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We present a theoretical model describing the dynamics of the electromagnetic field in an optical resonator under-
going refractive index changes. We use an operator formulation of Maxwell’s equations with a standard time-
dependent perturbation theory to derive the dynamic mode-amplitude equations that govern the response of a
resonator to a perturbing dipole-moment density. We show that in the case of time-dependent changes in the
refractive index, a coupling matrix ΓkmðtÞ that appears in the equations accounts for all novel physical processes
that can be expected to occur. In particular, the phenomenon of adiabatic wavelength conversion is governed by
the diagonal elements of this matrix, and the off-diagonal elements are responsible for the transfer of energy from
an excited resonator mode into its neighboring modes. Our model clearly shows that the latter process can occur
only when the index changes are spatially nonuniform. We discuss the spatially uniform and nonuniform cases
separately and compare the predictions of ourmodel with experimental data available in the literature. The overall
good agreement suggests that this model should be useful in the study of dynamic optical resonators. Moreover,
since we do not make any assumptions about the type of dielectric cavity used, the width of input pulses, or the
speed with which the refractive index is changed, this model should be applicable under most experimental
situations. © 2011 Optical Society of America

OCIS codes: 130.0130, 130.7405, 230.0230, 070.5753.

1. INTRODUCTION
Adiabatic wavelength conversion (AWC) is a recently discov-
ered phenomenon that can occur in optical resonators and has
the potential to be used for electrically or optically controllable
wavelength conversion. AWCoccurswhen the refractive index
of a resonator is changed while it is filled with light. The fre-
quency of the optical field within the cavity follows the result-
ing change in resonance frequency in a manner that has been
compared to the tuning of a guitar string after it has been
plucked [1]. The resulting extent of wavelength conversion de-
pends only on the amount of the refractive index change and is
independent of themeans, which can be an electro-optic effect
(injection of free charge carriers in a semiconductor, the Pock-
els effect, etc.) or apurely optical effect (free carrier generation
through optical absorption, cross-phase modulation, etc.).
That AWC can be implemented with an electro-optic effect
is a distinct advantage over other wavelength-conversion
schemes which typically rely on optical nonlinearities and
therefore require high-power-consumption devices. Not only
is AWC promising for energy efficient wavelength-conversion
devices, such devices may also be electrically reconfigurable
because the extent of wavelength conversion depends only
on the magnitude of the change in the refractive index.

AWC was first discussed in 2005 by Yanik and Fan [2] and
later studied in more detail by Notomi and Mitsugi using a fi-
nite-difference time-domain (FDTD) numerical technique [1].
Preble et al. first demonstrated AWC experimentally in 2007
[3]. Since then, the AWC phenomenon has attracted consider-
able attention [4–14]. Three different theoretical approaches
to AWC in optical resonators have been taken in the literature.

The earliest studies relied primarily on FDTD simulations
[1,4,5] which are time consuming to perform and limited in
the insight they can offer. A modal-expansion approach
was also outlined in [15] and applied to understanding the con-
ditions under which different resonator modes will be coupled
in the presence of refractive index changes, and which also
describes AWC. This approach was originally proposed for
understanding the effects of refractive index changes in
photonic-crystal waveguides and has also been used for that
purpose [6,16,17]. More recently, an intuitive linear systems
approach has been developed which offers considerable phys-
ical insight and has been used to study the temporal and spec-
tral changes of optical pulses undergoing AWC [7].

In this paper we present a modal-expansion approach
to dynamic refractive index changes in resonators that is si-
milar to the one outlined in [15] but offers two important ad-
vantages. First, we find that by choosing a different set of
fields with which to expand the cavity modes we are able
to cast the perturbation into a general dipole-moment density
PðpÞ, which allows for the incorporation of a variety of other
effects such as those associated with optical nonlinearities
and gain. Second, we include in our theory coupling to an in-
put field and resonator losses, which allows for comprehen-
sive modeling of the system dynamics. In Section 2 we use
Maxwell’s equations to derive the dynamic mode-amplitude
equations which govern the response of an optical resonator
to a perturbation. In Section 3 we use this theory to study
AWC and compare the predictions of our theory with experi-
mental results from the literature. In Section 4 we use our
theory to study the phenomenon of dynamic mode coupling
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which can occur in conjunction with AWC under certain con-
ditions, and we compare its predictions with an experimental
result from the literature.

2. THEORETICAL FRAMEWORK
In this section we first present an operator formulation of
Maxwell’s equations that enables us to write them as a single
equation which is similar to the Schrödinger equation. The
resonant modes of a cavity correspond to the eigenstates
of a Hermitian operator. Dynamic changes in the refractive
index are treated as perturbations to these resonant modes.
The use of the standard time-dependent perturbation theory
then leads to a set of ordinary differential equations for their
amplitudes. The framework developed here is quite general
and can be applied to a wide range of problems in resonator
optics, including nonlinear optical interactions and material-
resonance phenomena (lasers and amplifiers).

A. Operator Form of Maxwell’s Equations
We consider an optical resonator containing a material whose
dielectric constant can change with time from its static value
ϵðrÞ such that

ϵ0ðr; tÞ ¼ ϵðrÞ þΔϵðr; tÞ; ð1Þ

where Δϵ represents a time-dependent change in the dielec-
tric permitivitty induced by external means (e.g., by injection
of free carriers or an electro-optic effect). Maxwell’s equations
in the time domain can be written in the form

∇ × E ¼ −μ0
∂H
∂t

; ∇ ×H ¼ ϵ0ϵðrÞ
∂E
∂t

þ ∂PðpÞ

∂t
: ð2Þ

The dynamic refractive index changes are included through a
time-dependent perturbation to the material polarization in
the form PðpÞ ¼ ϵ0Δϵðr; tÞE. In the following analysis, we em-
ploy the complex representation of an electromagnetic field in
the form of an analytic signal.

It was shown in [18] for unperturbed dielectric cavities that
Maxwell’s equations can be formulated as the following opera-
tor equation that describes the temporal evolution of an elec-
tromagnetic field in an abstract vector space in a manner
analogous to the Schrödinger equation in quantummechanics:

i
∂
∂t
jψi ¼ M̂jψi þ jVðtÞi: ð3Þ

The field states are related to the electric and magnetic
fields as

jψi ¼
� ffiffiffiffiffiϵ0p

Effiffiffiffiffiμ0p
H

�
;

where the permitivitty and permeability of free space are in-
corporated so as to give the vector components the same
units. The inner product between two elements of the vector
space is defined as

hψajψbi ¼
1
4

Z
½ϵ0ϵðrÞE�

a · Eb þ μ0H�
a ·Hb�d3r: ð4Þ

The operator M̂ driving the time evolution of the electro-
magnetic field has the form

M̂ ¼
�

0 i c
ϵ∇×

−ic∇× 0

�
:

It is easily shown that M̂ is Hermitian under the inner product
given in Eq. (4). Finally, perturbations resulting from dynamic
refractive index changes are incorporated in Eq. (3) through
jVðtÞi, which is given as

jVðtÞi ¼
�

−i
ϵ ffiffiffiffiϵ0p ∂PðpÞ

∂t
0

�
: ð5Þ

We assume that the solutions of Eq. (3) in the absence of
perturbation (i.e., when jVðtÞi ¼ 0) are known. This is equiva-
lent to finding the resonator modes for a given cavity con-
figuration in the form jψkðtÞi ¼ e−iωktjωki, where jωki is an
eigenstate of the operator M̂ , i.e.,

M̂jωki ¼ ωkjωki:

Here ωk is the resonance frequency of the kth resonator mode.
If ekðrÞ and hkðrÞ are the electric and magnetic fields asso-
ciated with this mode, the eigenvector jωki in our notation
is given by

jωki ¼
� ffiffiffiffiffiϵ0p

ekffiffiffiffiffiμ0p
hk

�
: ð6Þ

Since the operator M̂ is Hermitian, resonator modes oscil-
lating at different frequencies are orthogonal:

hωkjωmi ¼ Nmδkm;

where Nm is a normalization factor. For monochromatic solu-
tions of Maxwell’s equations, the electric energy is equal to the
magnetic energy, allowing us to express Nm in terms of the
electric field only:

Nm ¼ 1
2

Z
ε0ϵðrÞjemj2d3r:

Weemphasize that our formalismdescribes any conceivable
dielectric cavity, including microring resonators, photonic-
crystal cavities, whispering-gallery mode resonators, etc.

B. Time-Dependent Perturbation Theory
To solve Eq. (3), we apply the standard time-dependent per-
turbation theory of quantum mechanics and assume that the
solution jψðtÞi for the perturbed electromagnetic field can be
expanded in terms of the unperturbed modes (eigenstates) of
the resonator. In general, one should include radiation modes
because some fraction of the optical field is radiated out of the
cavity in any real resonator. In the case of relatively high-Q
cavities, however, the dominant contribution to the electro-
magnetic field is from the resonantly enhanced discrete cavity
modes, and we are justified in including only these modes in
the expansion

jψðtÞi ¼
X
m

amðtÞffiffiffiffiffiffiffiffi
Nm

p jωmi; ð7Þ
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where amðtÞ is the amplitude of the mth mode at time t. The
normalization factor Nm ensures that

P
m jamðtÞj2 is the total

electromagnetic energy stored in the cavity at any given
moment in time, and jakðtÞj2 is the energy stored in the kth
cavity mode.

By inserting the solution form Eq. (7) into Maxwell’s equa-
tion [3] and multiplying from the left by hωkj, we arrive at the
following differential equation describing the temporal evolu-
tion of the mode amplitude ak:

dak
dt

¼ −iωkak −
1

4
ffiffiffiffiffiffi
Nk

p
Z

e�k ·
∂PðpÞ

∂t
d3r: ð8Þ

There are two properties of optical resonators that must be
taken into account in a complete model of the system dy-
namics: the finite photon lifetime of cavity modes and cou-
pling to an external input field. Although both of these can
in principle be incorporated in Eq. (8) through a suitable ex-
ternal perturbing polarization PðpÞ, such an approach is too
complicated to be useful. In Appendix A, we present a phe-
nomenological approach for introducing these two effects
in Eq. (8) and show that it takes the form

dak
dt

¼ −iωkak −
1

2τkph
ak þ κkAinðtÞ −

1
4

ffiffiffiffiffiffi
Nk

p
Z

e�k ·
∂PðpÞ

∂t
d3r;

ð9Þ

where τkph is the photon lifetime of the kth mode and AinðtÞ is
the input field, normalized such that jAinj2 is the optical
power. The coupling coefficient is defined as κk ¼

ffiffiffiffiffiffiffiffiffiffiffiffi
Tk=τr

p
,

where τr is the round-trip time within the resonator and Tk

is the fraction of input light coupling into the resonator mode
at frequency ωk. For example, if a mirror is used to couple
input light into the resonator, Tk is just the transmittance
of that mirror.

Equation (9) is the dynamic mode-amplitude equation. It is
quite general and can be used to describe a wide range of lin-
ear and nonlinear effects in optical resonators. It has been de-
rived before in the context of nonlinear optical interactions in
microring and microdisk resonators by making use of the
Helmholtz equation [19,20]. The technique we use to derive
it in this paper demonstrates that it is applicable to all kinds
of dielectric resonator cavities, and forgoes the use of the
slowly varying envelope approximation. Here we use it to de-
scribe the influence of dynamic changes in the refractive in-
dex of a material used to form the resonator. In this case, the
perturbing polarization has the form

PðpÞðr; tÞ ¼ ϵ0Δϵðr; tÞEðr; tÞ

¼ ϵ0Δϵðr; tÞ
X
m

amðtÞffiffiffiffiffiffiffiffi
Nm

p emðrÞ: ð10Þ

Using Eq. (10) in Eq. (9). we obtain a set of coupled amplitude
equations in the form

dak
dt

¼ −iωkak −
1

2τkph
ak þ κkAinðtÞ

−
X
m

�
dΓkm

dt
am þ Γkm

dam
dt

�
; ð11Þ

where Γkm are the elements of the dynamic coupling matrix
and are given by

ΓkmðtÞ ¼
R
Δϵðr; tÞe�kðrÞ · emðrÞd3r�

4
R
ϵðrÞjekðrÞj2d3r

R
ϵðrÞjemðrÞj2d3r

�
1=2 : ð12Þ

Equation (11) describes how the amplitude ak of a specific
resonator mode evolves in response to dynamic index
changes while driven with an incident field AinðtÞ. Time-
dependent changes in the refractive index not only affect ak,
but they can also couple this mode to other resonator modes,
resulting in their excitation, even when the input field is tuned
to excite only a single resonance.

C. Comparison with Other Theories in the Literature
A similar modal-expansion approach to Maxwell’s equations
has been used elsewhere in the literature to understand
the effects of dielectric perturbations in photonic crystals
[6,16,17] as well as optical resonators [15]. This approach
was originally formulated in [16] to study the coupling of pro-
pagating modes in a photonic-crystal waveguide. It was later
pointed out that the same formulation can be applied to under-
stand mode-coupling phenomena in optical resonators [15].
Our theory differs from this approach in two important ways.
First, we have chosen to expand the electromagnetic modes in
terms of the E and H fields as opposed to the D and H fields.
This is a subtle difference but the resulting theory turns out to
be applicable to a much wider range of phenomena. This is
because we are able to cast the perturbation in terms of a
dipole-moment density PðpÞ, which can readily incorporate
phenomena associated with optical nonlinearities, material re-
sonances, etc., whereas the previous approach was limited to
perturbations of the material permitivitty, Δϵ. Second, we
have incorporated into our theory important effects asso-
ciated with optical resonators such as the finite photon life-
time and coupling to an external input field. This allows us
to perform comprehensive numerical modeling of the cavity
dynamics, whereas the previous modal-expansion approach
had been applied to optical resonators solely for understand-
ing the nature of the terms associated with the intermode
coupling [15].

If some typically valid approximations are made, our theory
leads to the same coupling coefficients that were derived in
[16]. In particular, if we make the approximation dam=dt ≈
−iωmam on the right side of Eq. (11), and further assume that
the index changes occur on a time scale much longer than the
optical period so that jdΓkm=dtj ≪ jωmΓkmj, then this equation
reduces to

dak
dt

¼ −iωkak −
1

2τkph
ak þ κkAinðtÞ þ

X
m

iΓkmωmam: ð13Þ

It can be shown that the mode-coupling terms within the sum
in Eq. (13) are equivalent to the ones derived in [16] using the
alternative modal-expansion approach.

3. ADIABATIC WAVELENGTH-CONVERSION
AWC always occurs in the presence of dynamic refractive in-
dex changes. In our formulation, this process is described by
Eq. (11) through the diagonal matrix element Γkk, i.e, the term
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for whichm ¼ k in the sum is responsible for AWC. To see this
more clearly, consider the special case where only a single
resonator mode (say, the qth mode) is excited by the input
field and coupling to other modes either does not occur or
can be neglected. The set Eq. (11) then reduces to the follow-
ing single equation describing the mode dynamics:

½1þ ΓðtÞ�daq
dt

¼ −iωqaq −
�

1
2τqph

þ dΓ
dt

�
aq þ κqAinðtÞ; ð14Þ

where Γ ¼ Γqq is defined as

ΓðtÞ ¼
R
Δϵðr; tÞjeqj2d3r
2
R
ϵðrÞjeqj2d3r

: ð15Þ

A. Interpretation of the Dynamical Equation
Consider what happens after an input field has excited the
resonant mode and then turns off. Neglecting the last term
in Eq. (14), we can write it in the form

daq
dt

¼ −iω0
qðtÞaq − γðtÞaq; ð16Þ

where

ω0
qðtÞ ¼

ωq

1þ ΓðtÞ ; γðtÞ ¼
�

1
2τqph

þ dΓ
dt

�
1

1þ ΓðtÞ : ð17Þ

The physical meaning of this equation is quite clear. It
shows that the electromagnetic field inside the cavity oscil-
lates at a new frequency ω0

qðtÞ that changes with time and
decays at a rate γðtÞ. The new oscillation frequency of the
mode can be approximated by noting that Γ is typically much
smaller than 1 as

ω0
qðtÞ ≈ ωq½1 − ΓðtÞ�: ð18Þ

In the case where the resonator medium has a uniform re-
fractive index n0 that is changed dynamically by an amount
ΔnðtÞ over the entire mode volume, we can make the approx-
imation ΓðtÞ ≈ ΔnðtÞ=n0. In this case the change in the
optical frequency produced through AWC is given by
Δω ≈ −ωqðΔn=n0Þ. This expression for the frequency shift
has been known since the first theoretical studies of AWC
[1,2] and has also been verified experimentally [4].

In addition to the frequency shift, Eq. (17) indicates that the
decay rate of the cavity mode changes while the refractive in-
dex is changing through the term dΓ=dt. This implies that the
optical energy stored in the resonator also changes with time.
Using the solution for the electromagnetic field in Eq. (7)
(when only one mode is considered), the stored energy is
found to be

UðtÞ ¼ 1
4

Z
½ϵ0ϵ0ðr; tÞjEj2 þ μ0jHj2�d3r ¼ ½1þ ΓðtÞ�jaqj2: ð19Þ

Taking the time derivative of UðtÞ and using Eq. (16), we ob-
tain the following differential equation:

dU
dt

¼ −
UdΓ=dt
1þ ΓðtÞ −

U
τqphð1þ ΓÞ :

Assuming that the input field turns off at t ¼ 0 this equation
has the solution

UðtÞ ¼ U0

1þ ΓðtÞ exp
�
−

1
τqph

Z
t

0

dt0

1þ Γðt0Þ
�
: ð20Þ

The electromagnetic energy stored in the cavity is clearly not
a conserved quantity during the AWC process. One of the rea-
sons for this is the finite photon lifetime of the resonator
represented by the exponential term in Eq. (20). Equation (20)
indicates that there is also another source of energy change in
a dynamic resonator. To see this more clearly, consider a time
scale that is much shorter than the photon lifetime so that the
exponential term can be replaced with 1. The mode energy U
is still not conserved because of the factor in the denominator.
These intrinsic energy changes were first noted in [1]. In that
work it was found through FDTD calculations that when the
photon lifetime is long enough the optical energy is not con-
served, but that the number of photons in the cavity is. Using
UðtÞ ¼ U0=ð1þ ΓÞ and Eq. (17), one can see that the number
of photons Np stored in the cavity,

Np ¼ UðtÞ=ℏω0
qðtÞ ¼ U0=ℏωq; ð21Þ

is indeed conserved, in agreement with the numerical
simulations.

B. Comparison with Experimental Results
In order to test the validity of our theory, we compare its pre-
dictions with experimental results reported by Preble et al. in
[3]. In their experiment, a silicon ring resonator was employed
in the add/drop configuration depicted in Fig. 1. After an 18ps
probe pulse at the 1564 nm wavelength was launched into the
resonator through the input waveguide, the refractive index
was decreased in a dynamic fashion, and a blue-shifted signal
was observed at the drop port. The index change was induced
by generating electron-hole pairs through optical absorption
of a 100 fs pump pulse at the 415 nm wavelength. The pump
pulse was focused onto the resonator from above through a
free-space objective. The 10 μm spot size of the focused pump
pulse was larger than the ring’s 6 μm diameter. This resulted in
a uniform distribution of charge carriers in the ring and there-
fore a uniform change in the refractive index.

We model the refractive index change using the semiempi-
rical model developed by Soref and Bennett [21]. In that work
it was predicted that the refractive index change in the
1:55 μm wavelength regime induced by free-charge carriers
in silicon can be expressed as

Fig. 1. (Color online) Schematic of a silicon add/drop resonator
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Δn ¼ −σenN − ðσhnNÞ4=5 þ i
σa
2k0

N; ð22Þ

where N is the number density of electron-hole pairs. σen ¼
8:8 × 10−22 cm2, σhn ¼ 4:6 × 10−22 cm3, σa ¼ 14:5 × 10−18 cm2,
and k0 ¼ 2π=λ. Note that the change in the refractive index
is complex because the generated carriers absorb light near
1:55 μm. Because the index change in the cavity is uniform
we make the approximation ΓðtÞ ≈ ΔnðtÞ=n0, where n0 ¼
3:5 is the refractive index of silicon at the probe wavelength.

The carrier density can be obtained by solving the rate
equation

dN
dt

¼ ξPpðtÞ
V cavℏωp

−
N
τf c

; ð23Þ

where PpðtÞ is the optical power of the pump pulse assumed to
have a Gaussian shape, ξ is the fraction of the pump power
absorbed by the resonator, V cav is the volume of the cavity,
ℏωp is the energy of a photon at the pump wavelength, and
τf c is the free-carrier lifetime. In our simulations, τf c is taken
to be infinite since the dynamics that we are interested in
occur on a much shorter time scale.

The transmitted signal at the drop port of the resonator (Adr

in Fig. 1) is related to the mode amplitude by

AdrðtÞ ¼ κqaqðtÞ; ð24Þ

where κq is the same as in Eq. (9) for a symmetric resonator
[22]. Note that jAdrðtÞj2 is the optical power in the output
waveguide.

Figures 2 and 3 compare the experimentally measured
drop-port spectra reported in [3] with the output spectra pre-
dicted by our model under a variety of experimental condi-
tions. We stress that not a single fitting parameter was
used in the calculations for the output optical spectra in Fig 2
as well as the spectra in Figs. 3(a) and 3(b); all of the relevant
parameters were reported in [3] and are recorded in Table 1.
In Fig. 3(c) we had to use one fitting parameter because the
temporal delay between the pump and probe pulses was not
given in [3] for this particular experimental scenario. All op-
tical spectra in Figs. 2 and 3 have been normalized to the spec-
tral peak of the probe pulse at the drop port of the resonator in
the absence of a pump pulse.

Figure 2 shows the experimental [3] and calculated spectra
for two different pump-pulse energies (Ep). The total absorbed
energy of each pump pulse (ξEp) is 0:419 pJ in Fig.2(a) and
1:38pJ in Fig.2(b). As expected, the probe experiences more
spectral blue shift for a larger pump-pulse energy (the index
is changedby a greater amount), and theAWCefficiency is like-
wise decreased because of increased absorption from the lar-
ger number of free carriers.While the qualitative features are in

Fig. 2. (Color online) Comparison with experimental results from the literature for AWC in a silicon ring resonator. Measured drop-port spectra
from [3] are compared with theoretical drop-port spectra predicted by Eq. (14) under the same experimental conditions. No fitting parameters
were used in the simulations; all of the necessary information was reported in [3]. The absorbed pump energies in (a) and (b) are 0.419 and
1:38pJ respectively. All other parameters are recorded in Table 1. The experimental spectra are adapted from [3] with permission from Macmillan
Publishers Ltd., copyright 2007.
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good agreement, there are some quantitative differences be-
tween the experimentally measured spectra and the predic-
tions of our model. The overall relative drop-port efficiency
predicted by the model is lower by about 25% than what
was observed in the experiment, and the predicted extent of
thewavelength shift is also slightly different from themeasured
results. There are many possible reasons for these quantitative
differences. For example, to our knowledge no definitive ex-
periment has been done to test the accuracy of the semiempi-
rical model for the free-carrier index change in Eq. (22). In
addition, the calculated spectra depend on several experimen-
tal parameters, all of which were measured with some degree
of uncertainty. In our opinion, the degree of quantitative and
qualitative agreement between the calculated and measured
spectra is remarkable given the complete absence of fitting
parameters and the number of possible sources of error.

Figure 3 tests the predictions of our theory when param-
eters other than the pump-pulse energy are varied. For each
of these scenarios, a value of 0:7 pJ for the absorbed pump-
pulse energy was taken from the plot in Fig. 3 of [3]. Part

(a) shows the output spectrum under the same experimental
conditions that were used for Fig. 2 except for the value of the
pump-pulse energy. Part (b) shows the output spectrum when
the input probe pulse is detuned from resonance by 0:25nm.
In this case, the converted signal is weak because relatively
little of the probe pulse couples into the resonator at the de-
tuned wavelength. Part (c) shows the output spectrum when
the wavelength of the probe pulse is unchanged, but the pump
pulse has been broadened to a duration of 26ps so that the
index change occurs on a time scale longer than the 15:5 ps
photon lifetime of the resonator. As mentioned before, since
the delay between the peak of the pump pulse and the peak of
the incident probe pulse was not provided in [3] for this last
experiment, a value of 20ps was chosen. AWC efficiency is
considerably reduced in this case because the probe pulse
leaks out of the resonator before it has been fully converted
to the new wavelength. As was the case in Fig. 2, other than a
discrepancy in AWC efficiency, the predicted spectra are in
remarkably good agreement with the experimental data.

4. DYNAMIC MODE COUPLING
Dynamic mode coupling results in the transfer of energy
stored in one resonator mode to neighboring modes through
dynamic refractive index changes. Physically, even if the input
field is tuned to excite only a single resonance, dynamic index
changes can be used to create an output spectrum that spans
multiple resonances. Since the longitudinal modes of a reso-
nator are uniformly spaced in frequency, the output appears in
the form of a frequency comb.

A. Interpretation of the Dynamical Equations
The transfer of optical energy from a single resonator mode to
neighboring modes occurs only under certain conditions.
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Fig. 3. (Color online) Comparison of measured drop-port spectra from [3] with theoretical drop-port spectra predicted by Eq. (14) for three
different experimental scenarios: (a) absorbed pump energy of 0:7 pJ, (b) probe pulses detuned from resonance by 0:25 nm, (c) pump pulses
broadened to 26ps duration. In (c) a pump-probe delay of 20ps was chosen. No other fitting parameters were used in the simulations; all of
the necessary information was reported in [3] and is recorded in Table 1. The experimental spectra are adapted from [3] with permission from
Macmillan Publishers Ltd., copyright 2007.

Table 1. Parameter Values
a
Used for

Figs. 2 and 3

Quality factor (Q) 18, 614
Ring diameter 6 μm
Cavity volume (Vcav) 2:12 μm3

Probe wavelength (λ) 1:564 μm
Pump wavelength (λp) 0:415 μm
Probe pulse width 18ps
Pump-pulse width 0:1 ps
Absorption efficiency (ξ) 0.07
Pump-probe delay 13:2 ps

aTaken or deduced from [3].
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Mathematically, this phenomenon is described through the
off-diagonal matrix elements (Γkm for m ≠ k) in Eq. (11).
These off-diagonal elements introduce coupling among var-
ious resonator modes oscillating at different frequencies
and produce a transfer of energy from a resonantly excited
mode into its nearest spectral neighbors.

Dynamic mode coupling will happen efficiently only if in-
dex changes occur on a time scale comparable to or shorter
than the reciprocal of the mode-spacing Δkm ¼ ωk − ωm. This
is most clearly understood from the approximation to the dy-
namic mode-amplitude equation, Eqs. (13). In order for mode
m to efficiently transfer energy to mode k the term iΓkmωmam,
which appears in the equation for the kth mode’s amplitude,
must have spectral components which are frequency-matched
to the kth mode’s resonance frequency ωk. Since am oscillates
at ωm this leads to the requirement that Γkm, and hence the
refractive index, change on a time scale shorter than 1=Δkm.
In the case of the nearest neighbors, we can equivalently say
that energy transfer will occur only if the index changes on a
time scale comparable to or shorter than the round-trip time τr
of the resonator.

A second condition that is necessary for dynamic mode
coupling to occur is that the dynamic refractive index changes
be spatially nonuniform. This is inferred from the definition of
Γkm in Eq. (12) and the spatial symmetry properties of the
mode profiles. Consider as an example the ring resonator de-
picted in Fig. 4 for which the refractive index is changed uni-
formly over a fraction of the ring perimeter denoted by f
(indicated by purple when viewed in color). In a cylindrical
coordinate system whose origin is at the center of the ring
and whose z axis is normal to the substrate, the electric field
of the kth mode has the form

ekðr; θ; zÞ ¼ Ekuðr; θ; zÞeikθ: ð25Þ
Here uðr; θ; zÞ is the transverse profile of the waveguide mode.
Note that it is only the orientation of u which depends on θ,
and the magnitude juj depends only on r and z. Thus we can
choose u to be normalized such that ∬ rjuj2drdz ¼ 1. If we
assume that the mode profile is independent of frequency over
the spectral range of interest, the coupling coefficient given in
Eq. (12) is found to be

Γkm ¼ ðf =n0ÞΔnðtÞsinc½ðm − kÞπf �eiðm−kÞπf ; ð26Þ
where sincðxÞ ¼ sinx=x.

We see from Eq. (26) that all off-diagonal coupling terms
vanish for a spatially uniform index change (f ¼ 1) over
the entire resonator, and no energy transfer can occur in that

situation. Equation (26) also indicates that the fraction of the
resonator length over which index changes occur determines
the number of neighboring modes to which a given mode will
efficiently couple. If the index is changed over 1=3 of the
resonator, for example, then a given mode will couple effec-
tively to its four nearest neighbors, two on the blue side and
two on the red side. For modes that are further away than this,
Γkm is negligible in comparison. The phenomenon of mode
coupling by dynamic refractive index changes was first stu-
died using numerical FDTD simulations in [1] and verified ex-
perimentally later by Dong et al. [15]. The requirement of a
sufficiently fast and nonuniform index change was noted in
each of these studies.

B. Comparison with Experimental Results
To test the validity or our model in the case of dynamic mode
coupling, we compare its predictions with the experimental
results presented in [15]. The experiment was very similar
to the one in [3] that we studied in Section 3, except for
two fundamental differences. First, a much larger ring resona-
tor was used (with a diameter of 100 μm) so that the spot size
of the focused pump pulses would be smaller than the size of
the ring, resulting in a nonuniform distribution of generated
free carriers, and therefore in a spatially nonuniform index
change. Second, a CW probe beam was used instead of a
pulsed probe beam.

To model this experiment, we solved Eq. (11) together with
the carrier rate equation (23) and the semiempirical model
for the free-carrier induced index change described in
Eq. (22). The coupling coefficients Γkm were calculated using
Eq. (26). The only two parameters required for modeling the
experiment and not explicitly reported in [15] are the pump-
cavity overlap fraction f and the pump absorption efficiency ξ.
If we assume that the spot size of the focused pump pulses
(Wpump) is 10 μm, as was previously reported by the same
group in [3], then we can calculate the fraction f in terms
of the ring diameter D as f ≈ Wpump=πD, leading to f ¼
1=30 for the 100 μm diameter ring used in the experiment. The
fraction ξ can be induced by fitting the experimental data in
Fig. 2(e) in [15] showing a measurement of the adiabatic wa-
velength shift of each of the cavity modes as a function of
pump-pulse energy. The expected adiabatic wavelength shift
from our model is Δλ ¼ Γλ0, where Γ ¼ fΔn=n0 from
Eq. (26). In order to fit their experimental plot to our model
we find that ξ ¼ 0:07, which is exactly the same as the value of
ξ reported previously in [3]. This suggests that we have accu-
rately induced the correct values of both f and ξ for modeling
their experimental results. All other parameters used in the
numerical simulation are taken from [15] and summarized
in Table 2.

Figure 5 compares (a) the experimental spectrum at the
drop port of the resonator [15] with (b) the spectrum predicted
by our model. The spectral peak at 1567:5 nm is that of the CW
probe beamwhich is initially on resonance. After the arrival of
the 200 fs pump pulses, a part of the energy of this resonant
probe beam is adiabatically shifted to a new resonance fre-
quency about 1 nm to the blue side of the spectrum (AWC). An-
other part of the energy is coupled into several neighboring
modes, which are also spectrally blue-shifted from their initial
resonance frequencies. In the experimental spectrum, these
initial resonances could be observed because the CW probe

Fig. 4. (Color online) Ring-resonator configuration for dynamic
mode coupling. The arc along the ring (purple region when viewed
in color) indicates the portion of the resonator over which the refrac-
tive index is changed.
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beam had broadband noise imposed on it (most likely by an
amplifier). In the theoretical spectrum the initial resonances
are not observable because no noise is taken into account
for the input beam. We have added a noise floor to the output
beam at −65dB below the central peak in order to take into
account as much of the experimental scenario as possible.

As the blue-shifted spectral peaks associated with the cav-
ity modes in Fig. 5(a) are much larger than the peaks at the
initial resonance frequencies, one can conclude that their ori-
gin lies in the mode-coupling phenomenon (and is not related
to AWC). The relative excitation amplitudes of these neighbor-
ing modes in the theoretical spectrum are in good agreement
with what was observed in the experiment. One source of
error in numerical simulations results from a finite number
of modes used in the calculation. We used nine modes in our
calculation so that the spectrum is reasonably accurate over
the span of the seven modes presented in Fig. 5. In addition to
this, a simulation time window of only 1:6 ns was used, which
is considerably smaller than the 13:2 ns repetition period of
the pump pulses in the experiment. In spite of these limita-
tions, the overall agreement seen in Fig. 5 indicates that our
theoretical model can predict the experimental behavior
quite well.

5. CONCLUSIONS
In this paper we have developed a theoretical model for the
dynamics of an optical field in a dielectric resonator which is
undergoing refractive index changes. We used an operator for-
mulation of Maxwell’s equations that enables us to write them
in the form of the well-known Schrödinger equation. The re-
sonant modes of a cavity correspond to the eigenstates of an
operator that appears in this equation, while dynamic changes
in the refractive index were treated as perturbations to these
resonant modes. With this approach, the use of the standard
time-dependent perturbation theory led to a set of coupled dif-
ferential equations for various mode amplitudes. The dynamic
coupling matrix ΓkmðtÞ appearing in these equations accounts
for all novel physical processes that can be expected to occur.
In particular, we found that the AWC process is controlled by
the diagonal elements of this matrix, and that the off-diagonal
terms are responsible for the transfer of energy from a specific
excited mode to its neighboring modes. Our model shows
clearly that the latter process can occur only when the index
changes are spatially nonuniform. We discussed the cases of
spatially uniform and nonuniform index changes separately
and compared the predictions of our model with experimental
data available in the literature. The overall good agreement
suggests that our model should be useful for studying the
dynamics of optical fields in resonators undergoing perturba-
tion. Since no assumptions are made about the type of dielec-
tric cavity used or the temporal structure of the input field,
this model should be applicable to a wide range of experimen-
tal scenarios.

APPENDIX A: INCORPORATION OF THE
FINITE PHOTON LIFETIME AND INPUT
COUPLING
In this appendix we discuss the origin of two terms in the
mode-amplitude Eq. (9) that take into account cavity losses
(leading to a finite photon lifetime) and coupling of the reso-
nator to an external input field. These terms are often included
on intuitive heuristic grounds [22]. We attempt to re-enforce
this intuition with a mathematical framework. We will derive
the dynamical equation which a given mode-amplitude ak is
expected to obey in the absence of the perturbing dipole-
moment density PðpÞ and in the presence of loss and coupling
to an external field. For this purpose we define a mode-power
amplitude Ak through the relation

akðtÞ ¼ ffiffiffiffiτrp
AkðtÞe−iω0t: ðA1Þ

With this definition, jAkj2 is the optical power carried by the
kth mode at some location in the cavity. Here, ω0 is the carrier
frequency of the input field; it may be detuned from a cavity
resonance byΔω ¼ ω0 − ωk. It is also useful to define a slowly
varying amplitude A0

in for the input field using

AinðtÞ ¼ A0
inðtÞe−iω0t: ðA2Þ

By considering how the mode-amplitude Ak changes over
one round trip inside the resonator, we obtain

AkðtÞ ¼
ffiffiffiffiffiηkp
Akðt − τrÞeiΔωτr þ

ffiffiffiffiffiffi
Tk

p
A0
inðtÞ; ðA3Þ

where ηk is the fraction of power retained by the kth
mode after one round trip and is close to 1 for high-Q cav-
ities. Δωτr is the phase acquired by this mode as a result
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Fig. 5. (Color online) Mode coupling in a silicon ring resonator un-
dergoing spatially nonuniform refractive index changes. The (a) drop-
port spectrum measured in [15] is compared with the (b) predicted
spectrum under the same experimental conditions. Simulation param-
eters are recorded in Table 2. No fitting parameters were used in the
calculation. Figure 5(a) is adapted from [15] with permission from the
American Physical Society, copyright 2008.

Table 2. Parameter Values
a
Used for Fig. 5

Quality factor (Q) 12, 000
Ring diameter 100 μm
Cavity volume (Vcav) 35:3 μm3

Free-spectral range 1:9nm
Probe wavelength (λ) 1:5675 μm
Pump wavelength (λp) 0:412 μm
Pump-pulse width 0:200ps
Pump-pulse energy (Ep) 300pJ
Absorption efficiency (ξ) 0.07
Pump-cavity overlap fraction (f ) 1=30

aTaken from [15]. The values of f and ξ were induced from state-
ments made in [3].
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of detuning from the resonance frequency. By assuming that
the amplitude Ak does not vary appreciably over a single
round trip so that

dAk

dt
≈
AkðtÞ − Akðt − τrÞ

τr
;

we can approximate Eq. (A3) by the following differential
equation:

dAk

dt
¼ −

1
τr

ffiffiffiffiffiηkp
�
e−iΔωτr −

ffiffiffiffiffiηkp �
Ak þ

ffiffiffiffiffiffi
Tk

p
τr

ffiffiffiffiffiηkp A0
ine

−iΔωτr : ðA4Þ

Finally, we make use of the identities in Eqs. (A1) and (A2)
with the approximations jΔωτr j ≪ 1 and

ffiffiffiffiffiηkp ≈ 1 and obtain
the following dynamical equation for the energy amplitude ak:

dak
dt

¼ −iωkak −
1

2τkph
ak þ κkAin; ðA5Þ

where 1=τkph ¼ ð1 − ηkÞ=τr . Equation (A5) is identical to Eq. (9)
in the absence of the perturbation term.
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