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This review begins with an historical introduction to the field of nonlinear fiber optics and then focuses on the
propagation of short optical pulses inside optical fibers. The underlying nonlinear Schrödinger equation is used to
discuss the nonlinear phenomenon of self-phase modulation that leads to the formation of solitons in the presence
of anomalous dispersion. Recent work on supercontinuum generation is reviewedwith emphasis on the important
nonlinear processes, such as the fission of higher-order solitons and intrapulse Raman scattering. Applications of
fiber-based supercontinuum sources are also discussed in diverse areas ranging from biomedical imaging to fre-
quency metrology. The last part describes applications resulting from nonlinear phenomena, such as cross-phase
modulation, stimulated Raman scattering, and four-wave mixing. © 2011 Optical Society of America
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1. HISTORICAL INTRODUCTION
The advent of the laser [1] in 1960 gave birth to a new field of
optics. It was called nonlinear optics because the response of
atoms to an intense electromagnetic fields could no longer be
taken to be linear in the electric field. The observation of sec-
ond harmonic generation [2] in 1961 was soon followed with
the discovery of a large number of nonlinear processes, in-
cluding stimulated Raman scattering (SRS) [3], intensity-
dependent refractive index [4], stimulated Brillouin scattering
(SBS) [5], and four-wave mixing (FWM) [6]. The decade of
1960s also saw rapid theoretical advances that led to a good
understanding of the observed experimental results [7].

Optical fibers that were available during the 1960s exhib-
ited very high losses. Since silica glass does not exhibit a high
nonlinearity, there was little incentive for considering optical
fibers for nonlinear-optics experiments. The situation chan-
ged in 1970 when scientists working at Corning were first able
to reduce losses of optical fibers dramatically [8]. Soon after,
Stolen’s group at Bell Laboratories used silica fibers for de-
monstrating a variety of nonlinear effects, including SBS
and SRS, self-phase modulation (SPM), the Kerr effect, and
FWM [9–14]. This work was followed with the discovery of
solitons in optical fibers [15–17], and it eventually gave birth
to a new branch of nonlinear optics that became an active
area of research during the 1980s. For a more detailed history
of the early years of this field, the reader is referred to a 2008
article by Stolen [18]. I became involved in this area around
1984 and published a book in 1989 with the title Nonlinear
Fiber Optics [19]. Since then, the field of nonlinear fiber optics
has grown considerably, especially after the advent of
photonic-crystal and other microstructured fibers. My book
has grown with it, and its fifth edition will appear in 2012. This
overview is intended to summarize the current status of the
field of nonlinear fiber optics together with some indication
of future directions.

2. BASIC FEATURES OF OPTICAL FIBERS
The new feature of optical fibers compared with nonlinear li-
quids and crystals is that any light launched into them remains
confined to the core of the fiber, thanks to the dielectric wave-
guiding provided by the refractive-index difference between
its core and cladding. In the case of single-mode fibers, the
core diameter is <10 μm and can be reduced to below 1 μm
in modern microstructured fibers. The other feature of optical
fibers that becomes critically important is chromatic disper-
sion, resulting in a frequency dependence of the refractive in-
dex. In this section I discuss how these features of optical
fibers affect nonlinear optical phenomena.

A. Why Use Fibers for Nonlinear Optics?
The first question one may ask is why bother to use fibers for
nonlinear optics. As far as nonlinear materials go, silica glass
is not known for its nonlinear properties. The second-order
susceptibility vanishes for this glass because SiO2 exhibits in-
version symmetry. Thus, most nonlinear effects stem from its
third-order susceptibility, whose value for silica glass is smal-
ler by a factor of 100 or more compared to many crystals and
liquids [20]. Similarly, the measurements of Raman- and
Brillouin-gain coefficients in silica fibers show that their
values are smaller by 2 orders of magnitude or more com-
pared with other common nonlinear media.

The answer to this riddle lies in the relatively long lengths
over which fibers canmaintain high optical intensities. In spite
of intrinsically small values of the nonlinear coefficients, non-
linear effects in optical fibers can be observed at relatively low
power levels. This is possible because of two important char-
acteristics of single-mode fibers—a small spot size (mode
diameter <10 μm) and extremely low losses (<1 dB=km) in
the wavelength range of 1:0–1:6 μm.

A figure of merit for judging the efficiency of a nonlinear
process in bulk media is the product I0Leff , where I0 is the
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optical intensity and Leff is the effective length of the region
where such a high intensity can be maintained [21]. If light is
focused to a spot of radius w0, then I0 � P0=�πw2

0�, where P0

is the incident optical power. Clearly, I0 can be increased by
focusing the light tightly to reducew0. However, this results in
a smaller Leff because the length of the focal region decreases
with tight focusing. For a Gaussian beam, Leff ∼ πw2

0=λ, and
the product

�I0Leff�bulk �
�

P0

πw2
0

� πw2
0

λ � P0

λ �1�

is independent of the spot size w0.
In a single-mode fiber, the spot size w0 is set by the core

diameter and the refractive-index difference between its core
and cladding. The important point is that the same spot size
can be maintained across its entire length L. In this case, the
interaction length Leff is limited by the fiber loss α. Using
I�z� � I0 exp�−αz�, where I0 � P0=�πw2

0� and P0 is the optical
power coupled into the fiber, the product I0Leff becomes

�I0Leff�fiber �
Z

L

0
I0e

−αzdz � P0

πw2
0α

�1 − e−αL�: �2�

A comparison of Eqs. (1) and (2) shows that, for sufficiently
long fibers, the efficiency of a nonlinear process in optical fi-
bers can be improved by a factor

�I0Leff�fiber
�I0Leff�bulk

� λ
πw2

0α
; �3�

where αL ≫ 1 was assumed. In the visible region, the en-
hancement factor is ∼107 for λ � 0:53 μm,w0 � 2 μm, and α �
2:5 × 10−5 cm−1 (10dB=km). In the wavelength region near
1:55 μm (α � 0:2 dB=km), the enhancement factor can ap-
proach 109. It is this tremendous enhancement in the effi-
ciency of the nonlinear processes that makes silica fibers a
suitable nonlinear medium for the observation of a wide vari-
ety of nonlinear effects at relatively low power levels.

B. Pulse Propagation Through Optical Fibers
Although continuous-wave (CW) fields are sometimes used,
especially in the context of SBS, SRS, and FWM, this review
does not focus on them. Rather, we ask how short optical
pulses are affected by the nonlinear effects during their pro-
pagation inside optical fibers. As such pulses are also affected
by the dispersive effects simultaneously, the combination of
the dispersive and nonlinear effects gives rise to a variety
of novel phenomena. Two examples are provided by soliton
formation and supercontinuum generation. To understand
them, we need to first solve Maxwell’s equations inside a dis-
persive nonlinear medium. Since details are available else-
where [19], only the main steps are summarized here.

Consider the simplest situation in which a single input pulse
at the carrier frequency ω0 is launched such that it excites a
single mode of the fiber. If we assume that the pulse maintains
its linear polarization along the x axis during propagation in-
side the fiber along its length (the z axis), the electric field can
be written in the form

E�r; t� � 1
2π

Z
∞

−∞

x̂F�x; y;ω� �a�0;ω�ei�β�ω�z−ωt�dω; �4�

where x̂ is a unit vector along the x axis and F�x; y;ω� repre-
sents the spatial distribution of the fiber. The physical mean-
ing of this equation is clear. Each spectral component of the
input field propagates as a plane wave and acquires a slightly
different phase shift because of the frequency dependence of
the propagation constant β�ω�.

As an exact functional form of β�ω� is rarely known, it is
useful to expand it in a Taylor series around the carrier fre-
quency ω0 as

β�ω� � β0 � �ω − ω0�β1 �
1
2
�ω − ω0�2β2 �…; �5�

where various dispersion parameters are defined as βm �
�dmβ=dωm�ω � ω0. Depending on the pulse bandwidth, one
can stop after the second-order dispersion term containing
β2 or may need to include the third- and higher-order dis-
persion terms. Another common approximation replaces
F�x; y;ω� with its value at the carrier frequency ω0. It is also
useful to remove the rapidly varying part of the optical field at
this frequency and introduce a slowly varying pulse envelope
A�z; t� by writing Eq. (4) in the form

E�r; t� � x̂F�x; y;ω0�A�z; t�ei�β0z−ω0t�: �6�

Maxwell’s equations are then used to derive an equation
for A�z; t�.

As outlined in [19], if we include both the Kerr and Raman
contributions to the nonlinear polarization induced by light,
the slowly varying pulse envelope A�z; t� satisfies the follow-
ing time-domain propagation equation:

∂A

∂z
� α

2
A � i

X∞
m�1

imβm
m!

∂mA

∂tm
� iγ

�
1� i

ω0

∂

∂t

�

×
�
A�z; t�

Z
∞

0
R�t0�jA�z; t − t0�j2dt0

�
; �7�

where α accounts for fiber losses and the nonlinear parameter
γ is defined as

γ � ω0n2�ω0�
cAeff

; Aeff �

hRR jF�x; y;ω0�j2dxdy
i
2

RR jF�x; y;ω0�j4dxdy
: �8�

Aeff is known as the effective mode area that depends on how
far the optical mode extends beyond the core region of the
fiber. In obtaining this result, we neglected the dispersion
of the Kerr parameter n2. In the case of supercontinuum gen-
eration, it may become necessary to account for the frequency
dependence of both n2�ω� and F�x; y;ω�. The reader is re-
ferred to [19] for further details.

The nonlinear response function R�t� in Eq. (7) should in-
clude both the electronic and nuclear (Raman) contributions.
Assuming that the electronic contribution is nearly instanta-
neous, the functional form of R�t� can be written as

R�t� � �1 − f R�δ�t� � f RhR�t�: �9�
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Both the Raman response function hR�t� and its fractional con-
tribution f R ≈ 0:18 are known for silica [22]. Because of the
amorphous nature of silica glasses, the Raman gain spectrum
gR�ω� of optical fibers, shown in Fig. 1(a), extends over a
range >50THz. Since gR�ω� is related to the imaginary part
of the Fourier transform of hR�t�, it can be used to deduce
its real part through the Kramers–Kronig relation. The inverse
Fourier transform of ~hR�ω� then provides the Raman response
function hR�t� shown in Fig. 1(b).

C. Nonlinear Schrödinger Equation
Although Eq. (7) must be solved for ultrashort optical pulses,
it can be simplified considerably for picosecond pulses, a
common situation in many applications. To understand why
that is so, we note from Fig. 1 that hR�t� has an appreciable
magnitude only for t < 1 ps. Because of its compact nature, it
can be replaced with a delta function δ�t� for pulses wider
than 5ps or so. At the same time, dispersive effects higher
than second order can be ignored for such pulses. Using these
two approximations, Eq. (7) is reduced to the following much
simpler equation:

∂A

∂z
� α

2
A� β1

∂A

∂t
� iβ2

2
∂2A

∂t2
� iγjAj2A: �10�

One more simplification can be made. We can remove the β1
term by using a frame of reference moving with the pulse at
the group velocity vg � 1=β1 (the so-called retarded frame).
After the transformation T � t − β1z, Eq. (10) takes the form

i
∂A

∂z
� iα

2
A −

β2
2
∂2A

∂T2 � γjAj2A � 0: �11�

In the special case of α � 0, Eq. (11) is referred to as the
nonlinear Schrödinger (NLS) equation. One can justify ne-
glecting the loss term for fibers shorter than 1 km, especially
in the wavelength region near 1550 nm where losses are the
smallest.

The NLS equation is a fundamental equation of nonlinear
science and has been studied extensively in the context of so-
litons [19]. In the case of optical fibers, it involves two para-
meters, β2 and γ, that govern the dispersive and nonlinear
effects, respectively. The dispersion parameter β2 can be po-
sitive or negative with values in the range of 0:1–20ps2=km,
depending on how close the pulse wavelength is to the
zero-dispersion wavelength of the fiber. The nonlinear param-
eter γ is positive and has a value in the range of 1–10W−1=km
for most silica fibers; its values can be increased to beyond
100W−1=km in narrow-core photonic-crystal fibers (PCFs);
even values >1000W−1=km have been realized using nonsilica
glasses.

One can neglect fiber losses (α � 0) for short fibers and
normalize the NLS Eq. (11) using new variables defined as

U � A������
P0

p ; ξ � z

LD

; τ � T

T0
; �12�

where T0 is the width of the incident pulse, P0 is its peak
power, and LD � T2

0=jβ2j is called the dispersion length.
The resulting NLS equation has the form

i
∂U

∂ξ −
δ2
2
∂2U

∂τ2 � N2jUj2U � 0; �13�

where δ2 � sgn�β2� � �1 and the parameter N is defined as

N2 � LD

LNL
� γP0T

2
0

jβ2j
: �14�

The nonlinear length is defined as LNL � �γP0�−1. These two
length scales govern pulse evolution in optical fibers. The sin-
gle parameter N appearing in Eq. (13) can also be eliminated
by introducing u � NU [19].

3. SPM AND SOLITON FORMATION

A. Nondispersive SPM
Before considering solutions of the NLS equation, we first fo-
cus on a special case in which the dispersive term can be ne-
glected in Eq. (11). This can occur when the length of fiber is
much shorter than the dispersion length. For example, if
jβ2j � 1 ps2=km and T0 � 10ps, the dispersion length is
100km. If such a pulse is transmitted through a 1-km-long fi-
ber, one can neglect the effects of dispersion in Eq. (11) by
setting β2 � 0. The resulting equation can be solved analyti-
cally by using A �

����
P

p
exp�iϕ� and equating its real and ima-

ginary parts, resulting in the following two equations for the
power P�z; T� and phase ϕ�z; T� of the pulse:

∂P

∂z
� −

α
2
P;

∂ϕ
∂z

� γP: �15�

These equations are easily solved to obtain the power and
phase of a pulse after it has propagated through a fiber of
length L. The result is given by

P�z; T� � P�0; T�e−αz; ϕ�L; T� � ϕ�0; T� � γP�0; T�Leff ;

�16�
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Fig. 1. (Color online) (a) Measured Raman gain spectrum of silica
fibers [22]. (b) Temporal form of the Raman response function de-
duced from the gain data.
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where the effective length Leff of a fiber of length L is defined
as Leff � �1 − exp�−αL��=α.

As expected, the power is reduced exponentially because
of fiber losses. The important point is that, because of the non-
linear term, the pulse modifies its own phase. This nonlinear
effect is known as SPM. Using P�0; T� � P0f p�T�, where P0

is the peak power of a pulse with shape governed by f p�T�,
the nonlinear phase shift resulting from SPM can be written
as [19]

ϕNL�L; T� � f P�T��Leff=LNL�: �17�

In the case of a CW beam, the input power is constant with
f p�T� � 1, and the nonlinear phase shift is time independent.
However, it varies with time in the case of optical pulses and
has the same temporal profile as the pulse shape.

Spectral changes induced by SPM are a direct consequence
of the time dependence of ϕNL. This can be understood by re-
calling that a temporally varying phase implies that the instan-
taneous optical frequency differs across the pulse from its
central value ω0. The difference δω is given by

δω�T� � −
∂ϕNL

∂T
� −

�
Leff

LNL

�
∂f p

∂T
: �18�

The time dependence of δω is referred to as frequency chirp-
ing. The chirp induced by SPM increases in magnitude with
the propagated distance. In other words, new frequency com-
ponents are generated continuously as the pulse propagates
down the fiber. These SPM-generated frequency components
broaden the spectrum over its initial width at z � 0 for initially
unchirped pulses. As an example, Fig. 2 shows how the pulse
spectrum, obtained by taking the Fourier transform of A�z; T�,
evolves along the fiber for a Gaussian pulse using f p�T� �
exp�−�T=T0�2� and LNL � 1m. Several features are note-
worthy. First, the spectrum broadens continuously along
the fiber and develops sidebands on both sides of the original
spectrum. The reason is that the SPM-induced chirp in Eq. (18)
is negative near the leading edge (resulting in a redshift) and
becomes positive near the trailing edge (a blueshift) of the
pulse. Second, the sidebands at the two edges are most in-
tense in the case of a Gaussian pulse. It is important to em-
phasize that SPM-induced spectral broadening depends
considerably on both the shape and chirp of input pulses.

However, the pulse shape does not change on propagation
in the absence of dispersion.

B. Optical Solitons
The situation changes drastically when dispersive effects can-
not be ignored inside the fiber. In general, both the pulse
shape and spectrum change as the pulse propagates through
the fiber. In the case of normal dispersion (β2 > 0), optical
pulses broaden with propagation. However, an interesting si-
tuation occurs in the case of anomalous dispersion (β2 < 0). In
this case, the pulse can form an optical soliton that evolves
without any change in its shape and spectrum, provided
the input pulse has a specific shape and a specific energy.

To understand soliton formation, we set δ2 � −1 (β2 < 0) in
Eq. (13) to ensure anomalous dispersion. This NLS equation
belongs to a special class of equations that can be solved with
the inverse scattering method [19]. The most dramatic result is
that, when N � 1, the NLS Eq. (13) has a solution in the form

U�ξ; τ� � ηsech�ητ� exp�iη2ξ=2�; �19�

where the arbitrary parameter η determines not only the
soliton amplitude but also its width. This solution represents
a fundamental soliton. In real units, the soliton width changes
with η as T0=η, i.e., it scales inversely with the soliton ampli-
tude. This inverse relationship between the amplitude and the
width of a soliton is the most crucial property of fundamental
solitons.

The canonical form of the fundamental soliton is obtained
by choosing η � 1 such that the input field U�0; τ� � sech�τ�.
In this case, the pulse evolves as U�ξ; τ� � sech�τ� exp�iξ=2�.
Since only the pulse phase is affected during propagation,
neither the shape nor the spectrum of such input pulses
change inside the fiber, a really remarkable result. One can
verify by direct substitution in Eq. (13) that this solution is
indeed a solution of the NLS equation. The peak power P0 re-
quired to form a fundamental soliton is obtained from Eq. (14)
by setting N � 1 and is given by P0 � jβ2j=�γT2

0�. Using typical
parameter values for dispersion-shifted fibers near the
1:55 μm wavelength, β2 � −1 ps2=km and γ � 3W−1=km, we
find that P0 is ∼1W for T0 � 1 ps but reduces to only 10mW
when T0 � 10ps because of its T−2

0 dependence. Thus, funda-
mental solitons can form in optical fibers at power levels avail-
able from semiconductor lasers.

A natural question is what happens if the initial pulse shape
or the peak power is not matched precisely, and the input
pulse does not form an optical soliton right away. The effect
of pulse shape on soliton formation can be investigated by sol-
ving Eq. (13) numerically. It turns out that, as long as N is
close to 1 and the pulse is bell shaped, the pulse adjusts its
shape and width and evolves asymptotically into a fundamen-
tal soliton with the correct “sech” shape [19]. The reason is
that, similar to spatial modes of an optical fiber, a fundamental
soliton represents a temporal mode of a nonlinear waveguide.
In general, fundamental solitons form for values of N in the
range 0:5 < N < 1:5. It is this relative insensitivity to the exact
values of input parameters that makes the use of solitons fea-
sible in practical applications. However, it is important to rea-
lize that, when input parameters deviate substantially from
their ideal values, a part of the pulse energy is invariably shed
away in the form of dispersive waves.

Fig. 2. (Color online) SPM-induced spectral broadening of a
Gaussian along the length of a fiber for LNL � 1m. The color scale
represents the spectral density on a 40dB scale (see the color bar).
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One may ask what happens for N > 1:5. The answer is
provided by the inverse scattering method in terms of
higher-order solitons [19] that form for integer values of N .
A higher-order soliton changes its shape and spectrum during
propagation in a periodic fashion such that the input pulse is
reproduced after each soliton period ξp � π=2. As an example,
Fig. 3 shows the evolution of two higher-order solitons (for
N � 2 and 4) over two soliton periods. When N � 2, the pulse
first goes through a contraction phase, splits into two distinct
pulses as it propagates down the fiber, and then merges again
to recover the original shape at the end of a soliton period at
ξ � π=2. This pattern is repeated over each fiber section of
length �π=2�LD. The evolution is much more complex for
N � 4, but pulses undergo periodic splitting and recombining
for any value of N . The pulse spectrum also changes and de-
velops a multipeak structure at certain distances. As seen in
the following section, higher-order solitons can be used to
generate a supercontinuum, the name given to an unusually
wide spectrum.

4. SUPERCONTINUUM GENERATION
When femtosecond pulses are launched into highly nonlinear
fibers with large enough power that N is initially close to 10 or
larger, their spectra undergo extreme broadening, resulting in
an output spectrum that may extend over a range exceeding
100THz. Such a spectrum is referred to as a supercontinuum
and has found a variety of applications.

A. Fission of Higher-Order Solitons
As mentioned in Subsection 2.C, Eq. (11) is not applicable for
femtosecond pulses, and we must resort to solving Eq. (7),
often called the generalized NLS equation. It is common to
approximate hR�t� in Fig. 1(b) with the following analytic form
[19]:

ha�t� �
τ21 � τ22
τ1τ22

exp�−t=τ2� sin�t=τ1�; �20�

with τ1 � 12:2 fs and τ2 � 32 fs. One should be careful in using
Eq. (20) because it approximates the actual Raman gain spec-

trum in Fig. 1(a) with a Lorentzian profile, and thus fails to
reproduce the hump seen there at frequencies below 5THz.
A modified form of hR�t� was proposed in 2006 by Lin and
Agrawal to address this issue [23]. It adds a second term such
that

hR�t� � �1 − f b�ha�t� � f bhb�t�; �21�

hb�t� � �2τb − t�τ−2b exp�−τ=τb�; �22�

with f R � 0:245, f b � 0:21, and τb � 96 fs. The use of this new
form improves numerical predictions considerably.

It is still useful to work in the soliton units introduced in
Eq. (12). If we retain dispersion terms up to third order,
Eq. (7) takes the following form:

i
∂U

∂ξ −
δ2
2
∂2U

∂τ2 � N2jUj2U � iδ3
∂3U

∂τ3 � iN2

�
1� is

∂

∂t

�

×
�
U�ξ; τ�

Z
∞

0
R�τ0�jU�ξ; τ − τ0�j2dτ0

�
; �23�

where the self-steepening parameter s � �ω0T0�−1 ≪ 1
for pulses as short as 10 fs and can often be neglected in prac-
tice. The third-order dispersion (TOD) parameter, δ3 � β3=
�6jβ2jT0�, plays an important role in the dynamics of femto-
second pulses and can be positive or negative. Even fourth-
and higher-order dispersion terms are sometimes included.
Equation (23) can be used to study propagation of femto-
second pulses in both the normal- and anomalous-dispersion
regions and it reveals several new effects.

The phenomenon of soliton fission was predicted as well as
observed during the 1980s [24–27]. It occurs whenever a
higher-order soliton is perturbed inside an optical fiber by
third- or higher-order dispersion. As an example, Fig. 4 shows
the temporal and spectral evolution of a third-order soliton
(N � 3) by using δ2 � −1 (anomalous dispersion) with δ3 �
0:01. The Raman contribution in Eq. (23) was neglected

Fig. 3. (Color online) Evolution of second- and fourth-order solitons
over two soliton periods. The 40 dB intensity scale is the same as in
Fig. 2.

Fig. 4. (Color online) (a) Temporal and (b) spectral evolution of a
third-order soliton (N � 3) over two dispersion lengths for
δ3 � 0:01. The intensity scale is logarithmic as in Fig. 2. The diverging
red regions in (a) represent dispersive waves at a frequency marked
by the red vertical line in part (b).
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to show that the fission process is dominated by the TOD in
practice. Soliton fission breaks an Nth soliton into N

fundamental solitons of different widths and peak powers
given by [25]

Tk �
T0

2N � 1 − 2k
; Pk �

�2N � 1 − 2k�2
N2 P0; �24�

where k � 1 to �N , where �N is the integer closest to N when N

is not an integer. The individual solitons are not apparent in
Fig. 4(a) because they do not separate much from each other
when Raman contribution is neglected. However, one sees a
clear signature of soliton fission through the appearance of a
new spectral peak in Fig. 4(b) at a distance of ξ � 0:4 (vertical
red line). During the fission process, a part of the pulse energy
is transferred to a dispersive wave at a frequency that satisfies
a specific phase-matching condition [28]. The frequency is ap-
proximately given by ωd � ω0 − 3β2=β3 and it falls on the blue
side of the original carrier frequency ω0 of the incident pulse
in Fig. 4(b). If the sign of δ3 were reversed, it would fall on the
red side of that frequency. In the time domain, a dispersive
wave spreads with propagation and falls behind the main so-
liton because the two propagate at different speeds. This is
clearly seen in Fig. 4(a).

B. Intrapulse Raman Scattering
Intrapulse Raman scattering has its origin in the Raman term
in Eq. (23). Physically speaking, for short pulses with a rela-
tively wide spectrum, the Raman gain can amplify the low-
frequency components of a pulse by transferring energy from
the high-frequency components of the same pulse. As a result,
the pulse spectrum shifts continuously toward the red side as
the pulse propagates through the fiber. Such a Raman-induced
frequency shift (RIFS) is also known as the soliton self-
frequency shift because it becomes relatively large for solitons
that maintain their width during propagation inside a fiber.
The RIFS was first observed in a 1986 experiment [29] and its
Raman origin was also clarified at that time [30]. A more gen-
eral theory was developed later [31]. Much larger values of the
RIFS (> 50THz) were observed after 2000 with the advent of
microstructured fibers [32].

To see how intrapulse Raman scattering affects a higher-
order soliton, one should solve Eq. (23) numerically. As an
example, Fig. 5 shows the temporal and spectral evolution
of a fourth-order soliton (N � 4) by using δ2 � −1, δ3 � 0:02,
and s � 0:01. The input pulse is of the form U�0; τ� � sech�τ�.
A comparison of Figs. 4 and 5 shows remarkable changes
occurring when intrapulse Raman scattering is included. In
particular, notice the temporal pattern and a substantial
broadening of the spectrum.

We can understand the evolution scenario seen in Fig. 5 as
follows. The fourth-order solitons undergo fission at a dis-
tance near ξ � 0:3 and a dispersive wave is generated on
the blue side of the original spectrum that falls behind the ori-
ginal because of its slower speed (similar to the N � 3 case
seen in Fig. 4). The new feature in Fig. 5(a) is the resulting four
fundamental solitons separate from each other as their trajec-
tories bend to the right by different amounts. This is a conse-
quence of the RIFS induced by intrapulse Raman scattering.
Since the RIFS is the largest for the shortest soliton, its spec-
trum shifts the most toward the red side in Fig. 5(b), and its
position also shifts the most in Fig. 5(a). Bending of the soliton

trajectory is due to a continuous shift of the soliton spectrum
with propagation. Any change in the soliton’s frequency is ac-
companied with a reduction in the soliton’s speed because of
dispersion. This deceleration appears as a bending of soliton
trajectories in the time domain.

The spectral broadening seen in Fig. 5 increases rapidly
with increasing values of N . It turns out that the resulting
supercontinuum can extend over a frequency range exceeding
100THz when the soliton order associated with the input
pulse exceeds 10 or so [33–36]. The next two subsections de-
scribe the recent experimental progress in this area and di-
verse applications of the resulting supercontinuum sources.

C. Recent Experimental Progress
In a 2000 experiment, 100 fs pulses with 7 kW peak power at
790nmwere launched in the anomalous-dispersion region of a
microstructured fiber that was only 75 cm long [33]. Even for
such a short fiber, the supercontinuum extended from 400 to
1600 nm and was also relatively flat over the entire bandwidth
(on a logarithmic power scale). Similar features have been ob-
served in many experiments using different types of fibers. An
ultralarge bandwidth was realized in 2009 when a 2-cm-long
fluoride fiber was pumped with 180 fs pulses at a wavelength
of 1450 nm [35]. Figure 6(a) shows the output spectrum ob-
served at a peak-power level of 50mW. Numerical evolution
of the supercontinuum over 2 cm is shown in Fig. 6(b) for a
pulse with peak power of 0:4MW. The supercontinuum even
for such a short fiber extends from the ultraviolet to the infra-
red region (up to 6 μm).

Recent work has shown that a supercontinuum can form
even when input pulses are launched in the normal-dispersion
region of a suitably designed PCF [37]. The most important
feature of such fibers was that femtosecond pulses launched
into them did not spread too much in spite of experiencing
normal dispersion. Figure 7(a) shows the broadband spectra
observed at the output of a 50-cm-long PCF (fabricated with a
2:3-μm-diameter core) when it was pumped at a wavelength of

Fig. 5. (Color online) (a) Temporal and (b) spectral evolution of a
N � 4 soliton over three dispersion lengths. The intensity scale is
logarithmic as in Fig. 2. The tilted blue lines in (a) represent two fun-
damental solitons traveling slower than the input pulse because of a
RIFS of their spectra in part (b).
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1050 nm with 50 fs pulses of energies ranging from 0.25 to
7:8nJ. Figure 7(b) shows the output spectra when the same
PCF was pumped at 790nm. In both cases, the supercontinua
extend over a bandwidth close to 800 nm at the highest pulse
energy and are relatively flat and smooth compared to those
formed in the anomalous-dispersion region. Moreover, they
exhibit much better coherence properties.

Even CW lasers can be used for generating a superconti-
nuum [38]. The physical mechanism in the case of a CW input
is the nonlinear phenomenon of modulation instability [19]
that converts CW light into a train of short fundamental soli-
tons whose widths vary over a wide range because of inherent
noise [36]. Various fundamental solitons shift their spectra to-
ward longer wavelengths through the RIFS process, similar to
the case of femtosecond pulses discussed earlier. As they shift
their spectra, solitons also slow down as long as they experi-
ence anomalous dispersion. As a result, they collide (overlap
temporally) with neighboring solitons (or dispersive waves)
and interact with them though cross-phase modulation
(XPM). It turns out that such a collision transfers energy to the
slowing soliton, which reduces its width (to maintain the con-
dition N � 1) and slows down even more, and its spectrum
shifts even further toward longer wavelengths. Multiple soli-
ton collisions eventually produce a supercontinuum that is ex-
tended mostly toward the red side of the input wavelength.

By 2009, the use of a PCF whose core was both tapered and
doped with GeO2 created a CW supercontinuum that

extended toward wavelengths as short as 450nm [39]. Figure 8
compares the spectra obtained for uniform-core and tapered-
core PCFs whose core was doped with GeO2. In case (a) of a
uniform-core PCF, the launched CW power at 1075 nm
was 70W, and the supercontinuum extended from 550 to
>1750 nm with a spectral power variation of less than 12dB.
In case (b), a uniform-core section of 50mwas followed with a
130-m-long PCF section whose outer diameter decreased from
135 to 85 μm. When pumped with 40W of CW power, the
supercontinuum extended from 470 to >1750 nm and thus
covered the entire visible region, as is also evident from
the white spot in Fig. 8(c). When a prism was used to disperse
the output light, a rainbowlike spectrum was observed, as
seen in the inset of Fig. 8. These results clearly show that
an ultrabroad supercontinuum covering both the visible and
near-infrared regions can be produced with 1060nm pumping
provided the PCF is suitably designed.

D. Applications of Supercontinuum Sources
In recent years, fiber-based supercontinuum sources are being
used for a variety of applications, ranging from biomedical
imaging to frequency metrology [40]. Such a source can pro-
vide an output whose wavelength can be tuned over a range
exceeding 1000 nm if a suitable optical filter is placed in front
of it. A multiwavelength output can also be obtained if the op-
tical filter has multiple transmission peaks. Such a device is
quite useful for wavelength-division multiplexed (WDM) light-
wave systems if the wavelengths are uniformly spaced. By
2003, such a technique was used to make a WDM transmitter
that delivered 50GHz spaced optical carriers over a spectral
range of 1425–1675 nm [41].

Extreme spectral broadening of femtosecond optical pulses
inside a microstructured fiber is useful for any application re-
quiring a broadband source. An obvious example is provided
by spectroscopy. Indeed, fiber-based supercontinuum sources
have found applications in pump–probe spectroscopy, coher-
ent Raman spectroscopy, near-field optical microscopy, and
other forms of coherent nonlinear spectroscopy. These tech-
niques are useful for identifying unknown molecular species
as well as for imaging biological samples. A femtosecond
spectrometer was built as early as 2002 by using the supercon-
tinuum as a wideband probe [42].

Biomedical imaging can also make use of coherent anti-
Stokes Raman scattering microscopy and optical coherence
tomography (OCT). Both benefit from fiber-based supercon-
tinuum sources. OCT is capable of providing high-resolution

Fig. 6. (Color online) (a) Supercontinuum observed at the output of a 2-cm-long fluoride fiber pumped at 1450nm with 180 fs pulses with 50MW
peak power. (b) Simulated evolution for a pulse launched with 0:4MW peak power. (Reproduced with permission from [35], ©2009 American
Institute of Physics.)

Fig. 7. (Color online) (a) Optical spectra observed at the output of a
50-cm-long PCF when it was pumped at a wavelength of 1050nm with
50 fs pulses of energies ranging from 0.25 to 7:8 nJ. (b) Output spectra
when the same PCF was pumped at 790nm. (Reproduced with per-
mission [37], ©2011 Optical Society of America.)
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images of biological tissues even in vivo. As early as 2003, a
compact light source was used for OCT imaging, in which a
pulsed erbium-doped fiber laser was combined with a micro-
structured fiber to produce a supercontinuum extending from
1100 to 1800 nm [43]. Its use resulted in OCT images with a
longitudinal resolution of about 1:4 μm.

A somewhat unexpected application of the superconti-
nuum occurs in the field of frequency metrology. Precise mea-
surements of optical frequencies are based on a frequency
comb (a large number of equally spaced spectral lines) that
acts as a ruler. A mode-locked laser can be used for this pur-
pose but it suffers from the problem of carrier-envelope phase
mismatch. This problem can be solved if the spectrum extends
at least over one octave, and that is where a supercontinuum
comes into play. Fiber lasers operating near 1550 nm are em-
ployed with PCFs for realizing an all-fiber source of octave-
spanning supercontinuum. Such a turn-key, all-fiber system
for frequency metrology was demonstrated in 2004 by phase
locking the repetition rate and the carrier-envelope offset fre-
quency to a hydrogen maser whose frequency was calibrated
with a cesium atomic clock [44].

5. OTHER APPLICATIONS OF NONLINEAR
FIBER OPTICS
Because of space limitations, this review has focused mainly
on the propagation of short optical pulses as fundamental and
higher-order solitons inside optical fibers. The simultaneous
presence of nonlinear and dispersive effects leads to a variety
of interesting phenomena, supercontinuum generation being
the most dramatic example.

When two or more optical waves (CW or pulsed) at differ-
ent wavelengths are launched inside the fiber simultaneously,
several new nonlinear effects become important. Among
them, XPM is perhaps the most significant because it occurs
irrespective of the wavelength difference among the input
waves. It plays a critical role in telecommunication systems
in which multiple WDM channels carry information simulta-
neously over a single optical fiber. XPM can also be used
for applications such as photonic switching, wavelength con-

version of WDM channels, and optical signal processing. The
reader is referred to a recent book for further details on this
subject [45].

When the wavelength difference between the two optical
signals falls near the dominant peak associated with the
Raman gain spectrum (see Fig. 1), the nonlinear phenomenon
of SRS can transfer energy from the shorter-wavelength wave
(called the pump) to the longer-wavelength wave (called the
Stokes). This feature can be used to make Raman amplifiers
that amplify a weak optical signal of any wavelength, as long
as a pump laser is available whose frequency is upshifted by
about 13THz (see Fig. 1). Such amplifiers are especially useful
for fiber-optic WDM systems operating near 1550nm [46,47].
In this case, the same fiber that is used for data transmission
can be employed for Raman amplification. Such a scheme is
now commonly used in modern WDM systems for compensat-
ing fiber losses [45].

The nonlinear phenomenon of FWM can be exploited for
making fiber-optic parametric amplifiers (FOPAs) and oscilla-
tors. In the simplest implementation of a FOPA, a weak optical
signal is amplified by injecting a pump whose wavelength is
detuned from the signal by 10nm or so and falls close to the
zero-dispersion wavelength of the fiber. In this situation, the
phase-matching condition can be satisfied if the pump experi-
ences a relatively small amount of anomalous dispersion [19].
With a suitable design, the signal can be amplified by a factor
as large as 10,000. Single-pump FOPAs suffer from a limited
bandwidth (about 30nm or so) and from the polarization de-
pendence of the signal gain. These problems can be solved to
a large extent by employing two pumps whose wavelengths
are widely separated (by 40nm or more) and fall on the op-
posite sides of the zero-dispersion wavelength of the fiber [48].
The polarization problem is avoided by polarizing the two
pumps orthogonally.

FWM can also occur in the normal-dispersion region pro-
vided the fourth-order dispersion parameter is negative at the
pump frequency for the fiber employed [19]. This approach
has produced FOPAs that can be tuned over a range of several
hundred nanometers [49].

Fig. 8. (Color online) Experimental spectra for a launched power of (a) 70W in a uniform-core PCF and (b) 45W in a tapered-core PCF; the inset
shows the photograph of output dispersed by a prism. Photographs of (c) the output spot and (d) of the fiber spool are also shown. (Reproduced
with permission [39], ©2009 Optical Society of America.)
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The FWM phenomenon also generates a new wave, called
the idler wave, at a frequency ωi � 2ωp − ωs, where ωp and ωs

are the pump and signal frequencies, respectively. This fre-
quency relation has its origin in the principle of energy con-
servation. Physically speaking, FWM converts two pump
photons into two new photons at the signal and idler frequen-
cies at a rate that depends on the pump power. The automatic
generation of the idler wave inside a FOPA may look like a
waste of energy, but it is actually a blessing in disguise since
it converts a FOPA into several useful devices. Perhaps the
most useful among them is a FWM-based wavelength conver-
ter. Modern WDM systems require a device that can convert
the wavelength of a channel without affecting its bit pattern
(or information content). If an optical filter is placed in front
of a FOPA such that it blocks the pump and the signal but lets
pass the idler, the output is the original WDM channel at a new
wavelength. The bit pattern remains unchanged during the
FWM process because an idler pulse is generated only when
a signal pulse is present together with the pump. In the case of
a wavelength converter, the pump is in the form of a CW wave
and its wavelength is chosen at ωp � 1

2 �ωs � ωi�. However,
the same device can be used to demultiplex a high-speed
bit stream if the pump is in the form of an optical clock
(a pulse train) at the frequency at which demultiplexing is
performed [40].

Another potential application of FWM is for dispersion
compensation in WDM systems [45]. This application rests
on the important property of phase conjugation during the
FWM process. It turns out that the phase ϕi of the idler wave
is related to the signal phase ϕs by the relation ϕi � 2ϕp − ϕs�
ϕ0, where ϕ0 is some constant phase. If the pump phase stays
constant during the FWM process, the idler represents the
phase conjugate of the signal field. As a result, the sign of
the accumulated dispersion is effectively reversed for the idler
wave. If phase conjugation is performed in the middle of a fi-
ber-optic link, the dispersion acquired during the first half can
be canceled during the second half. Such a scheme has been
verified in laboratory demonstrations but has not yet been
adopted for commercial systems.

An interesting application of optical fibers uses FWM for
producing a source of entangled photon pairs that is useful
for applications related to quantum communication, quantum
cryptography, and quantum computing. Since the signal and
idler photons are generated from the pump photons at the
same instant, FWM provides a simple way to generate corre-
lated photon pairs within a single spatial mode. In practice, a
pump beam is launched at a wavelength not far from the
zero-dispersion wavelength of the fiber such that the phase-
matching condition is satisfied for a specific set of signal
and idler frequencies. Quantum noise acts as the seed for in-
itiating the so-called spontaneous FWM and generates the cor-
related signal and idler photons. If it is desirable to have a
source that emits correlated photon pairs at the same fre-
quency, a dual-pump configuration is employed in which a
nondegenerate FWM process is used to produce the signal
and idler photons at the same frequency.

It was observed in several experiments that the quality of
the photon-pair source is deteriorated by spontaneous Raman
scattering that accompanies the spontaneous FWM process
inevitably and cannot be avoided in practice. This problem
can be mitigated to a large extent when the signal and idler

photons are shifted from the pump frequency by much more
than 13THz to avoid the dominant Raman peak in Fig. 1(a). In
a 2005 experiment [50], a 2-m-long PCF was pumped with 4 ps
pulses at 708 nm. The FWM condition could be satisfied for the
signal and idler photons far from the pump wavelength
because pump pulses propagated in the normal-dispersion
region of the fiber. Up to 107 photon pairs per second were
produced at wavelengths of 587 and 897nmwhose quality was
not affected much by spontaneous Raman scattering. The re-
sulting device acts as a single-mode source of correlated
photon pairs with high brightness. In a 2009 experiment, dis-
persive properties of short pieces of birefringent PCFs were
manipulated to produce photon pairs with no spectral corre-
lations, allowing direct heralding of single photons [51].

6. CONCLUDING REMARKS
It should be evident by now that the field of nonlinear fiber
optics has grown substantially from its beginning in the 1970s
and has led to the use of optical fibers in unexpected areas.
One can only speculate what the future will bring. I mention
here a few potential directions. On the fundamental side, op-
tical fibers are playing a key role in the emerging topic of op-
tical rogue waves and its connection to the Peregrine soliton
and Akhmediev breathers [52]. It is likely that future studies
will advance this topic considerably. On the application side,
hollow-core PCFs allow one to fill them with any fluid
exhibiting larger nonlinearities than those of glasses. This ap-
proach opens up a new area that remains largely unexplored.
Finally, glass fibers with a semiconductor core are being de-
veloped whose nonlinear properties will enrich the field of
nonlinear fiber optics in coming years.
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