields.
A Kerr resonator subjected to two input fields can exhibit a
bistability for which the cavity is equally full of light in both
stable states [10]. As a result, the steady-state temperature
and, hence, the thermal index change would be the same in
both states. This thermal index change would be unable to
respond on the short time scales during which switching oc-
curs, and it would act as a background change in the refractive
index that does not affect the switching speed. In a recent

letter, we demonstrated theoretically that the two-input Kerr
flip-flop offers another advantage: it can be switched between
its two stable states by pure phase modulations of the input
fields [11]. Such phase modulations could be imposed electri-
cally using an electro-optic modulator or optically using cross-
phase modulation (XPM) from set and reset pulses, and they
may prove simpler to implement than intensity modulations
for the purpose of switching.

In this article we consider the design of phase-switched,
two-input, Kerr flip-flops in detail. In Section 2 a derivation
of the theoretical model used for the analysis is presented.
In Section 3 the concept of phase switching is explained.
We discuss criteria for appropriate biasing conditions and
phase-modulation profiles, which are verified by a compre-
hensive set of numerical simulations. A thermal model is
developed in Section 4 and used to study the influence of ma-
terial properties and cavity designs on device performance.
Methods of estimating important operating parameters such
as input power, cavity temperature, and switching speed
are presented in order to guide experimental work on this
device. The main results of this article are summarized in
Section 5.

2. THEORETICAL MODEL
A detailed analysis of two-input Kerr bistability was carried
out in 1982 by Kaplan and Meystre [10]. They considered
two input fields at the same frequency that excite counterpro-
pagating modes in a ring resonator. A steady-state model of
the device was developed and used to understand the nature
of the solutions under a variety of operating conditions.
Haelterman et al. later studied a different configuration
[12–14] in which a Fabry–Perot cavity was illuminated by
two input beams of the same frequency that propagated at
different angles. In addition to a steady-state analysis,
Haelterman also developed a dynamic model of the two
interacting modes and numerically demonstrated flip-flop
operation by modulating the intensities of the two input
beams [14].

A third configuration for two-input bistability is shown in
Fig. 1. In this configuration, the two resonator modes with
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amplitudes a1 and a2 propagate in the same directions inside a
Fabry–Perot cavity, but they are distinguished by their differ-
ent resonance frequencies. This type of configuration was
considered by Agrawal and Flytzanis [15]. That study was con-
cerned with absorptive bistability near a two-photon material
resonance, but the configuration is applicable to Kerr bistabil-
ity as well. In the Kerr case, the underlying physical mechan-
ism leading to bistable behavior is the same as for the other
two configurations. It comes from the fact that XPM from the
Kerr effect is twice as strong as self-phase modulation (SPM).
Thus, if mode a1 in Fig. 1 is intense enough so that it causes a
Kerr-induced change in its own refractive index by Δnnl, it
will cause the refractive index experienced by any light in
mode a2 to change by 2Δnnl [16]. As a result of these index
changes, both of the modes will experience shifts in their re-
sonance frequencies, and the resonance shift of mode a2 will
be twice as large as the resonance shift of mode a1. If the two
input fields A�1�

in and A�2�
in have the same intensity and are de-

tuned from their initial (low-intensity) resonances by the same
amount, this can lead to the existence of two stable states like
the ones described conceptually in Fig. 1. In the first state,
input field A�1�

in at frequency ω01 resonantly excites mode a1
and fills the cavity with light. This causes input field A�2�

in at
frequency ω02 to be off resonance so that mode a2 is only
weakly excited. In this state, light at ω01 is transmitted through
the cavity and light at ω02 is not. In the second state, the roles
of the two input fields are reversed and the cavity transmits
light at frequency ω02 but not at ω01.

The theoretical model developed in this section describes
all three device configurations discussed so far, and it makes
no assumptions about the specific structure of the cavity. It is
a dynamic model that can be used to describe the switching

process, as well as the steady-state field behavior. The dy-
namic equations are similar to the ones derived by Haelterman
[14] for the angled-beam configuration, and the steady-state
equations are similar to the ones derived by Kaplan and
Meystre [10] for the ring-resonator configuration. Thus, it
can be considered a general theoretical framework that con-
tains previous methods of analysis within it, demonstrating
their applicability to a wider range of devices.

A. Dynamic-Mode Amplitude Equations
The model is based on the dynamic-mode theory of resonators
that was developed in [17]. The electric field in the cavity is
written as a sum of the two resonant modes that are excited by
the input fields

E�r; t� � a1�t��������
N1

p e1�r� �
a2�t��������
N2

p e2�r�; (1)

where ek�r� is the electric-field profile associated with the kth
mode (k � 1, 2) of the resonator. The mode amplitudes are
normalized so that jak�t�j2 is the electromagnetic energy
stored in mode k at time t. The constant Nk is a normalization
factor given by

Nk �
1
2

Z
ε0ε�r�jekj2d3r; (2)

where the dielectric permittivity ε�r� describes the structure
of the cavity.

When the medium inside the cavity exhibits the Kerr effect,
there is, in addition to the linear response described by the
permittivity, a nonlinear response described by the third-order
dipole-moment density [16]

P�3�
μ �r; t� � 3ε0

4

X
α;β;γ

χ�3�μαβγEα�r; t�E�
β�r; t�Eγ�r; t�; (3)

where χ�3�μαβγ is the third-order susceptibility tensor. It was
shown in [17] that, for an assumed solution of the form (1),
Maxwell’s equations imply the following equations for the
mode amplitudes:

dak
dt

� −iωkak −
ak
2τph

� κA�k�
in �t� � iωk

4
�������
Nk

p
Z

e�k · P
�3�d3r; (4)

where τph is the photon lifetime of the cavity; κ is a coupling

coefficient; and A�k�
in is the input field to mode k, which is nor-

malized so that jA�k�
in j2 is its optical power. It is assumed for

the sake of simplicity that τph and κ are the same for the two
modes. Using Eq. (3) in Eq. (4) together with Eq. (1), we obtain
the following two coupled nonlinear differential equations:

da1
dt

� −iω1a1 −
a1
2τph

� κA�1�
in �t� � i�γ11ja1j2 � 2γ12ja2j2�a1;

(5)

da2
dt

� −iω2a2 −
a2
2τph

� κA�2�
in �t� � i�γ22ja2j2 � 2γ21ja1j2�a2:

(6)

Fig. 1. (Color online) One possible configuration for a two-input
Kerr flip-flop. Two input fields at frequencies ω01 and ω02 couple
to two different resonator modes with resonance frequencies ω1
and ω2. In the first state, input field A�1�

in fills the cavity with light, caus-
ing a Kerr-induced redshift of the resonance frequencies. The redshift
of the mode 2 resonance is twice as large because the XPM is twice as
strong as the SPM. In the second stable state, the roles of the input
fields are reversed.
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In deriving these equations, a number of terms have been ne-
glected.Dependingonwhichdevice configuration is being con-
sidered, there are different justifications for this neglect. For a
configuration using two spectrally distinct modes, these addi-
tional terms are not frequency matched to the mode reso-
nances, and hence they have a negligible influence on the
mode amplitudes. In the case of modes that may have the same
resonance frequency but are spatially distinct, such as counter-
propagating modes in a ring resonator, these terms are vanish-
ingly small as a result of the spatial phase structure of the
modes.

The SPM and XPM terms appearing in Eqs. (5) and (6) de-
pend on a set of four nonlinear parameters given by

γkl �
ωkn2cηkl

n2
0�VkVl�1 ∕ 2

: (7)

In Eq. (7) Vk is an effective mode volume defined as

Vk �

�R
ε�r�je�k�j2d3r

�
2

n4
0

R �je�k�j2�2d3r : (8)

The parameter n2 that appears in Eq. (7) is the Kerr coefficient
responsible for the intensity dependence of refractive index in
the nonlinear medium. In general, n2 depends on the orienta-
tion of the electric field with respect to the crystallographic
axes. In practice, n2 is chosen to be the value for some parti-
cular crystallographic direction. The third-order susceptibility
χ�3�c in this direction is related to n2 as [16]

χ�3�c � 4
3
ε0cn2

0n2; (9)

where n0 is the linear (low-intensity) refractive index of the
medium. The parameter ηkl that appears in Eq. (7) is a non-
linear overlap factor given by

ηkl �
X
μαβγ

R
χ�3�μαβγe

��k�
μ e�k�α e��l�β e�l�γ d3r

χ�3�c

hR �je�k�j2�2d3r R �je�l�j2�2d3r
i
1 ∕ 2 : (10)

Physically, the nonlinear overlap factors measure how effec-
tively the modes interact through the third-order susceptibil-
ity. It is often a good approximation to take ηkl ≈ 1. It is also
often a good approximation to take Vk ≈ Vcav, where Vcav is
the volume of the cavity. If the two input fields additionally
have nearly the same frequency, then γ11 ≈ γ22 ≈ γ12 ≈ γ21 � γ,
where

γ ≈ ω1cn2 ∕ �n2
0V cav�: (11)

This approximate form of γ will be used throughout the rest of
this article.

B. Steady-State Solutions
Equations (5) and (6) describe the behavior of the resonator
for any input-field temporal profiles A�1�

in �t� and A�2�
in �t�. For de-

signing an optical flip-flop, we are interested in the stable,
steady states of the resonator when two continuous-wave
(CW) fields with constant intensities are launched into it.
The input fields then take the form

A�k�
in �t� � Bke−iω0kt; (12)

where Bk are constants. For such input fields, the steady-state
solutions of Eqs. (5) and (6) take the form

ak�t� � bke−iω0kt: (13)

Using Eqs. (12) and (13) in Eqs. (5) and (6), we obtain a pair of
algebraic equations for the complex constants bk,

�−i�Δωk � γjbkj2 � 2γjb3−kj2� � 1 ∕ 2τph�bk � κBk; (14)

where Δωk � ω0k − ωk is the detuning of the kth input field
from resonance. These equations result in the following pair
of coupled equations for the mode energies Ek � jbkj2,

��Δωk � γEk � 2γE3−k�2 � �1 ∕ 2τph�2�Ek � jκj2Pk; (15)

where Pk � jBkj2 is the power of the kth input field. Once a
solution is found for the mode energies by solving Eq. (15),
Eq. (14) can be used to find the phases of bk.

Solving Eq. (15) does not, however, guarantee that the re-
sulting solution represents a physically realizable state of the
device. In order to be realizable, it is also necessary that the
solution be stable. A stable solution is characterized by its
being robust to small perturbations. If a small perturbation
is applied to a stable state, it tends to die out and the system
remains in that state. In contrast, if a small perturbation is ap-
plied to an unstable state, the system evolves away from that
state and does not return to it. Stability of various solutions of
Eq. (15) can be examined by performing a linear stability ana-
lysis of Eqs. (5) and (6), as outlined in Appendix A.

3. FLIP-FLOP DESIGN CRITERIA
A. Biasing Conditions
The available stable states of the flip-flop depend on the
power levels and detunings of the two input fields, as indi-
cated by Eq. (15). The flip-flop could be designed such that
these properties are different between the two fields, but this
would be undesirable. As discussed in Section 1, thermal non-
linearities can be a problem for a flip-flop having different in-
tracavity intensities in its two states. As a result, it is desirable
to bias the device symmetrically so that the input fields have
the same power and detuning from their respective reso-
nances. In this situation, we can expect a pair of states to exist
that exhibit the same intracavity energy, such as those de-
picted in Fig. 1. Mathematically, these states are found by sol-
ving Eq. (15) with the conditions

Δω1 � Δω2 � Δω0; (16)

P1 � P2 � P0; (17)

and then examining their stability using the linear stability
analysis presented in Appendix A.

Kaplan and Meystre solved a very similar pair of equations
when they studied the Kerr interaction of two counterpropa-
gating modes in a ring resonator [10]. We follow their analysis
and point out its implications for the biasing conditions of a
flip-flop. They found that the solutions of Eq. (15) under
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symmetric biasing conditions can be divided into two cate-
gories. The first category contains all symmetric solutions,
characterized by the equality of their mode energies
(E1 � E2). The second category contains all asymmetric solu-
tions for which E1 ≠ E2. Because the biasing conditions are
themselves symmetric, the asymmetric solutions come in
pairs because the roles of E1 and E2 can always be reversed.

The solutions depicted in Fig. 1 for the two states of a flip-
flop are a pair of asymmetric solutions. Clearly, it is necessary
to choose P0 andΔω0 so that such a pair of solutions exists at
that bias point. An ideal bias point will also have the property
of supporting no other stable states. If, for example, there
were a stable symmetric solution in addition to the asym-
metric pair, then the flip-flop might slip into this undesirable
state and stop working. Such biasing is clearly not ideal.
Figure 2 shows the set of ideal bias points in the �Δω0; P0�
plane, following the analysis of [10]. The solid curve in the
figure bounds the set of bias points that support asymmetric
solutions. The dashed curve bounds the set of bias points for
which multiple symmetric solutions exist. Bias points in this
second set are nonideal because one of the symmetric solu-
tions is always found to be stable. Thus, the ideal bias points
lie in the shaded region of Fig. 2. The flip-flop can operate at
any of these ideal bias points. In the following analysis, as an
example, we focus on a particular bias point by choosing
Δω0τph � −2 and power P0 such that 4γjκj2τ3phP0 � 2. The re-
sults of our analysis apply qualitatively to other ideal bias
points as well. The differences among them are quantitative
in nature. They will, for instance, exhibit different extinction
ratios between the high and low transmission states of the flip-
flop. Additionally, the relative robustness of phase switching
will vary among them.

B. Phase-Modulation Profile
Hopf et al. were the first to consider switching of a single-
input Kerr resonator through pure phase modulation of the
input field [18,19]. They found theoretically that the bistable
device could be switched on or off by modulating the input
phase on time scales short compared to the photon lifetime
of the cavity. More recent studies have considered switching
one-input devices by simultaneously modulating both the am-
plitude and phase of the input field. It was shown in [20] that
even high-Q cavities can be switched both on and off in
an almost instantaneous manner by coherently combining

set/reset pulses with the input field at an appropriate relative
phase. In [21] it was found that, with appropriate selection of
the spectral phase profile of a pulse, its energy can be more
efficiently coupled into a cavity, which can be advantageous
for switching.

Here, we consider switching of the two-input Kerr resona-
tor by pure phase modulations of the input fields. This phe-
nomenon is modeled by solving Eqs. (5) and (6) with input
fields of the form

A�k�
in �t� � Bkeiϕk�t�−iω0kt; (18)

where ϕk�t� is a time-dependent phase imposed on the field by
a control signal. This could be accomplished electrically by
using an electro-optic phase modulator, or optically using
XPM of an input field by a set or reset pulse. The result of this
phase modulation is to temporarily change the detuning of the
field’s frequency from resonance as

Δωk�t� � Δω0k −
dϕk

dt
: (19)

If the phase modulation is slow enough for the resonator to
respond, then its effect can be understood as temporarily
modifying the biasing conditions and, hence, the available
stable states toward which the system will evolve.

The phase switching of an optical flip-flop can be under-
stood using Fig. 3, where we plot the available stable states
as a function of detuning (Δω2τph) of input field 2, while
the detuning of input field 1 and the power levels of both
fields are kept constant at the bias point: Δω1τph � −2 and
4γjκj2τ3phP0 � 2. The transmission of mode k is calculated
using [22]

Tk �
��κak ∕A�k�

in

��2: (20)

We assume that resonator loss is dominated by the two cou-
plers so that jκj2 � 1 ∕ 2τph. If a phase modulation with a posi-
tive derivative is applied to input field 2 so that Δω2τph < −2,
then Fig. 3 indicates that transmission of both fields will drop
to a low state. When the phase modulation ceases andΔω2τph
comes back to its bias value of −2, it is unclear what state the
system will end up in. This situation is clearly not of interest
for switching. If, on the other hand, a phase modulation with
a negative derivative is applied to input field 2 so that
Δω2τph > −2, the device enters the shaded region in Fig. 3
where the only available state is one for which the

Fig. 2. (Color online) Map of possible bias points when the input
fields have the same power P0 and detuning Δω0. The solid and
dashed curves bound regions for which asymmetric solutions exist
and multiple symmetric solutions exist, respectively [10]. The ideal
bias points lie in the shaded region.

Fig. 3. (Color online) Stable and unstable states of the device when
the detuning of input field 2 deviates from the initial biasing at
Δω2τph � Δω1τph � −2. The shaded region indicates where the
flip-flop can be switched by modulating the phase of input field 2.
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transmission of field 1 is high but the transmission of field 2 is
low. Thus, if the transmission of field 2 is initially in the high
state, such a phase modulation can force the device to flip. In
an analogous way, a subsequent phase modulation of input
field 1 can cause the device to flop.

In practice, it is necessary to turn off the signal that applies
the modulation after a short time interval. As an example, we
consider Gaussian phase shifts of the form

ϕk�t� � ϕ0e
−�t−tp�2 ∕T2

0 ; (21)

where ϕ0 is the maximum phase shift occurring at time tp, and
T0 is a measure of the temporal duration of the phase mod-
ulation. Positive values of ϕ0 allow for switching to occur. The
reason for this is that the trailing edge of the modulation de-
termines the final state of the device after the signal is gone.
Thus, even though a positive value of ϕ0 increases the phase
over the leading edge of the signal, which does not necessarily
switch the device, the trailing edge creates a decreasing phase
shift that can switch the device under the appropriate condi-
tions. Maximum detuning can be derived using Eqs. (19) and
(21) and is found to be

Δωmax
k ≈Δω0 � 0.86ϕ0 ∕T0: (22)

In order for the device to switch, it is necessary that this max-
imum detuning be large enough to drive the device into the
shaded switching region in Fig. 3. This necessity imposes a
constraint on the maximum phase shift ϕ0 and temporal dura-
tion T0. Noting that Δω2 should increase by about 1 ∕ τph, we
obtain the following approximate criterion for switching of
the flip-flop:

ϕ0 > T0 ∕ τph: (23)

Equation (23) is not sufficient for a phase modulation to
switch the device. It is also necessary that the modulation oc-
cur over a long enough temporal duration that the resonator
can respond. This leads to the following second criterion:

T0 > τph: (24)

The approximate criteria for the phase-modulation para-
meters in Eqs. (23) and (24) are verified by rigorous numerical
solutions of Eqs. (5) and (6). The input fields are taken to be of
the form of Eq. (18) with phase modulations of the form of
Eq. (21). The flip-flop is biased using two CW fields with de-
tunings Δω0τph � −2 and powers given by 4γjκj2τ3phP0 � 2. As
in Fig. 3, the resonator loss is assumed to be dominated by
coupling so that jκj2 � 1 ∕ 2τph.

Initially, the flip-flop is in a state for which the transmission
of input field 2 is high and the transmission of input field 1 is
low. The impact of phase switching is then studied by applying
three phase modulations of the form given in Eq. (21) at times
tp � 0, 50τph, and 100τph. The first modulation is applied to
input field 2 (set operation) and the remaining two to field
1 (reset operations).

We consider first the role of the maximum phase shift ϕ0

and fix the duration of the phase modulation at T0 � 2τph.
Figure 4 shows the switching behavior for four values of ϕ0

ranging from 2 to 2π. When ϕ0 � 2, the set operation fails, in-
dicating that this value of ϕ0 is not large enough for the

flip-flop to work. However, when ϕ0 is slightly increased to
2.3, both the set and reset operations succeed, and the flip-flop
turns on and off as expected. Note that this switching thresh-
old agrees well with the criterion in Eq. (23). Note also that
when two reset operations occur in succession, the second
does not change the state of the device.

One may ask if there is an upper limit on the value of ϕ0. As
the maximum phase shift is further increased to π and 2π, as
shown in Fig. 4, the set and reset operations continue to suc-
ceed. Further simulations indicate that switching continues to
succeed for maximum phase shifts up to ϕ0 ≈ 9 but fails for
still larger values. This upper limit occurs when the maximum
detuning is Δωmax

k τph ≈ 1.9 according to Eq. (22). This implies
that phase switching is even more robust than can be ascer-
tained from Fig. 3, and it succeeds when phase modulations
shift the detuning of field 2 well to the right of the shaded
ideal-switching region shown there. From a practical perspec-
tive, the important point is that there is a wide range of ϕ0

values over which phase switching succeeds.
We consider next the role of the duration T0 of the phase

modulation. For this purpose, we fix the maximum phase shift
at a value of ϕ0 � π. Figure 5 shows the switching behavior for
four values of the duration T0. When T0 � τph ∕ 2, the set op-
eration fails, indicating that the phase is changed so fast that
the resonator is unable to respond to it. When the duration is
increased to T0 � τph, the set and reset operations succeed.
Note that this switching threshold agrees well with the criter-
ion in Eq. (24). As T0 is increased to 4τph, the switching con-
tinues to succeed. However, if T0 is further increased to 5τph,
the set operation fails. The reason for this failure can be un-
derstood by noting that the criterion in Eq. (23) does not hold
for the values of T0 and ϕ0 used in this last case.

4. CAVITY DESIGN CONSIDERATIONS
The analysis has so far assumed only one kind of material non-
linearity: the Kerr effect. There are always, however, other
effects associated with a given material system. Semiconduc-
tors often exhibit nonlinear loss mechanisms such as two-
photon absorption and subsequent free-carrier absorption,
which are likely to prevent the device from functioning. If op-
tical fields were employed with photon energies below the
half-bandgap, this problem could be avoided so that the large
Kerr nonlinearity of semiconductors could be leveraged for
low-power operation. Other candidate material systems in-
clude silicon dioxide and silicon nitride. Neither of these
exhibit significant nonlinear absorption near the 1.55 μm wa-
velength, and fabrication of resonators is technologically well
developed for both of these materials [3,4,6–9,23].

There is one type of material nonlinearity that cannot be
avoided. Even if the medium is nearly transparent, some op-
tical power is always lost through material absorption. As dis-
cussed in Section 1, this absorption inevitably heats the cavity
and changes its refractive index via the thermo-optic effect.
For a two-input flip-flop, this thermal index change does
not affect the switching process because it has the same value
in both of the stable states and responds on a time scale much
longer than that required for switching. It does, however, pre-
sent two practical problems. First, if the temperature change
is large enough it can physically damage or destroy the reso-
nator. Second, it presents a technical challenge for turning on
the device. The reason for this can be understood as follows:
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in the cold-cavity state, before the input fields are turned on
(i.e., when A�1�

in � A�2�
in � 0) the kth mode’s resonance fre-

quency is ωk. In the operation mode, when both lasers are
on and bistability has been achieved, the new resonance fre-
quency is ωk

0 � ωk �ΔωT �Δω�k�
Kerr, where ΔωT is the reso-

nance shift from the cavity’s change in temperature, and
Δω�k�

Kerr is the resonance shift from the Kerr effect. When
the lasers are first turned on, they might be so far from the
cold-cavity resonances that neither input field is able to cou-
ple into the cavity and heat it up. As a result, simply turning
the lasers on will not transition the device from the cold-cavity
state into operation mode. In order to do this, it may be ne-
cessary to come up with a means of heating the cavity. This
could be done using a thermo-electric temperature controller,
or by sweeping the frequency of one of the input fields to
“drag” the cold-cavity resonances close to the operation fre-
quency. Either way it will be desirable thatΔωT be as small as
possible compared to Δω�k�

Kerr. Its value will depend on the ma-
terials used to make the device as well as on the geometric
structure of the resonator.

A. Simple Thermal Model
To analyze the influence of material properties on the tem-
perature shifts that are responsible for ΔωT , we develop a
thermal model of the device. Consider the influence of a weak
material absorption on the cavity’s photon lifetime. The over-
all photon lifetime is given by [22]

1
τph

� 1
τabph

� 1
τscph

� 1
τeph

; (25)

where τabph, τ
sc
ph, and τeph represent contributions from material

absorption, scattering losses, and coupling losses, respec-
tively. Using the perturbative theory of Section 1, it can be
shown that the contribution from material absorption is
given by

1
τabph

≈
cαm
n0

; (26)

Fig. 4. (Color online) Phase switching for four different values of the maximum phase shift ϕ0 when the duration of the modulation is fixed at
T0 � 2τph. Temporal variations of the phase (left) and transmission (right) are shown for input fields 1 (solid blue curves) and 2 (dashed red
curves).
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where it has been assumed that the optical field is primarily
confined to a single material with absorption coefficient αm
and refractive index n0. By considering the rate at which
electromagnetic energy is lost owing to this absorption,we find
that the thermal energyΔUT stored in the cavity changes with
time as

dΔUT

dt
� cαm

n0
�ja1j2 � ja2j2� −

ΔUT

τT
; (27)

where τT is the thermal lifetime.
The thermal energy is related to the thermo-optic change in

refractive index as

ΔnT � �∂n ∕ ∂T�ΔUT

ρCρVcav
; (28)

where ∂n ∕ ∂T is the medium’s thermo-optic coefficient, Cρ is
its specific heat capacity, and ρ is its density. Equations (27)
and (28) indicate that ΔnT evolves with time as

dΔnT

dt
� �∂n ∕ ∂T�cαm

n0ρCρVcav
�ja1j2 � ja2j2� −

ΔnT

τT
: (29)

Equation (29) describes how the optical field in the resonator
influences the thermal index shift. The influence of the index
shift ΔnT on the mode amplitudes is incorporated in the dy-
namic equations (5) and (6) by adding another term so that
they become [17]

dak
dt

� −iωkak −
ak
2τph

� κA�k�
in �t� � iγ�jakj2 � 2ja3−kj2�ak

� iωk
ΔnT

n0
ak: (30)

The last term in this equation represents a thermally induced
shift of the cavity’s resonance frequency by an amount
ΔωT � −ωkΔnT ∕n0.

The thermal resonance shift of the device in operation
mode can be calculated by considering the steady-state solu-
tion of Eqs. (29) and (30), and it is found to be

Fig. 5. (Color online) Phase switching for four different values of T0 when the maximum phase shift is fixed at ϕ0 � π. Temporal variations of the
phase (left) and transmission (right) are shown for input fields 1 (solid blue curves) and 2 (dashed red curves).
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ΔωT ≈ −
ωkτTcαm�∂n ∕ ∂T�

n2
0ρCρVcav

Ecav; (31)

where Ecav � E1 � E2 is the optical energy stored in the cav-
ity. Because the optical field in the cavity is dominated by one
mode in each of the states (e.g., the kth mode), the optical
energy can be approximated by that of this dominant mode
(Ecav ≈ Ek). With this approximation, the Kerr-induced reso-
nance shift of the dominant mode can be shown from
Eq. (30) to be

ΔωKerr ≈ −
ω1cn2

n2
0Vcav

Ecav; (32)

where Eq. (11) has been used for γ. Equations (31) and (32)
imply that the ratio of the thermal resonance shift to the
Kerr-induced resonance shift is

ϒT �
���� ΔωT

ΔωKerr

���� � τTαm�∂n ∕ ∂T�
ρCρn2

: (33)

Because ϒT depends primarily on material properties, it can
be seen as a figure of merit for comparing candidate material
systems out of which to construct the resonator. The only
term in Eq. (33) that is not purely a material parameter is
τT , which measures how quickly the cavity dissipates heat
with the surrounding environment and has some dependence
on its geometric structure. Active cooling of the cavity can
reduce the effective value of τT and improve the figure of mer-
it. Models that show the influence of material properties and
cavity structure on τT have also been developed in [4,7] for
different types of cavities.

B. Influence of Resonator Structure
The resonator structure affects two parameters, the quality
factor (Q) and cavity volume (Vcav), that influence device per-
formance. Both of these need to be engineered so that the flip-
flop can be made with a low enough bias power, low enough
operating temperature, and fast enough speed.

The power of each of the input fields at the bias point that
we have used in the preceding analysis is given by 2γτ2phP0 � 2
when the resonator loss is dominated by coupling. Using this
expression and Eq. (11) for γ leads to the following estimate of
the required bias power:

P0 ≈

�
Vcav

Q2

�
ω1n2

0

cn2
: (34)

This relation shows that the required power is proportional to
the volume of the cavity. This makes sense because a smaller
volume will require less input power to achieve the same in-
tracavity intensity and therefore the same Kerr-induced reso-
nance shift. Equation (34) also indicates that the needed bias
power depends inversely on Q2. Physically, one factor of Q
results from the fact that a larger quality factor implies a pro-
portionately higher cavity enhancement of the optical power
of an input field. The other factor of Q comes from the fact
that a larger quality factor implies a proportionately smaller
bandwidth of the cavity resonance. Bistable operation is
achieved when the Kerr-induced shift of a resonance is com-
parable to its bandwidth. Because the Kerr-induced shift is

proportional to the optical power inside the cavity, a smaller
bandwidth results in a proportionately lower requirement for
the bias power.

The temperature shift of the cavity when the flip-flop be-
comes operational is also important because too much heat-
ing can damage it. The temperature shift can be calculated by
solving Eq. (27) for the steady-state thermal energy in the cav-
ity and using the relation ΔT � ΔUT ∕ ρCρVcav, where ΔT is
the temperature shift. The result is

ΔT ≈

�
1
Q

�
2τTαmn0

n2ρCρ
; (35)

where the steady-state intracavity energy has been approxi-
mated by Ecav ≈ 2 ∕ γτph and Eq. (11) has been used for γ. Equa-
tion (35) indicates that the operating temperature depends
inversely on the quality factor, but that it does not depend on
the cavity volume. The independence on cavity volume results
from the fact that the required power scales with Vcav

[Eq. (34)]. Thus, the intracavity intensity and, hence, the op-
erating temperature do not depend on Vcav when the device is
appropriately engineered. The inverse dependence of the op-
erating temperature on Q occurs because a smaller Kerr-
induced frequency shift is needed if the resonator has a higher
quality factor. The Kerr-induced resonance shift and the ther-
mal resonance shift are directly proportional [Eq. (33)], and
the thermal shift is directly proportional to the change in tem-
perature. A higher Q therefore implies a proportionately smal-
ler temperature shift.

It might be concluded from Eqs. (34) and (35) that it is de-
sirable to design the cavity to have the largest Q possible.
However, this is not necessarily the case because the quality
factor also determines the device’s switching speed. Numer-
ical simulations in Fig. 4 indicate that the temporal duration
over which the flip-flop switches between states can be as
small as Tsw � 5τph. Noting that Q � ω1τph, a higher quality
factor results in a longer switching time.

5. CONCLUSIONS
The phase-switched two-input Kerr flip-flop has been analyzed
in detail in this article. The appropriate biasing conditions,
including input-field power levels and detunings from reso-
nance, were clarified. Intuitive criteria for phase modulations
of the input fields to set/reset the flip-flop were found and ver-
ified by a comprehensive set of numerical simulations. A ther-
mal model of the device was also developed, and it clarified
the influence of material properties and cavity structure on
device performance. The model was used to derive a figure
of merit for comparing the relative severity of thermal effects
between potential material systems, as well as a number of
important operating parameters that will be relevant to any
experimental effort to demonstrate the device. It is the hope
of the authors that the analysis of this article will equip other
investigators for such an effort. It would not only be an inter-
esting endeavor, because two-input Kerr bistability has not
been experimentally demonstrated to our knowledge, but it
would also be a relevant one because the proposed flip-flop
has potential to be used for all-optical signal processing
applications.

B. Daniel and G. Agrawal Vol. 29, No. 9 / September 2012 / J. Opt. Soc. Am. B 2295



APPENDIX A: LINEAR STABILITY
ANALYSIS
Consider the solutions of Eq. (14) for the mode amplitudes bk.
These correspond to steady-state solutions of Eqs. (5) and (6)
of the form of Eq. (13). Now imagine that the fields are slightly
perturbed, such as would occur regularly in a real device.
After the perturbation the solutions of Eqs. (5) and (6) can
be written in the form

ak�t� � bk�1� ck�t��e−iω0kt; (A1)

where jckj ≪ 1. Using this form in Eqs. (5) and (6), the fact
that bk satisfy Eq. (14), and neglecting all terms higher than the
first order in ck, we obtain a system of four differential equa-
tions that describe how the perturbation evolves in time. We
can write them in matrix form as

dc
dt

� iγS
↔
c; (A2)

where c � � c1 c2 c�1 c�2 �T is a column vector and the

matrix S
↔

is given by

S
↔

�

0
BB@

q1 2E2 E1 2E2

2E1 q2 2E1 E2

−E1 −2E2 −q�1 −2E2

−2E1 −E2 −2E1 −q�2

1
CCA; (A3)

where qk � 2�E1 � E2� � �Δωk � i ∕ 2τph� ∕ γ.
Any solution of Eq. (A2) can be written as a linear combi-

nation of its eigenmodes. The eigenmodes are constructed
from the eigenvectors and corresponding eigenvalues of the

matrix S
↔
, which satisfy

S
↔
cm � λmcm: (A4)

The eigenmode solutions are given by cmeiγλmt. If any of these
eigensolutions grow exponentially in time, then it is possible
for a small perturbation to drive the modes away from the
steady-state solutions bk, indicating that they are unstable.
If, on the other hand, all of the eigensolutions decay exponen-
tially in time, then the solutions bk are stable. This occurs
when all of the eigenvalues λm satisfy

Imfλmg > 0; (A5)

which is the criterion used to determine the stability of steady-
state solutions in this article.
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