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We revisit the problem of the optimization of a silicon-nanocrystal (Si-NC) waveguide, aiming to attain the
maximum field confinement inside its nonlinear core and to ensure optimal waveguide performance for a given
mode power. Using a Si-NC=SiO2 slot waveguide as an example, we show that the common definition of the effective
mode area may lead to significant errors in estimation of optical intensity governing the nonlinear optical response
and, as a result, to poor strength evaluation of the associated nonlinear effects. A simple and physically meaningful
definition of the effective mode area is given to relate the total mode power to the average field intensity inside
the nonlinear region and is employed to study the optimal parameters of Si-NC slot waveguides. © 2012 Optical
Society of America
OCIS codes: 190.4400, 230.1150, 230.7370.

Silica (SiO2) embedded with silicon nanocrystals
(Si-NCs) is considered a promising nonlinear material,
as it exhibits a strong ultrafast Kerr effect and can also
be used with the current complementary metal–oxide–
semiconductor technologies [1–3]. These features make
the Si-NC=SiO2 composite especially attractive for ultra-
fast all-optical switching and modulation, and recent
experiments demonstrate that bit rates beyond 100 Gb=s
are feasible [2]. Because of its relatively low refractive
index, this composite material is unable to confine light
tightly enough to meet the miniaturization demands of
modern photonics nanocircuitry. However, it can be used
as an active medium within plasmonic or dielectric wave-
guides, designed with high index contrasts and providing
strong field confinement required for the nonlinear effects
to occur at moderate power levels. The strength of any
nonlinear phenomenon is determined by the intensity
of light inside the nonlinear medium, which is related
to themodepower through the effectivemodearea (EMA)
[4]. Unfortunately, the absence of a unique definition for
the EMA has recently led to confusion in the optimization
of the nonlinear performance of Si-NC=SiO2 waveguides,
associated with the employment of an inappropriate defi-
nition [5]. In this letter, we clarify this issue and revisit the
problem of the nonlinear performance assessment.
The effective area Aeff of a guided mode, characterized

by the electric field E�x; y� and the magnetic fieldH�x; y�,
is introduced naturally during the derivation of the
nonlinear Schrödinger equation (NLSE) [6]. If such a
derivation takes into account the full vectorial nature
of the electromagnetic field, the resulting definition is [7]

Aeff �
�ZZ

∞

−∞

Szdxdy
�
2
�ZZ

∞

−∞

S2
zdxdy; (1)

where Sz � �E ×H� · ẑ is the time-averaged z component
of the Poynting vector, ẑ is the unit vector along the
waveguide axis, and the integration is over the entire
x − y plane. In the weak-guidance approximation, imply-
ing that the refractive index varies slowly in the trans-
verse direction, this definition leads to the well-known
expression [4,6,8]

Aeff �
�ZZ
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�
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jF�x;y�j4dxdy; (2)

in which the lateral field profile is represented by a single
scalar function F�x; y�.

Of primary importance for a nonlinear waveguide
is the average field intensity INL inside its nonlinear con-
stituent, as it determines the efficiency of all nonlinear
effects developing inside the waveguide. Without loss
of generality, we focus on a quasi-TM mode with the
dominant component of the electric field being in the
x direction (so that F ≈ Ex). It turns out after some reflec-
tion that neither Eq. (1) nor Eq. (2) can be used to relate
INL to the total power P of this mode, as none of them
explicitly contains the lateral dimensions of the wave-
guide. The equality INL � P=Aeff would hold only if Sz
(or Ex) was uniform inside the nonlinear region and zero
outside of it, in which case Aeff is simply equal to the
region’s cross-section area aNL.

It is not hard to construct a proper factor relating P and
INL, and we introduce a new EMA in the form

aeff � aNL

ZZ
∞

−∞

Szdxdy
�ZZ

NL
Szdxdy; (3)

where NL denotes integration over the nonlinear region.
Since the surface integrals in this expression give the
total mode power (numerator) and the power PNL trans-
mitted through the nonlinear part of the waveguide
(denominator), we can write INL � PNL=aNL � P=aeff .
Hence, while the effective area given in Eq. (1) or
Eq. (2) determines the relative efficiency of the nonlinear
effects within the framework of the NLSE, the quantity in
Eq. (3) allows one to estimate the actual intensity of light
inside the nonlinear waveguide. These equations are
inapplicable to plasmonic waveguides, where Sz has dif-
ferent signs inside metal and dielectric, and thus the total
power flow may vanish.

To better understand the difference between the pre-
ceding definitions, consider an optical fiber with a highly
nonlinear core (e.g., a silicon-core fiber) and assume that
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the Poynting vector decays with distance r from its axis
as Sz ∝ exp�−r2=w2�, where w is the mode-size param-
eter. In this case, Eqs. (1) and (3) give Aeff � 2πw2

and aeff � πw2
NL�1 − exp �−ξ2��−1, where wNL is the radius

of the nonlinear core and ξ � wNL=w is the confinement
factor. If the mode extends far beyond the nonlinear core
(ξ ≪ 1), values of the two effective areas differ by a
factor of 2. In the opposite limit of strong mode confine-
ment with the mode power predominantly residing with-
in the core (ξ ≫ 1), Eq. (3) gives an adequate result of
aeff ≈ πw2

NL, whereas Eq. (1) leads to a much larger value
(Aeff ≫ πw2

NL), which is obviously incorrect for the
estimation of INL. This example shows that Eqs. (1)
and (2) are unsuitable for evaluating the nonlinear
performance of optical waveguides in which the non-
linear effects are dominant within a separate layer of
suitable material (such as a Si-NC=SiO2 waveguide).
As we mentioned earlier, owing to certain arbitrariness

in defining EMA, a number of alternative expressions for
it may be found in literature [5,9,10]. For instance,
Sanchis et al. [5] define Aeff similar to Eq. (2), but with
integrals in the denominator evaluated over the nonlinear
region [as in Eq. (3)]. Foster et al. [10], on the other hand,
employ a definition somewhat similar to that of aeff ,

Aeff � π
ZZ

∞

−∞

Sz�x2 � y2�dxdy
�ZZ

∞

−∞

Szdxdy;

resulting in Aeff � πw2 for the earlier example. While
Foster et al. do recognize that the smallest Aeff does not
necessarily correspond to the optimal nonlinear perfor-
mance of the waveguide, Sanchis et al. do not. Indeed,
they proceed to use their definition for optimizing the
nonlinear effects (even though its use leads to wrong
conclusions in our opinion).
We now focus on a Si-NC-based slot waveguide shown

in Fig. 1(a) and investigate the behavior of different
EMAs at the telecom wavelength of 1.55 μm by varying
geometric and material parameters of the waveguide.
The localization of the optical field inside a highly
nonlinear, yet weakly guiding, Si-NC=SiO2 layer of
thickness t is achieved by embedding it between two
equally thick layers of silicon (nSi � 3.48) and surround-
ing the entire ridge of width w with air. The overall struc-
ture is fabricated on a silica substrate (nSiO2

� 1.45),
whose thickness (H � 0.3 μm) and width (W � 1.4 μm)
are assumed to be fixed. The refractive index of
the active slot region depends on the excess of
silicon in SiO2, which is determined by the volume
fraction f of Si-NCs, and is given by Bruggeman’s

formula nNC �
n
u�

h
u2 � 1

2 �nSinSiO2
�2
i
1=2

o
1=2

, where

u � 1
4

h
�2 − 3f �n2

SiO2
� �3f − 1�n2

Si

i
.

Figure 1(b) shows EMAs as functions of waveguide
width, calculated from Eqs. (1)–(3) for h � 500 nm
and 700 nm using COMSOL software with f � 0.1
(nNC ≈ 1.6) and t � 100 nm. As might have been expected
based on the analytical example, the three definitions
lead to significantly different values of EMA. Relative
proximity of the curves obtained from Eqs. (2) and (3)
for h � 500 nm is a mere coincidence (compare these
curves for the thicker waveguide). The minimum value

of aeff ≈ 0.07 μm2 [point (e)] is attained for w ≈ 200 nm
and corresponds to the strongest confinement of the
mode power inside the gap [see Fig. 1(e)]. If w is de-
creased, the power flow partially shifts from the gap
to the interface between the lower silicon cladding
and the substrate, as indicated by Fig. 1(d). In contrast,
aeff starts to grow when w is increased either because of
the decay of Sz away from the mode center along the
y axis [see Fig. 1(f)] or because of the mode capture
by the lower cladding [see Fig. 1(h)].

By looking at Fig. 1(b), we also notice that the differ-
ence between EMAs obtained from Eqs. (1) and (2)
varies with the width of the waveguide. This variation
is commonly attributed to the change in mode trans-
versality defined as [7]

τ �
ZZ

∞

−∞

�jExj2 � jEyj2�dxdy
�ZZ

∞

−∞

jEj2dxdy; (4)

where in calculating jEj2 it should be taken into account
that Ez is out of phase with Ex and Ey. The transversality
and effective index (neff ) of the quasi-TM mode are
shown in Fig. 1(c). In the range 150 nm < w < 700 nm,
the fractional difference between the two EMAs grows
with τ from 30% to 53% for the thicker waveguide and
stays around 40% for the thinner one. Such high values
are because of the relatively low mode transversality,
τ ≈ 79%–85%. As w is decreased to 50 nm and τ exceeds
93%, the difference steeply drops below 10% and neff
becomes close to unity, indicating weak mode guidance
and its predominant propagation through air.
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Fig. 1. (Color online) (a) Si-NC=SiO2 slot waveguide, (b) three
types of EMAs, and (c) effective index and transversality of the
fundamental quasi-TM mode as functions of waveguide width
for 500 and 700 nm thick waveguides. Density plots of Poynting
vector in (d)–(h) correspond to locations marked in (b). In all
cases, f � 0.1 and t � 100 nm. For other parameters, refer to
the text.
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The refractive index of Si-NC=SiO2 medium may be
tuned over a sufficiently broad range by changing the
density of Si-NCs (through silicon excess in the SiOx
composite) before its annealing [2]. Figure 2 shows
how such tuning affects different mode parameters for
the three waveguides in Figs. 1(d)–1(f). It is seen that
the EMAs and mode transversality become more sensi-
tive to changes in volume fraction f of Si-NCs as the
waveguide becomes narrower. This behavior is in sharp
contrast to that of neff , which grows faster with f in

wider waveguides. Although aeff may be minimized with
respect to the parameter f , the optimal performance of
the waveguide is not determined by this minimum,
because the efficiency of a nonlinear process directly
depends on the concentration of Si-NCs. Also noteworthy
is that the difference between EMAs calculated with
Eqs. (1) and (2) is no longer governed by τ if mode trans-
versality is relatively small [as it occurs for Fig. 1(f)].

Figure 3(a) shows the impact of slot thickness t on
EMAs. As seen there, EMAs become especially small
when the slot becomes narrower than 100 nm. For
instance, when t � 30 nm (about ten times larger than
the diameter of a typical nanocrystal) and w � 200 nm,
we obtain aeff ≈ 0.03 μm2. The use of Eq. (1) in this case
would lead to a threefold underestimation of light inten-
sity for a given mode power. To make the waveguide
more compact, one may opt to scale down its optimal
dimensions h0, w0, and t0, while keeping their aspect
ratio fixed. As Fig. 3(b) suggests, the scaling factor q
is a crucial parameter, and halving optimal dimensions
may enlarge aeff by more than five times. When q
approaches zero, EMAs tend to finite values rather
than diverging, as in Fig. 1(b), where only w was
reduced.

In summary, we have studied the optimization problem
for Si-NC=SiO2 waveguides by introducing a new defini-
tion for its EMA, which relates the total mode power to
the average field intensity responsible for the strength of
the nonlinear interaction. The new definition was com-
pared to the common ones for different geometric and
material parameters of a Si-NC-based slot waveguide,
revealing significant discrepancies in predictions of its
nonlinear performance.

This work was supported by the Australian Research
Council, through its Discovery Early Career Researcher
Award DE120100055.
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Fig. 2. (Color online) (a) Effective mode area, (b) effective
mode index and transversality as functions of Si-NC fraction
f in the slot region for three waveguides corresponding to
points (d), (e), and (f) in Fig. 1(b). Upper scales show the
effective refractive index of Si-NC=SiO2 composite. Material
parameters are the same as in Fig. 1.
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Fig. 3. (Color online) Effective mode area versus (a) thickness
of Si-NC=SiO2 layer and (b) scaling factor q for f � 0.1. Legends
above the panels show waveguide dimensions and equations
employed. Two sets of curves in (b) correspond to optimum
waveguide parameters in Fig. 1(e): h0 � 500 nm, w0 � 200 nm,
t0 � 100 nm; and in Fig. 1(g): h0 � 700 nm, w0 � 130 nm,
t0 � 100 nm. For other parameters, refer to the text.
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