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Nonlinear pulse propagation: A time-
transformation approach
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We present a time-transformation approach for studying the propagation of optical pulses inside a nonlinear
medium. Unlike the conventional way of solving for the slowly varying amplitude of an optical pulse, our new
approach maps directly the input electric field to the output one, without making the slowly varying envelope ap-
proximation. Conceptually, the time-transformation approach shows that the effect of propagation through a non-
linear medium is to change the relative spacing and duration of various temporal slices of the pulse. These temporal
changes manifest as self-phase modulation in the spectral domain and self-steepening in the temporal domain. Our
approach agrees with the generalized nonlinear Schrédinger equation for 100 fs pulses and the finite-difference
time-domain solution of Maxwell’s equations for two-cycle pulses, while producing results 20 and 50 times faster,

respectively. © 2012 Optical Society of America
OCIS codes: 190.3270, 190.7110, 190.5940.

An optical pulse modulates its own phase when passing
through a nonlinear medium because of an intensity-
dependent refractive index. This kind of phase modula-
tion, known as self-phase modulation (SPM), was
discovered in 1967 and manifested as spectral broadening
of optical pulses after passing through a nonlinear Kerr
medium [1]. The observed asymmetry in both the broa-
dened spectrum and the temporal shape for ultrashort
pulses was caused by self-steepening occurring because
of an intensity-dependent group velocity [2]. The conven-
tional method for calculating these nonlinear phenomena
is the nonlinear Schrodinger (NLS) equation, obtained
from Maxwell’s equations under the slowly varying envel-
ope approximation and is accurate as long as the input
pulse is considerably wider than the optical period [3].
A generalized NLS equation is developed and can be ap-
plied in the single-cycle regime [4].

In this Letter, we present a novel time-transformation
approach to study the propagation of optical pulses
through a nonlinear medium. Specifically, we extend our
approach initially applied to the dynamic linear medium
in [5] to the case of a nonlinear medium and apply it to
study the impact of SPM and self-steepening on optical
pulses. Our approach maps directly the input electric
field to the output one, without making the slowly vary-
ing envelope approximation. It clearly reveals that self-
steepening is an integral part of the SPM process, both
of which result from the intensity dependence of the re-
fractive index. We apply the time-transformation ap-
proach to the specific case of a nondispersive Kerr
medium for the first time to show that it agrees with
the conventional NLS approach in the appropriate
limit.

Pulse propagation through a dynamic optical medium
can be described as a generalized convolution that re-
lates the output electric field E;(?) to the input Ey, (¢) [5]:
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where [t —t' — T,(t')] is the impulse response function
for a nondispersive medium. We interpret this relation
as a temporal mapping of each input slice located at ¢’
to a corresponding output slice located at ¢ via

t=t+T,(), (2)
where T,(t) is the transit time associated with the
slice of the input pulse at time #'. We refer to the temporal
mapping in Eq. (2) as a time-transformation; this time-
transformation is performed directly on the electric field
via Eq. (1). We used such a temporal-mapping approach
in [5] to describe adiabatic wavelength conversion, a
process that occurs in a dynamic linear medium (whose
refractive index changes with time) [6]. Here, we show
that the time-transformation approach can be applied
to a nonlinear medium as well. More specifically, the non-
linear medium is treated as being linear, but its refractive
index changes with time as dictated by the pulse intensity
profile. Such an approach is similar to that used in [7] in
the context of nonlinear optical waveguides.

Unlike the NLS equation that discards the rapid tem-
poral oscillation of the electric field in favor of the slowly
varying pulse envelope, our approach maps directly the
input electric field into the output one. As a specific non-
linear optics example, we focus on a nondispersive Kerr
medium whose refractive index n(t) = ny + noI(¢) is se-
parated into a linear part n, and a nonlinear part that is
the product of the Kerr nonlinearity 7, and the intensity
I(¢). A direct consequence of such an intensity-dependent
refractive index is that different electric field slices of the
pulses are transported through the medium at different
speeds, v(t) = ¢/n(t), depending on the local value of re-
fractive index n(¢). In other words, the transit time of a
slice depends on the local intensity I(t) = If(t) of the
pulse as

T)(t) = Ty + malof (1)L /c, 3

where [, is the peak intensity of a pulse with shape (), L
is the medium length, c is the speed of light in vacuum,
and the constant part, T, = nyL/c.

© 2012 Optical Society of America



1272 OPTICS LETTERS / Vol. 37, No. 7 / April 1, 2012

Figure 1(a) shows the time-transformation performed
by a Kerr medium for a Gaussian pulse having
[f(t) = exp(~t*/T%)] using T,¢/To =2 and ,,/Ty = 0.8,
where 7,, = nylyL/c is the maximum nonlinear delay ex-
perienced by the pulse. The spacing of the time slices is
determined by the scaling factor s, where s = dt'/dt. In
the case of a linear medium (ny; = 0), the 45° slope indi-
cates that the input and output time arrays are spaced the
same, corresponding to a linear time transformation.
However, in the case of a nonlinear medium, the slope
varies along the pulse and the mapping becomes non-
linear; in this case, the transit time varies from one slice
to the next. For ny > 0, slices near the central part of the
input pulse move towards the trailing edge because of
their reduced speed, resulting a distortion of the pulse
shape. For ny < 0, distortion occurs as slices near the
central part of the input pulse move towards the leading
edge because of their increased speed. This kind of pulse
distortion is known as self-steepening, resulting from in-
tensity dependence of the group velocity [3].

The nonlinear changes in the slice spacing also leads to
corresponding changes in the instantaneous frequency of
the pulse, which is proportional to the scaling factor s.
For ny > 0, temporal stretching occurs in the front part
of the pulse, leading to a corresponding decrease in s, as
depicted by the solid line in Fig. 1(b), which is the famil-
iar frequency red-shift. In contrast, temporal compres-
sion occurs in the back portion of the pulse, resulting
in a higher value of s and instantaneous frequency
(blue-shift). The opposite behavior occurs for a negative
Kerr medium (n, < 0) as shown in Fig. 1; for the case
of linear medium, s =1 and no new frequencies are
generated. This variation in frequency is the origin of
SPM in our physical approach. Creation of the new
frequency components (frequency chirping) is a simple
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Fig. 1. (Color online) (a) Time-transformation performed by a
medium for Gaussian pulse propagation and (b) the corre-
sponding scaling factor s. Cases: ny >0 (solid); ny <0
(dashed); ny, = 0 (dotted).

consequence of the nonlinear temporal stretching or
compression of the electric field slices during the tem-
poral mapping.

Substituting the Kerr medium form of the transit time
Tr(t') in Eq. (3) into Eq. (1), the output electric filed is
found to be

Eoull) = / "ot — - Ty - rf (OERD)AL. (@)

The § function in Eq. (4) performs two actions. First, it
performs a change of variables dictated by Eq. (2).
Second, it relates the value of E, to E;, as

Eqw(t) = [d' /dllE}y (1) = s(U)En (1), ®)

where the scaling factors s is the appropriate Jacobian. In
numerical calculations, the output time array ¢ is first
generated by the input ¢ following Egs. (2) and (3). The
output electric field is then assigned according to Eq. (5).
Thus, given an input electric field, the output field can be
obtained without any numerical integration.

This simple mapping matches the pulse shape and
spectrum predictions based on the standard approach
using the NLS equation. In Figs. 2(a) and 2(c), we con-
sider propagation of a relatively wide 10 ps Gaussian
pulse (fy = 200 THz) through a Kerr medium with a peak
intensity such that ¢,, = 2zf7,, = 20, where ¢,, is the
maximum SPM-induced phase shift [3]. As shown in part
3(a), the pulse shape does not change much (the input
pulse shape falls under the plotted output shape). How-
ever, the output spectrum in part 3(c) shows consider-
able SPM-induced broadening. The dashed curves show
the predictions of the NLS equation, which takes the fol-
lowing form in the absence of dispersive effects:

0A

— = iy|AJPA, 6

= = Al 6)
where A(z, t) is the envelope of the pulse and y = nyw,/c
is a nonlinear parameter [3]. Predictions from the NLS
equation and our approach are indistinguishable.
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Fig. 2. (Color online) Output shape and spectrum of 10 ps (left

column) and 100 fs (right column) Gaussian pulse obtained with
our approach (solid lines) and using the NLS equation (dotted
lines). Dashed curve shows input spectra in each case.
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Fig. 3. (Color online) Schematic propagation of the electric
field of a 2-cycle pulse through a Kerr medium (7, > 0). Dotted
curves show pulse envelope. Red time slices at the bottom
move toward the back of the pulse.

The direct application of Eq. (4), however, assumes
that the pulse shape does not change considerably during
its propagation inside the medium, an assumption that
does not hold for short pulses. As shown in Fig. 3, to ac-
count for shape changes, we divide the whole medium
into small sections and apply Eq. (4) in a stepwise fashion
from one section to another, which is similar to the
split-step Fourier method used commonly for nonlinear
optical problems [3]. More specifically, the output pulse
shape obtained at the end of one section is used as the
intensity profile seen by the next section. Note that, for
this stepwise case, the length L in Eq. (4) is the length of a
small section and the whole medium length L,,,; = NL,
for a medium divided into N sections.

Solid (yellow) curves in Figs. 2(b) and 2(d) show the
predicted shape and spectrum of 100 fs Gaussian pulses
using Eq. (4); all other parameters are identical to those
in 2(a) and 2(c). As seen in part 2(b), the pulse shape
is distorted considerably through self-steepening. This
distortion is due to the nonuniform stretching or com-
pression of various temporal slices. The asymmetric
broadening of the spectrum, depicted in part 2(d), repre-
sents the impact of self-steepening on SPM. The number
of medium slices was increased until the output power
profile converged; 40 slices were required for the chosen
nonlinearity strength here (z,,/T, = 0.2).

The standard approach for calculating the propagation
of ultrashort pulses uses a generalized version of Eq. (6)
that includes the self-steepening effect by adding an ad-
ditional term as follows [3]:

0A y 0|A)PA
o i7|AIFA PR TR )
The results of Eq. (7) are shown by dotted lines in
Figs. 3(b) and 3(d) and match our time-transformation
approach, but took 20 times longer to produce.

Finally, we consider the nonlinear propagation of few-
cycle pulses. The solid curve in Fig. 4 shows the
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Fig. 4. (Color online) Nonlinear propagation of a 2-cycle Gaus-
sian pulse (solid: time-transformation; dotted: FDTD). Dashed
curve shows the input electric field.

output electric field of a 2-cycle Gaussian pulse (5 fs,
fo = 200 THz) using our approach (N = 45). Note in this
case, ¢,, is chosen to be a relatively small value of 1 so
that shock does not form. As shown in Fig. 4, the non-
linear stretching and compression of the electric field
in the front and back part of the pulse are clearly seen.
Numerical calculation is also performed using the finite-
difference time-domain (FDTD) solution of Maxwell’s
equations [8], as depicted by the dotted curve. The excel-
lent agreement with FDTD method shows that our ap-
proach is a valid approach to study few-cycle pulse
propagation. What is more important is that our ap-
proach is over 50 times faster.

In conclusion, we have presented a novel time-
transformation approach for studying pulse propagation
in nonlinear media. Its application to a Kerr medium
shows that the effect of propagation is to change the re-
lative temporal locations of the individual electric field
slices. We hope to extend this method to include disper-
sion and finite nonlinear response time so that it can be
applied to study propagation of ultrashort pulses in a
variety of nonlinear dispersive media.
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