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We investigate the polarization dependence of the spectral broadening of femtosecond pulses inside silicon
waveguides by using finite-difference time-domain (FDTD) simulations. Our FDTDmodel includes the anisotropic
dependency of predominant nonlinear effects in silicon: Kerr effect, two-photon absorption, and Raman effect. In
addition, free-carrier absorption and free-carrier dispersion effects are incorporated into the model. The anisotro-
pic nature of the silicon nonlinearities leads to the polarization-dependent spectral broadening of optical pulses
inside silicon waveguides. Our study unambiguously shows that the spectral broadening inside silicon wave-
guides can be enhanced by carefully selecting the polarization angle of the input optical pulse. Numerical calcu-
lations reveal nearly a 4.5-times increase in spectral broadening (inside a 0:1mm long silicon waveguide) when the
polarization angle of the input pulse is adjusted accordingly. The combined impact of silicon nonlinearities and
output polarizer on spectral broadening is investigated for different input polarization angles. Finally we show
numerically that, for a given waveguide length and input peak intensity, there is an optimum pulse width that
corresponds to the maximum spectral broadening. © 2011 Optical Society of America

OCIS codes: 050.1755, 160.1190, 160.4330, 300.6170.

1. INTRODUCTION
The future of data communication rests on the ability to bring
optical technologies from large-scale to chip-scale applica-
tions, in order to utilize the versatility of photon transporta-
tion at the processor level [1–3]. In fact, the integration of
chip-scale photonics with electronics would combine the ad-
vantages of both technologies and uplift the performance of
today’s microprocessor to a new level of speed, while redu-
cing the power consumption and physical size. Because of
the unified fabrication framework, advantageous economies
of scale could eventually lead to low-cost manufacturing
of such integrated devices. Given that premise, silicon-on-
insulator technology has attracted a great deal of interest
in recent years, as it offers a promising platform for com-
bining optical functionalities with electronics on a single
substrate [4].

Because of the strong interaction of photons with electrons
and phonons in silicon, a variety of optical phenomena are
exhibited even within micrometer-sized silicon devices at
moderate power levels [5,6]. However, the utilization of sili-
con optical phenomena in realizing photonic applications re-
ceived little attention until the 1980s, due to a number of
fundamental barriers in silicon [5]. Silicon is an indirect band-
gap material, unlike the III-V compounds [7], which means
that the light emission via electrical excitation in silicon is sig-
nificantly weak. In addition, the second-order electro-optic ef-
fect, known as the Pockels effect, is absent in silicon due to
the inverse symmetry of its crystalline lattice [8]. Conse-
quently, modulation of electrical signal onto optical carriers
in silicon had been a challenging task. Despite these issues,
silicon is viewed as a potential material for manipulating light,
after pioneering research carried out by Soref during the

1980s [9–11]. As a result, many of the basic components
required in optical networking were demonstrated by using
silicon photonics technology during the 1990s and later
[12–14]. In addition, silicon photonics is motivated by the
low cost and mass-scale manufacturing facilities of silicon
microelectronics [15].

Among a plethora of silicon nonlinearities, the third-order
effects are particularly significant because they give rise to a
wide variety of optical phenomena [16–18]. Third-order non-
linearities in silicon have two major contributions: one from
optical phonons and the other from bound electrons. The op-
tical phonon contribution yields an inelastic scattering pro-
cess of light known as stimulated Raman scattering (SRS)
[19,20]. On the other hand, the real part of the electronic con-
tribution corresponds to the Kerr effect, which gives rise to a
number of interesting optical phenomena, including self-
phase modulation (SPM), cross-phase modulation, third-
harmonic generation, and four-wave mixing (FWM). The
imaginary part of the electronic contribution corresponds
to an absorption process referred to as two-photon absorption
(TPA) [16,17]. By exploiting the dispersive and anisotropic
properties of the third-order nonlinearities, a number of sili-
con photonic devices—such as all-optical Kerr shutters,
power equalizers, and frequency converters—have been rea-
lized [21–23]. It is significant that the performance of most
silicon photonic devices can be optimized by tailoring pulse
polarization and waveguide orientation [24,25].

The exploitation of third-order nonlinearities in silicon to
broaden the spectrum of optical pulses, also known as super-
continuum generation, has attracted much interest from
the research community [26–28]. The ultrabroadband light
sources are required in such applications as spectrum-sliced
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WDM systems [29], optical coherence tomography [30], and
high-precision metrology [31]. The SPM, FWM, and intrapulse
Raman scattering are the main contributors to the spectral
broadening in silicon waveguides [16,17]. Pulses propagating
in the anomalous dispersion regime exhibit relatively larger
(compared to the normal dispersion regime) spectral broad-
ening, because the FWM process is enhanced with the phase
matching condition [28]. Nonlinear absorption processes in
silicon, TPA and free-carrier absorption (FCA), greatly reduce
the efficiency of SPM and act, therefore, detrimentally on the
spectral broadening [32,33]. Although the nonlinear spectral
broadening in silicon waveguides is extensively studied both
experimentally and theoretically [26–28,34–36], the influence
of the anisotropy of the third-order optical nonlinearities on
the spectral broadening has not been analyzed so far.

In this paper, we investigate the polarization-dependent
spectral broadening of femtosecond Gaussian pulses using
the recently developed finite-difference time-domain (FDTD)
model for silicon waveguides [25]. This FDTD model takes
into account SRS, Kerr effect, TPA, FCA, and free-carrier dis-
persion (FCD) effects in silicon. In addition, the anisotropy of
the Raman, Kerr, and TPA effects in silicon is included in the
model. We show that the state of polarization of the propagat-
ing pulse can be tailored to optimize the efficiency of spectral
broadening.

2. FDTD FRAMEWORK FOR SILICON
WAVEGUIDES
A number of linear and nonlinear optical effects affect the pro-
pagation of light inside silicon waveguides [16,37,38] and
should be taken into account for precise modeling of light pro-
pagation through silicon waveguides. The dominant linear
effects are dispersion, scattering at waveguide imperfections,
and linear absorption. The major nonlinear effects in silicon
are SRS, the Kerr effect (K), TPA, FCA, and FCD. The influ-
ences of these effects on the optical field inside silicon are
generally described through material polarization models
[17,20,39]. The algebraic sum of the polarization terms consti-
tutes the total material polarization

~PðωÞ ¼ ~PL þ ~PSRS þ ~PK þ ~PTPA þ ~PFC; ð1Þ

where tildes represent the Fourier transforms and subscripts
denote the abbreviations used to refer each effect. The last
term accounts for the polarization contribution stemming
from free carriers (FC), which comprises FCA and FCD
effects.

A comprehensive description of electric (E) and magnetic
(H) field evolution inside silicon waveguides is provided by
source-free Maxwell’s equations [40]

∇ × E ¼ −μ0
∂H
∂t

; ∇ ×H ¼ ε0
∂E
∂t

þ ∂P
∂t

; ð2Þ

where μ0 and ε0 are the permeability and permittivity of a va-
cuum. One should comprehend the description of each polar-
ization model in order to investigate solutions for Eq. (2).
Therefore, the rest of the section is devoted to describing
the polarization models of each optical effect in silicon.

Given that the effective refractive index is n0 and the
speed of light in a vacuum is c, the polarization contribution

from the linear optical effects in silicon waveguides is given
by [41]

~PL ¼ ε0
�
−
cn0αL
2iω þ a1ω2

1

ω2
1 − ω2 þ

a2ω2
2

ω2
2 − ω2

�
~E; ð3Þ

where the first term accounts for linear absorption through
the loss coefficient αL. The second and third terms inside
the brackets describe the linear dispersion of silicon. Assum-
ing that the optical frequency of the propagating signal lies
between 150 and 250THz, the linear dispersion of silicon is
described by the following parameters [28,42]: a1 ¼ 9:733,
a2 ¼ 0:936, ω1 ¼ 1032:49THz, and ω2 ¼ 817:28THz.

In contrast to the linear responses, which are isotropic, the
third-order nonlinear responses depend on the waveguide or-
ientation and the state of polarization of the optical field. The
mutual energy transfer between different frequency compo-
nents of a light signal takes place due to the scattering of
photons from optical phonons near the Brillouin zone center.
This phenomenon is SRS [16,20,43]. The following classical
model describes the SRS and is used in our FDTD algorithm
[8,16]

PSRSðtÞ ¼ ε0R..
.
EðtÞ

Z
t

−∞

Hðt − t1ÞEðt1ÞEðt1Þdt1; ð4Þ

where three vertical dots indicate the product of tensor R
with the three electric field vectors. The Fourier transform
of the function HðtÞ describes the Raman gain profile [16,43]

~HðωÞ ¼ 2ξRΩRΓR

Ω2
R − 2iωΓR − ω2 ;

where ΩR ¼ 15:6THz, 2ΓR ≈ 96GHz is the gain linewidth [44],
ξR ¼ 2ε0n0c2gR=ωr with ωr ¼ 2πc=ð1:55 μmÞ, and gR is the
Raman gain coefficient. The fourth-rank tensor R in Eq. (4)
describes the anisotropy of the Raman scattering. In this
study, we restrict our analysis to only the silicon waveguide
fabricated along the ½110� direction on the ð001Þ plane (see
Fig. 1). This is the most popular fabrication orientation of si-
licon waveguides due to the cleaving convenience [16,45]. We
denote the cartesian FDTD axes x, y, and z along the ½110�,
½�1 10�, and ½001� directions, respectively. Adopted convention
for the TE and TM polarization modes is shown in Fig. 1.

z[001]

110][y

]110[x

ϕ
TE

TM eϕ

Fig. 1. (Color online) Silicon waveguide fabricated along the ½110�
direction on the ð001Þ plane. Axes x, y, and z are used in implementing
the FDTD algorithm. The inset shows the TM and TE polarizations and
an arbitrary linear polarization determined by the angle φ.
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For this waveguide orientation, tensor R has the following
nonzero components [25]:

xxxx ¼ yyyy ¼ −xxyy ¼ −yyxx ¼ xzxz ¼ zxzx ¼ xzzx

¼ zxxz ¼ yzyz ¼ zyzy ¼ yzzy ¼ zyyz ¼ 1:

The Kerr effect originates from a direct polarization of the
electronic clouds around silicon atoms caused by the optical
field and has a typical response time in the femtosecond
range. Since this time is comparable to the duration of an
optical cycle, it is reasonable to assume the Kerr effect to
be instantaneous. This assumption yields the Kerr-induced
polarization of the form [16,17]

PK ðtÞ ¼ ε0ε2E..
.
EðtÞEðtÞEðtÞ; ð5Þ

where ε2 ¼ ε0n2
0cn2 and n2 is the Kerr coefficient. The aniso-

tropy of the Kerr effect is characterized by the fourth-rank
tensor E, which has the following nonzero elements [8,16]:

xxxx ¼ yyyy ¼ ðρþ 1Þ=2; zzzz ¼ 1;

xxyy ¼ xyyx ¼ yyxx ¼ xyxy ¼ yxyx ¼ yxxy ¼ ð3 − ρÞ=6;
xxzz ¼ xzzx ¼ zzxx ¼ xzxz ¼ zxzx ¼ zxxz ¼ yyzz ¼ yzzy

¼ zzyy ¼ yzyz ¼ zyzy ¼ zyyz ¼ ρ=3;

where ρ ≈ 1:27 near λ ¼ 1:55 μm.
The anisotropy of TPA is identical to that of the Kerr effect;

this allows TPA-induced polarization to be written using the
anisotropy tensor E as [25]

~PTPAðωÞ ¼ −
ε20c2n2

0βTPA
2iω

Z þ∞

−∞

E..
.
EðtÞEðtÞEðtÞeiωtdt; ð6Þ

where βTPA is the TPA coefficient.
A large number of free carriers are generated through the

process of TPA when two photons with energy ℏω0 exceed
the bandgap of silicon. Assuming that the frequency of the
absolute maximum of the input field spectrum is ω0, the
dynamics of those free carriers is governed by

∂NðtÞ
∂t

¼ −
NðtÞ
τc

þ βTPA
2ℏω0

�
cε0n0jEðtÞj2

2

�
2
;

where NðtÞ is the free-carrier density and τc is the effective
free-carrier lifetime. Once created, free carriers interact with
the propagating light by absorbing the energy of the light and
by changing the refractive index of the waveguide. The former
is referred to as FCA, while the later is referred to as FCD. The
polarization model that accounts for these two FC effects is
given by [16,17,39]

~PFCðωÞ ¼ −ε0n0

�
c

2iωσ þ ζ
��ωr

ω0

�
2
N ~E; ð7Þ

and the terms inside the brackets account for FCA and FCD
through the empirical coefficients σ ¼ 1:45 × 10−21 m2 and
ζ ¼ 5:3 × 10−27 m3, respectively.

The parts of Eq. (2) do not generally possess exact analytical
solutions due to the complexity of the polarization termand the

complicatedness of the photonic structures one has to deal
with. Therefore, it is required to solve these equations numeri-
cally, using advanced computational techniques. The FDTD
method is one of the most popular of such techniques for sol-
vingMaxwell’s equation [46]; it discretizes the electromagnetic
field components in the space and time domains according to
the recipe proposed by Yee [47]. Applicability of the FDTD
scheme for practical media has been drastically increased,
as several research groups proposed advanced and efficient
methods for incorporating the complex polarization models
into the standard FDTD algorithm [39,48–50]. This enables a
precise investigation of light interaction with complex materi-
als that exhibit nonlinear and anisotropic optical responses.
We have recently developed an extended FDTD algorithm,
which is capable of handling the discussed nonlinear anisotro-
pic effects in silicon [25]. The cartesian components of H are
calculated through the previous values of the electromagnetic
field quantities. Electric field components and polarization
components are coupled together and solved iteratively until
the results are converged. The full implementation of this ex-
tended FDTD algorithm can be found in Ref. [25].

Using the extended FDTD algorithm [25], we investigate the
spectral broadening of femtosecond Gaussian pulses in silicon
waveguides. Simulation results are provided in the next
section.

3. RESULTS AND DISCUSSION
Owing to strong nonlinear effects in silicon, optical signals
change their initial spectral widths as they propagate along
silicon waveguides. For a detailed investigation of such spec-
tral change, we simulate the propagation of femtosecond
Gaussian pulses in short silicon waveguides within the normal
dispersion regime. The waveguides are assumed to be fab-
ricated along the ½110� direction on the ð001Þ surface (see
Fig. 1) and have square cross sections with dimensions larger
than the propagation wavelength. The parameter values
employed in the simulations are as follows: α ¼ 1 dB=cm,
βTPA ¼ 0:9 cm=GW, ε2 ¼ 1:72 × 10−19 m2=V2, n0 ¼ 3:17, τc ¼
1 ns, and gR ¼ 76 cm=GW. The following expression yields
the electric field of the fully polarized Gaussian pulses at
the source:

EðtÞ ¼ eφA exp½−t2=ð2σ2Þ� cosðω0tÞ; ð8Þ

where eφ ¼ ey cosφþ ez sinφ is the unit vector characterizing
the polarization of the electric field, A is the peak amplitude of
the Gaussian pulse, σ determines the FWHM of the time signal
as T0 ¼ 2σ

ffiffiffiffiffiffiffiffi
ln 2

p
, and ω0 is the carrier frequency that is set to

be 177THz in all simulations. The output polarizer is always
set to be aligned with the input polarization angle (i.e., φ).

First we consider the propagation of a linearly polarized
(φ ¼ 45°) Gaussian pulse with T0 ¼ 70 fs and input peak in-
tensity of 200GW=cm2. Numerically calculated spectra at
the output of 0.1, 0.2, and 0:4mm long silicon waveguides
are shown in Fig. 2. Horizontal double arrows indicate the
bandwidth at the −3 dB level from the peak value of each sig-
nal. As can be seen by the black double arrow, the −3 dB band-
width of the input Gaussian pulse is ∼6THz. The SPM
phenomenon plays an important role in nonlinear spectral
broadening of intense optical pulses [28,51,52]. In addition
to SPM, nonlinear phenomena of SRS and FWM contribute
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to the enhancement of the spectra of ultrashort pulses [53].
Since the effectiveness of these nonlinear phenomena in-
creases with the propagating distance, one should expect lar-
ger spectral broadening from longer waveguides. The red
curve in Fig. 2 shows the output spectra at the 0:1mm wave-
guide, and it shows a nearly threefold increase of −3 dB
bandwidth compared to the input. The green curve, which
corresponds to the spectrum at the output of the 0:4mm
waveguide, illustrates a nearly fourfold increase of −3dB
bandwidth. The oscillatory behavior of the output spectrum
is a result of SPM that manifests the same instantaneous fre-
quency at two distinct points of the pulse. These two points
have different phase values and cause constructive or destruc-
tive interference, leading to a multipeak structure in the out-
put pulse spectrum [35,53].

In order to compare the efficiency of the bandwidth en-
hancement through waveguides, we define the following
formula for the 3 dB spectral broadening S:

S ¼ Δoutð−3 dBÞ −Δinð−3 dBÞ
Δinð−3 dBÞ

;

where ΔoutðinÞð−3 dBÞ is the −3dB bandwidth of the signal at
the waveguide output (input).

To see how the input peak intensity of an optical pulse
plays on the spectral broadening efficiency, we calculate S
of a linearly polarized (φ ¼ 45°) 70 fs Gaussian pulse for dif-
ferent input peak intensities. The results are illustrated in
Fig. 3 for three different waveguide lengths. As mentioned ear-
lier, since the optical nonlinearities are the dominant factors
of spectral broadening in silicon waveguides, S increases with
the pulse intensity and the propagation distance. According to
the simulation results, a pulse with a 400GW=cm2 input peak
intensity shows ∼400% spectral broadening at the output of a
0:4mm silicon waveguide, while the same pulse shows only
∼250% spectral broadening at the output of a 0:1mm silicon
waveguide. These results are in qualitative agreement with the
results published in Ref. [35].

It is well known that the SPM arises through the Kerr and
FCD effects. Since the Kerr effect in silicon is anisotropic, the
amount of the SPM varies with the polarization of the optical
field [23,24]. Consequently, the SPM-induced spectral broad-
ening shows a polarization-dependent characteristic. In order

to investigate the influence of the input pulse polarization on
the spectral broadening, we simulate the propagation of a 70 fs
pulse through a 0:1mm long silicon waveguide for different
input polarization angles. First, we neglect the SRS effect
in order to study the Kerr-induced spectral broadening and
its anisotropic characteristics; the calculated S is shown by
the red curve in Fig. 4. It is clearly seen that the TE mode
(φ ¼ 0°) exhibits larger spectral broadening than that in the
TM mode (φ ¼ 90°). The reason for this difference is that
the Kerr-induced polarization is larger for the TE mode than
for the TM mode by a factor of ðρþ 1Þ=2 ≈ 1:14 [25]. It is also
seen from the red curve that the maximum spectral broaden-
ing corresponds to the input polarization angle of φ ≈ 35°. In
order to explain this maximum spectral broadening, we con-
sider the plane wave propagation along the x direction
through a silicon waveguide fabricated as shown in Fig. 1.
For such a situation, expanding Eq. (5), we can obtain y
and z components of the Kerr-induced material polarization as

PKy ¼ ε0ε2
�ðρþ 1Þ

2
E2
y þ ρE2

z

�
Ey;

PKz ¼ ε0ε2ðE2
z þ ρE2

yÞEz:

Let us assume that the waveguide is sufficiently short such
that the change in the state of the polarization is negligibly
small. Thus, throughout the waveguide
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Fig. 2. (Color online) Spectral broadening of 70 fs Gaussian pulse
with input peak intensity of 200GW=cm2 for different waveguide
lengths L. Input polarization angle of the pulse is φ ¼ 45°. Other pa-
rameter values are given in the text. Horizontal double arrows show
the −3 dB bandwidth of respective signals.
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EzðtÞ
EyðtÞ

¼ tanφ; ð9Þ

where φ is the input polarization angle. Now we introduce an
axillary term GðtÞ as

E2
yðtÞ þ E2

zðtÞ ¼ GðtÞ: ð10Þ

It should be noted that GðtÞ constitutes the power profile of
the pulse, and it is independent of the input polarization angle.
Using Eqs. (9) and (10), we can express electric field compo-
nents in terms of GðtÞ and φ as

EyðtÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

GðtÞ
1þ tan2 φ

s
; EzðtÞ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
GðtÞ

1þ tan2 φ

s
tanφ:

The use of these expressions in obtaining the input polariza-
tion dependence of Kerr polarization leads to

jPK ðtÞj

¼ ε0ε2G3=2ðtÞ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
tan2 φðρþ tan2 φÞ2 þ ½ðρþ 1Þ=2þ ρ tan2 φ�2

p
ð1þ tan2 φÞ3=2 :

This function has its maximum at φ ¼ tan−1ð1= ffiffiffi
2

p Þ ≈ 35:3°;
hence, the SPM-induced spectral broadening is maximum
for optical pulses polarized at φ ≈ 35:3°.

In addition to the Kerr effect, the Raman scattering also
contributes to the spectral broadening, provided that the pulse
is much shorter than the Raman response time of 3ps [16].
Expanding Eq. (4) for plane waves that propagate along
the x direction, one can obtain the y and z components of
the Raman-induced polarization as

PSRSy ¼ ε0
�
Ey

Z
t

−∞

Hðt − t1ÞE2
ydt1 þ Ez

Z
t

−∞

Hðt − t1ÞEyEzdt1

þ Ez

Z
t

−∞

Hðt − t1ÞEzEydt1

�
;

PSRSz ¼ ε0
�
Ey

Z
t

−∞

Hðt − t1ÞEyEzdt1þEy

Z
t

−∞

Hðt− t1ÞEzEydt1

�
:

For short waveguides, employing the relationships stated in
Eqs. (9) and (10), the above polarization components can
be rewritten as

PSRSy ¼ ε0
ffiffiffiffiffiffiffiffiffi
GðtÞ

p ð1þ 2 tan2 φÞ
ð1þ tan2 φÞ3=2 IðtÞ;

PSRSz ¼ ε0
ffiffiffiffiffiffiffiffiffi
GðtÞ

p 2 tanφ
ð1þ tan2 φÞ3=2 IðtÞ;

where IðtÞ ¼ R
t
−∞

Hðt − t1ÞGðt1Þdt1. Now we can state the
Raman-induced polarization as a function of φ as follows:

jPSRSðtÞj ¼ ε0
ffiffiffiffiffiffiffiffiffi
GðtÞ

p
IðtÞ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1þ 2 tan2 φÞ2 þ 4 tan2 φ

p
ð1þ tan2 φÞ3=2 :

This function has its maximum at φ ¼ tan−1ð1= ffiffiffi
2

p Þ ≈ 35:3°.
Therefore, the blue curve in Fig. 4 shows its maximum for this
input polarization angle. It is well known that the Raman scat-
tering is absent for the TM mode [16,25,43,45]; this is the

reason for the minimal spectral broadening for input polar-
ization angle φ ¼ 90° (see the blue curve in Fig. 4). The
green curve shows the spectral broadening when all the non-
linear effects (i.e., SRS, Kerr, TPA, FCA, and FCD) in silicon
are taken into account. The maximum spectral broadening
(corresponding to φ ≈ 35:3°) in this curve shows a spectral
broadening enhancement of nearly 4.5 times compared to
the TM mode.

As a result of the anisotropic nature of the Kerr, TPA, and
Raman effects, the state of polarization of the pulse rotates as
it propagates along the silicon waveguide [24,25]. If a polarizer
is placed at the end of the waveguide, the output signal experi-
ences an additional wave shaping because the electromag-
netic field that is perpendicular to the polarizer is clipped
off [25]. This situation—caused by the polarization rotation
and the output polarizer—contributes to a further enhance-
ment of the spectrum of the output signal. Therefore, in addi-
tion to the nonlinearity-induced spectral broadening, the
polarization rotation and output polarizer effect should be
considered in explaining the total spectral broadening, parti-
cularly in longer waveguides. The red curve in Fig. 5 shows
the spectral broadening of 70 fs pulses at the output of a
0:4mm long silicon waveguide when Raman scattering is ne-
glected. In contrast to the results obtained for a 0:1mm long
waveguide (Fig. 4), the maximum spectral broadening does
not correspond to the input polarization angle φ ≈ 35:3°. In-
deed, the peak of the spectral broadening is evident near
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Fig. 5. (Color online) Spectral broadening of 70 fs Gaussian pulse for
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φ ≈ 60°. This situation can be described as follows: unlike the
shorter waveguides, for longer waveguides, the polarization
rotation is an important phenomenon, and hence the com-
bined influence of nonlinearities and the output polarizer ef-
fect contributes to the spectral broadening. It should be noted
that for a given waveguide length, the extent of polarization
rotation depends on the input polarization angle of the pulse
[24,25]. Pulses preserve their initial polarization state when
they propagate in either TE mode, TM mode, or a mode de-
termined by the polarization angle φ ¼ tan−1ð1= ffiffiffi

2
p Þ ≈ 35:3°

[25]. In addition, the largest amount of polarization rotation
is reported to take place for input polarization angle φ ≈

60° [25]. Therefore, the largest extent of spectral broadening
is shown when φ ≈ 60°, but not when φ ≈ 35:3°. Moreover,
the effect of TPA is maximum for φ ≈ 35:3°, because TPA
possesses the same anisotropy as the Kerr effect. It is a
well-known fact that the TPA process limits the spectral
broadening in silicon waveguides [33,35,36]. Since the TPA
accumulates with the propagating distance, for longer
waveguides the spectral broadening at φ ≈ 35:3° becomes
weaker. This is the reason for the slight dip in the red curve
at φ ≈ 35°.

The polarization rotation due to Raman scattering has simi-
lar characteristics to those of Kerr-induced polarization rota-
tion. This means that the Raman-induced spectral broadening
shows local maxima when the polarization angle is either φ ≈

15° or φ ≈ 60°. The respective minima are at φ ¼ 0°, φ ¼ 90°,
and φ ¼ tan−1ð1= ffiffiffi

2
p Þ ≈ 35:3°. It is important to note that when

all effects are included (see the green curve in Fig. 5), the max-
imum near φ ≈ 60° disappears. The reason for this is the joint
impact of the Raman and Kerr effects, which tend to cancel
each other for φ ≥ tan−1ð1= ffiffiffi

2
p Þ ≈ 35:3°.

Finally, we investigate the efficiency of the spectral broad-
ening for different pulse widths. Figure 6 illustrates the calcu-
lated S for a linearly polarized (φ ¼ 45°) Gaussian pulse with a
200GW=cm2 input peak intensity. It is clearly seen from the
figure that for a given waveguide length, there is an optimum
pulse width that gives the maximum spectral broadening. For
example, the spectral broadening at the end of a 0:2mm
silicon waveguide is maximum for pulse width ∼120 fs. The
reason for this is the interplay between the Raman and
free-carrier effects. For shorter pulses the Raman effect be-
comes the dominant effect contributing to the spectral broad-
ening, and free-carrier effects on spectral broadening become
weaker. For longer pulses, the Raman effect becomes weaker,
and free-carrier effects strongly contribute to the broadening
of spectra. The optimum pulse width corresponds to the max-
imum aggregate of the Raman and free-carrier effects on
spectral broadening.

4. CONCLUSIONS
We have simulated the propagation of femtosecond Gaussian
pulses inside silicon waveguides by using an extended FDTD
scheme that takes into account the anisotropy of the Kerr,
TPA, and Raman effects. A detailed numerical investigation
was carried out to characterize the dependency of the input
polarization of optical pulses on spectral broadening. Owing
to the inherent coupling between dispersion and nonlinearity,
silicon gives rise to substantial spectral broadening even in
submilimeter scale waveguides. The impact of optical nonli-
nearities increases with the input intensity of signal; therefore,

the pulses with a larger input intensity exhibit greater spectral
broadening. Moreover, according to the simulation results, the
spectral broadening can be enhanced by launching the input
signal at the polarization angle of φ ≈ 35:3°, because the
impacts of both Kerr and Raman effects are maximized at this
mode. For longer waveguides, where the polarization rotation
is substantial, the spectral broadening is a combined outcome
of the nonlinearity-induced self-phase modulation and the out-
put polarizer effect. Furthermore, we have shown that for a
given silicon waveguide, there is an optimal pulse width that
gives the maximum spectral broadening.
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