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We present a simple and intuitive model based on the impulse response of linear electrical systems for describing
the propagation of optical pulses through a dynamic Fabry–Perot resonator whose refractive index changes with
time. Our model shows that the adiabatic wavelength conversion process in resonators results from a scaling of the
round-trip time with index changes. For pulses longer than the cavity round-trip time, we find that more energy
can be transferred to the newwavelength when the input pulses are slightly detuned from the cavity resonance and
the refractive index does not change too rapidly. In fact, the optimum duration of index changes scales with the
photon lifetime of the resonator. We describe the evolution of the shape and spectrum of picosecond pulses inside
a resonator under a variety of input conditions and with the magnitude and duration of index variations. We also
apply our general theory to the case of pulses whose widths are shorter than the round-trip time and derive an
analytical expression for the output field under quite general conditions. This analysis reveals a shifting of the
spectral comb as well as compression of the temporal pulse train that depends on the both the magnitude and sign
of the index change. Our results should find applications in the area of optical signal processing using resonant
photonic structures. © 2011 Optical Society of America

OCIS codes: 130.7405, 320.5540, 350.4238.

1. INTRODUCTION
In recent years, new kinds of optical resonators, based on si-
licon microrings and photonic crystals, are being used to
make optical devices with numerous potential applications.
An example is provided by the recently discovered phenom-
enon of adiabatic wavelength conversion (AWC) occurring
inside an optical resonator [1–6] whose refractive index is
forced to change with time while an optical pulse is trans-
mitted through it. In contrast to conventional static resona-
tors, it is common to think of such a resonator as being
dynamic. This paper focuses on such dynamic resonators.
Although they can have different configurations, their proper-
ties can be studied by considering a generic Fabry–Perot (FP)
resonator. Historically, dynamic FP resonators with moving
mirrors were first considered during the 1960s in the context
of mode locking [7]. Such resonators have continued to attract
attention and have found applications in the fields of spectro-
scopy and interferometry [8–12].

In this paper, we consider optical resonators whose refrac-
tive index is changed in a dynamic fashion. In the case of
AWC, it was found that a pulse can shift its wavelength even
when the dynamic resonator contains a linear optical

medium. Numerical methods based on the finite-difference
time-domain solutions of Maxwell’s equations are often used
to understand the AWC phenomenon [3,6]. A modal approach
has also been used to study this effect [13]. Here, we present a
new approach based on the theory of linear electrical systems
described in terms of an impulse response function. In parti-
cular, we extend our analysis of [14] carried out for single-
pass traveling-wave systems to optical resonators whose
refractive index changes with time. The impulse response

function of a dynamic FP resonator is derived in Section 2,
where we also show that our approach is consistent with
the usual frequency-domain approach in the special case of
static resonators. Section 3 focuses on the case of instanta-
neous changes in the refractive index when a short optical
pulse is injected into the resonator. Our results agree with pre-
viously known changes in the central wavelength and pulse
energy. In addition, we show that AWC is accompanied with
changes in the temporal width, spectral width, and peak inten-
sity of optical pulses. In Section 4 we consider the more gen-
eral case of a relatively long pulse transmitted through a
dynamic resonator. Not only does our method correctly repro-
duce the magnitude of the AWC peak in the frequency domain,
it also allows us to study the temporal and spectral evolutions
of optical pulse associated with the AWC phenomenon.
Section 5 is devoted to studying the impact of externally con-
trollable parameters such as the magnitude of index change,
the speed with which this change is implemented, and the de-
tuning of the input pulse. The main results are summarized in
the final, concluding section.

2. IMPULSE RESPONSE FUNCTION OF
LINEAR SYSTEMS
A linear system is fully characterized by its impulse response
function. More specifically, the output signal EoutðtÞ is related
to the input signal EinðtÞ through

EoutðtÞ ¼
Z

∞

−∞

hðt; t0ÞEinðt0Þdt0; ð1Þ

where hðt; t0Þ is the impulse response function. In the case of
an optical pulse transmitted through a dielectric slab of length
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L (see Fig. 1), EinðtÞ and EoutðtÞ correspond to the elec-
tric fields associated with an electromagnetic field at the
input and output ends of the slab located at z ¼ 0 and z ¼ L,
respectively.

If the refractive index n of this dielectric slab remains con-
stant with time, it is a time-invariant linear system. In this case,
hðt; t0Þ becomes a function of a single variable hðt − t0Þ; it is
useful to work in the spectral domain, because Eq. (1) takes
the simple form ~EoutðωÞ ¼ HðωÞ~EinðωÞ, where a tilde repre-
sents the Fourier transform andHðωÞ is the Fourier transform
of hðt − t0Þ. Clearly, a time-invariant system acts as an optical
filter. Because a spectral-domain approach is not useful for
time-variant systems, we do not use it in this paper and work
directly in the time domain. If we assume for simplicity that
the dielectric slab responds instantaneously to the optical
field, both the loss and dispersion of the medium can be ig-
nored, and n can be treated as a real constant over the entire
pulse bandwidth. Because the optical pulse remains un-
changed when transmitted through such a slab, except for
being delayed by the transit time Tr ¼ nL=c, it is easy to
see that EoutðtÞ ¼ Einðt − TrÞ if the impulse response function
is given by hðt − t0Þ ¼ δðt − t0 − TrÞ.

The question is what happens in a dynamic optical system
whose refractive index nðtÞ is allowed to change with time
while the pulse is propagating through it. Figure 1 shows
the situation graphically. It is useful to divide the pulse into
temporal slices. In the dynamic case, the transit time is not
the same for all pulse slices but depends on details of how
nðtÞ changes with time. It turns out that the impulse response
function for a dynamic linear system has the general form [14]

hðt; t0Þ ¼ δ½t − t0 − Trðt0Þ�; ð2Þ

where Trðt0Þ is the transit time associated with a specific
temporal slice of the input pulse, and it can be determined
by the following simple relation:

Z
t0þTrðt0Þ

t0
½c=nðτÞ�dτ ¼ L: ð3Þ

This form was used in [14] to discuss temporal and spectral
changes occurring when an optical pulse is transmitted
through a dynamic traveling-wave slab.

We now convert a dielectric slab into an FP resonator by
assuming that its two facets located at z ¼ 0 and z ¼ L act as
mirrors of reflectivity R. Because the optical pulse is now
forced to make multiple passes within the resonator, the out-
put field is not in the form of a single pulse. Rather, as seen in
Fig. 2, it is composed of a sequence of output fields of decreas-
ing amplitudes resulting from successive passes within the

resonator. The impulse response function of an FP resonator
is then given by

hðt; t0Þ ¼ ð1 − RÞ
X∞
m¼0

Rmδ½t − t0 − Tmðt0Þ�; ð4Þ

where m ¼ 0; 1; 2… for successive round trips within the re-
sonator. The quantity Tmðt0Þ is the transit time for the pulse
slice that enters the resonator at time t0 and leaves after m
round trips. It is readily obtained from Eq. (3) by replacing
L with ð2mþ 1ÞL, where L is the physical length of the reso-
nator. Equation (1) together with Eq. (4) fully characterize a
dynamic FP resonator for an arbitrary functional form of nðtÞ
and an arbitrary input field.

Before considering the dynamic situation, we apply Eq. (3)
to a static FP resonator with a constant refractive index n0. It
follows from Eqs. (1)–(4) that the impulse response function
of a static FP resonator is given by

hðt − t0Þ ¼ ð1 − RÞ
X∞
m¼0

Rmδ½t − t0 − ð2mþ 1ÞT0=2�; ð5Þ

where T0 ¼ 2n0L=c is the round-trip time. Taking the Fourier
transform of Eq. (5) and summing up the resulting series, we
obtain the frequency-domain transfer function in the form

HðωÞ ¼ ð1 − RÞeiωT0=2=ð1 − ReiωT0Þ: ð6Þ

This is identical to the well-known transfer function of
static FP resonators [15]. This agreement between the
time-domain and frequency-domain approaches in the time-
invariant case was expected on physical grounds. In the fol-
lowing sections, we focus on several time-variant cases.

3. PULSES THAT ARE SHORT COMPARED
TO ROUND-TRIP TIME
In this section we consider the case in which the input pulses
are short compared to the round-trip time. To begin with, the
refractive index is assumed to change instantaneously from its
initial value of n1 to n2 at change time Tc and to remain at n2

after that, i.e.,

nðtÞ ¼
�
n1 ðt < TcÞ
n2 ðt ≥ TcÞ : ð7Þ

If the optical pulse enters the resonator after Tc, it does not
experience the refractive index change and the resonator is
effectively static. We are only interested in pulses that enter
the resonator before the refractive index changes.

Fig. 1. (Color online) Schematic illustration of pulse propagation
through a dynamic optical medium with refractive index nðtÞ. Each
temporal slice of the input pulse is delayed by a time-dependent tran-
sit time Trðt0Þ.

……. …….

Input OutputFabry–Perot resonator 

L
Fig. 2. (Color online) Schematic illustration of multiple round trips
within an FP resonator.
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The time Tmðt0Þ appearing in Eq. (4) can be calculated
analytically for this index-change model by writing the inte-
gral in Eq. (3) in the form

Z
Tc

t0

c
n1

dτ þ
Z

t0þTmðt0Þ

Tc

c
n2

dτ ¼ ð2mþ 1ÞL: ð8Þ

Both integrals can be performed easily, and the result is

Tmðt0Þ ¼ ð1 − sÞt0=sþ Tem; ð9Þ

where s ¼ n1=n2 is the relative index change and Tem is
defined as

Tem ¼ ð2mþ 1Þn2L=cþ ð1 − 1=sÞTc: ð10Þ

If there is no refractive-index change (the pulse leaves be-
fore the change time Tc), then n2 ¼ n1, s ¼ 1, and Tem is re-
duced to the value of ð2mþ 1Þn1L=c expected on physical
grounds. Compared to the time-invariant case, the most im-
portant feature of Eq. (9) is a rescaling of the slice transit time
t0 to t0=s. As we shall see later, this scaling affects the optical
pulse in several different ways.

Once we know Tmðt0Þ, the transfer function hðt; t0Þ is known
from Eq. (4). By substituting hðt; t0Þ into Eq. (1), we can obtain
the output field in the form

EoutðtÞ ¼ ð1 − RÞ
X∞
m¼0

Rm½sEinðst − sTemÞ�: ð11Þ

Equation (11) shows that the effect of changing the medium’s
refractive index in a dynamic fashion manifests through a sim-
ple scaling parameter s ¼ n1=n2 that only depends on the ratio
of the initial and final values of the refractive index. As will be
seen later, this scaling leads to pulse compression or broad-
ening, depending on whether s > 1 or s < 1. Notice that the
amplitude is also altered by the same factor s.

As an illustration, we apply the general analysis to the spe-
cific case of a Gaussian input pulse with the carrier frequency
ω1. The input field is then given by

EinðtÞ ¼ E0 exp½−t2=ð2T2
0Þ − iω1t�; ð12Þ

where the pulse width T0 < n1L=c so that the entire pulse can
fit within the resonator. To make our calculation relevant for
silicon microrings, we consider a relatively short FP resonator
with L ¼ 10 μm, n1 ¼ 3:5, and R ¼ 0:8. Because the round-trip
time is only 233 fs, we choose T0 ¼ 60 fs. The carrier fre-
quency of the pulse is chosen to be 192:86THz so that it
coincides with one of the cavity modes and corresponds to
a wavelength of 1555:56nm.

Figure 3 shows shapes and spectra of the output pulse in
two cases in which the refractive index of the resonator med-
ium increases (blue solid curves) or decreases (red dashed
curves) by 5% from its initial value of 3.5 at Tc ¼ 0:25ps.
The input pulse and spectrum are also shown for comparison
(black dotted–dashed curves). The multiple pulses seen in
Fig. 3(a) result from the sum in Eq. (11); index changes not
only shift the exit time of subpulses but also lead to changes
in their widths and amplitudes. The changes in amplitude and
width of the subpulses are consistent with the result of [14]. As

seen in Fig. 3(b), the output spectrum is affected much more
(compare to the pulse shape) by index changes. The ultra-
short input pulse has a broad enough spectrum that it excites
five cavity modes in both the static (dotted green curve) and
dynamic (solid blue and dashed red curves) cases. However,
spectral peaks exhibit a blue- or redshift of about 10THz in the
two dynamic cases. The shifted peaks correspond to new cav-
ity mode frequencies νk ¼ kc=ð2n2LÞ, where k is an integer,
after the refractive index is changed from n1 to n2.

Although spectral shifts resulting from AWC in dynamic re-
sonators are well known [3–5], it has not been realized that the
spectral shape also changes considerably. As seen in Fig. 3(b),
the output spectrum exhibits considerable asymmetry. This
asymmetry is due to the asymmetric nature of the index-
change process with respect to the pulse center. More pre-
cisely, the refractive index is changed after the pulse has
already entered the resonator and a part of its energy has al-
ready leaked out of the resonator. This feature implies that
different parts of the temporal output should have different
spectral contents (i.e., the pulse is chirped). A spectrogram
is often used to display time-dependent spectral changes
[16]. It is constructed by using a sampling functionWðt; τÞ that
selects different temporal pulse slices. We calculate it using

Sðω; τÞ ¼
����
Z

∞

−∞

Wðt; τÞEoutðtÞeiωtdt
����
2
: ð13Þ

Figure 4 shows the spectrogram calculated using a
Gaussian-shape sampling function in the case of a −5% reduc-
tion in the refractive index. One can clearly see that the first
output field (m ¼ 0 term) is centered at the original frequency,
because the index has not yet been changed, while the remain-
ing output fields (m > 0) are all centered at the frequency
shifted by about 10THz, because they exit the resonator after
the index has been changed.
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Fig. 3. (Color online) Short-pulse (60 fs) propagation for an instan-
taneous change in the refractive index of −5% (dashed blue curve)
and þ5% (solid red curve) at time Tc ¼ 250 fs. The round-trip time
is 233 fs. Detuning Δν is defined as ν − ν0, where ν0 is the input fre-
quency. (a) The index change alters the width, amplitude, and delay of
temporal pulses after Tc. (b) The index change shifts the comblike
input spectrum (green dotted curve) to higher (þ5%) and lower
(−5%) frequencies at the FP output.
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In constructing Figs. 3 and 4, the refractive index was chan-
ged by 5%, a relatively large amount that is presently hard to
realize experimentally, where the index changes are often pro-
duced by injecting free carriers into the mode volume within a
silicon waveguide [4]. In practice, index changes are typically
below 0.5%. Our results show that changes in the time domain
are relatively minor and barely noticeable for such small index
changes. In the spectral domain, although the spectral shifts
are much lower (<1THz), the output spectrum remains
asymmetric and exhibits features that should be measurable
experimentally.

One interesting point to note is that the response of a dy-
namic FP resonator does not depend on the carrier frequency
detuning from the cavity resonance for short pulses. This is
readily seen from our time-domain approach. The transmitted
pulse is a sequence of subpulses that are separated temporally
by the resonator round-trip time. If the input pulse width is
much smaller than this round-trip time, individual subpulses
are separated far enough that there is hardly any overlap
among them. In this case, the subpulse shape does not depend
on the pulse’s carrier frequency. This behavior is also under-
standable in the frequency domain. The input pulse spectrum
is filtered by a comblike transfer function of the resonator. If
the pulse is short enough, its spectrum covers several peaks of
this comb. In this situation, the relative location of the carrier
frequency with respect to the cavity resonances has little
effect on the output pulse shape.

4. PULSES THAT ARE LONG COMPARED
TO ROUND-TRIP TIME
In this section we focus on a more practical situation where
input pulses are considerably wider than the resonator round-
trip time. Different from the short-pulse case, such a long
pulse cannot be fully confined within the resonator, and only
a part of the pulse that is inside the resonator experiences the
refractive-index change. Moreover, some parts of the pulse
only experience a portion of the index change. As a result,
the scaling factor s and the effective time Tem appearing in
Eq. (10) now themselves become time dependent. In this
situation, it is not possible to obtain an analytic expression
for the output field similar to that obtained in Eq. (11) for short
pulses.

To investigate AWC process in dynamic resonators, numer-
ical calculations are performed for a 10 μm long FP resonator

using Eqs. (1), (3), and (4). We again consider a Gaussian
pulse with the electric field in Eq. (12), but its width is much
larger than the round-trip time of 0:23ps (T0 ¼ 10ps). The fa-
cet reflectivity is increased to 98.2% to ensure a relatively large
value of photon lifetime (6:5ps). The input frequency of
192:86THz is again chosen to be on resonance with a cavity
mode. To make our results more relevant to experiments, the
refractive index is decreased by only 0.1% from its initial value
of 3.5. Moreover, we do not assume this change to be instan-
taneous but consider the situation in which refractive index is
decreased linearly over a time interval starting at Ti ¼ 3 ps to
the final time Tf ¼ 6 ps (the origin of time is at the peak of the
input pulse).

The pulse shapes and spectra are plotted in Figs. 5(a) and
5(b), respectively for the input (black dashed curve), static-
case output (green dotted curve), and dynamic-case output
(red solid curve). A comparison of the green and red curves
reveals the impact of the 0.1% index change on the output
pulse. Consider the spectral changes first. As depicted in
Fig. 5(b), the output spectrum shows a new peak shifted to-
ward higher frequencies. This peak represents the AWC ex-
pected because the resonant frequencies of the cavity modes
shift toward the blue side by about 190GHz after the index
change has been completed. Indeed, the central frequency of
this shifted peak agrees well with the new position of the
resonator modes. The amplitude of the shifted peak is larger
than that at the original frequency, indicating that a large
portion of the pulse energy has shifted to the new resonator
mode.

The reason that some energy is still left at the original re-
sonator mode is related to the fact that the entire pulse does
not experience the index change. A portion of the front part of
the pulse leaves the resonator before the refractive index be-
gins to change. Similarly, a portion of the back part of the
pulse enters the medium after the index change has occurred.
Because this part is no longer in resonance with the shifted
cavity mode, its coupling into the resonator is reduced. The

Fig. 4. (Color online) Spectrogram for the short-pulse case shown in
Fig. 3 forΔn ¼ −5% at time Tc ¼ 250 fs. A shift of about 10THz in the
carrier frequency of the pulse is clearly seen after the index change at
time Tc.
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Fig. 5. (Color online) Long-pulse (10ps) propagation for a linear
change in refractive index of −0:1% (solid red curve) between Ti ¼
3 ps and Tf ¼ 6 ps (marked by arrows). The round-trip time of the re-
sonator is 0:23ps. (a) The index change advances the output peak and
produces a long tail with a kneelike feature. (b) The output spectrum
shows two spectral peaks corresponding to the original and shifted
cavity modes, respectively.
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time dependence of the output spectrum is better revealed in
the spectrogram shown in Fig. 6, where the pulse spectrum
appears to follow the temporal changes in the refractive in-
dex. Note that some pulse energy also lies in between the ori-
ginal and shifted resonator modes. This energy comes from
the part of the pulse that only experiences a fraction of the
index change (i.e., parts of the pulse that either leave or enter
the resonator during the index change).

Figure 5(a) reveals significant changes in the output pulse
shape introduced by the dynamic index changes taking place
inside the FP resonator. The peak of the output pulse (solid
red curve) occurs close to the front of the pulse when com-
pared to the static case (dotted green curve). This temporal
behavior occurs because index changes shift the mode fre-
quencies of the resonator, which makes the trailing part of
the pulse to be off resonance. This shifting explains the con-
siderable reduction in the energy contained in the trailing part
the output pulse. In addition, we also see an evidence of os-
cillations (period of about 5 ps) of decreasing amplitude just
after the index change has been completed (the kneelike fea-
ture). We interpret these oscillations as resulting from beating
of light at the shifted frequency with light at the original
frequency.

5. VARIATION OF CONTROLLABLE
PARAMETERS
The results presented in Section 4 show that dynamic changes
in the refractive index of an FP resonator produce an AWC
peak during transmission of an optical pulse, but they also
lead to several other temporal and spectral changes in the out-
put pulse. In the time domain, pulses become asymmetric and
their width may increase or decrease depending on the direc-
tion in which the refractive index is changed. In the spectral
domain, output spectra develop a multipeak structure and are
distorted considerably in an asymmetric fashion. In addition,
pulses develop considerable frequency chirp. The magnitude
of these changes depends considerably on various factors that
can be controlled during an experiment. In this section, we
explore three such factors related to the temporal duration
over which the index change is completed: the speed and
the magnitude of the index change and detuning of the input
wavelength from the nearest FP resonance.

A. Speed of Index Change
The word “adiabatic” in AWC requires that refractive-index
changes occur slower than some characteristic time. In the
case of an optical field, the shortest characteristic time is
the optical period. However, a second, much-longer time
scale, the photon lifetime, is also relevant for optical resona-
tors. If the refractive index is changed slowly over a long dura-
tion, not much pulse energy is likely to remain in the resonator
after the index change has been completed. The important
question is how much the shape and spectrum of the output
pulse depend on the speed of index change. To answer this
question, we consider again transmission of 10ps Gaussian
pulses through the same FP resonator used for Fig. 5 but allow
the temporal duration, Tf − Ti, over which the index is re-
duced linearly by 0.1%, to vary from 3 to 27ps. Figure 7 shows
the shape and spectrum of output pulses for three choices of
Tf while fixing all other parameters (initial time, pulse width,
and magnitude of index change) to their same values used in
Fig. 5. In all cases, the photon lifetime is fixed at 6:5ps.
Changes in the pulse shape are easily understood once we
interpret the spectral modifications correctly.

When the refractive index change is completed well within
the photon lifetime (Tf 1 − Ti ¼ 3 ps, dashed red curve), the
new AWC peak dominates the pulse spectrum, as its ampli-
tude is larger than that of the peak at the original mode fre-
quency. However, as the duration of index change becomes
larger than the photon lifetime (Tf 2 − Ti ¼ 13ps, dotted–
dashed blue curve), the amplitude of the AWC peak is reduced
considerably. Much more pulse energy remains at the original
mode frequency, and considerable pulse energy lies in be-
tween the two modes. When the duration of the index change
is increased further to Tf 3 − Ti ¼ 27ps (solid purple curve),
the AWC peak almost disappears as little energy of the pulse
appears at the shifted mode frequency. Note, however, that
the pulse spectrum is distorted considerably even in this case:
it is broader and highly asymmetric compared to the static
case. The reason is that spectral broadening occurs only
toward the blue side, which is expected when the refractive

Fig. 6. (Color online) Spectrogram for the long-pulse case shown
in Fig. 5. The pulse spectrum appears to follow the cavity resonance
indicated by the dotted line.
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change in the refractive index beginning at Ti ¼ 3 ps. (a) Output pulse
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tude of the AWC peak also increases as ΔT decreases.
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index is reduced from its original value and cavity modes
experience a blueshift.

The efficiency of the AWC process can be characterized by
a parameter f s representing the power of the AWC peak re-
lative to the input peak. Physically, f s represents the fraction
of pulse energy that is contained within the AWC peak. This
quantity is plotted by the solid blue curve in Fig. 8 for the FP
resonator used in Fig. 5, which has a photon lifetime of
τph ¼ 6:5 ps, as a function of the duration ΔT ¼ Tf − Ti over
which index changes are completed. The value ΔT ¼ 0 cor-
responds to an instantaneous change discussed in Section 3.
Note that f s increases slightly in the range of ΔT ¼ 0 to 3 ps,
where it reaches its peak value of about 21%. Beyond that, f s
displays a monotonic decay as ΔT increases further. The in-
itial increase at up to ΔT ¼ 3ps results from a relatively long
duration of the input pulse. When the refractive index begins
to change, the energy is still being injected into the resonator,
and the energy inside the resonator reaches its maximum just
before the index change is completed forΔT ¼ 3ps, resulting
in an optimum situation. The monotonic decay beyond that is
characterized by the continuously decreasing fraction of pulse
energy that enters the resonator after the index changes have
been completed. Also shown in Fig. 8 are the f s for two other
resonators with different values of photon lifetime τph: 3.4 and
12:6 ps for the dotted black and dashed red curves, respec-
tively. Note the three resonators shown in Fig. 8 are identical,
expect for their mirror reflectivity (96.5%, 98.2%, and 99% for
the black, blue, and red cases, respectively).

Our model not only correctly confirms the previous under-
standing on AWC that the index change has to happen within
the photon lifetime of the cavity [3–5], but it also shows that
the optimum situation does not correspond to an instanta-
neous index change. In fact, we predict that a slower index
change is better for improving the AWC efficiency in resona-
tors with relatively long photon lifetimes.

B. Magnitude of Index Change
In the previous discussion, we used a fixed value of −0:1% for
the relative index change. The impact of magnitude of relative
refractive-index change Δ, defined from n2 ¼ n1ð1 −ΔÞ, is
studied in this subsection. Figure 9 shows the shape and spec-
trum of output pulses by changing this value in the range of
0.05% to 0.4%, while keeping all other parameters identical to

those used for Fig. 5. In particular, Tf − Ti ¼ 3ps in all cases.
Pulse shapes in part (a) are affected much less by changes in
Δ compared with the spectral changes. Changes in frequency
or wavelength are linearly proportional to the index change.
As seen in Fig. 9(b), the AWC-induced spectral shift increases
from 95 to 760GHz as Δ increases from 0.05% to 0.4%. This
behavior agrees with previous studies on AWC [3,4]. The mag-
nitude of the AWC peak does not depend on Δ much, and it
appears to saturate forΔ > 0:2%. The larger magnitude of this
peak forΔ ¼ 0:05% results from an overlapping of the original
and shifted peaks for such small index changes.

As far as changes in the pulse shape are concerned, we note
from Fig. 9(a) that the pulse peak occurs closer to the front
side as Δ increases. As already discussed, this shift is a con-
sequence of the trailing part of the pulse falling out of reso-
nance after the index change has occurred. Notice also an
increase in the frequency of oscillations in the trailing part
of the pulse as Δ increases. This behavior is understandable
by recalling that the oscillation frequency is equal to the spec-
tral shift induced by the AWC process, which itself increases
withΔ rapidly, as seen in Fig. 9(b). ForΔ ¼ 0:2% one can see
four oscillation cycles with a period of about 2:5ps, which
agrees with a spectral shift of 0:4THz. The oscillation period
is reduced to near 1:2 ps for Δ ¼ 0:4% because of a doubling
of the AWC-induced frequency shift. The number of oscilla-
tions is set by the time interval over which the resonator con-
tains light at both the original and shifted mode frequencies. In
the case of Δ ¼ 0:4%, almost all of pulse energy within the
resonator shifts to the new mode frequency after four cycles.

C. Detuning of Input Frequency
So far we have assumed that the carrier frequency (or the
launch wavelength) of the input pulse coincides with one
of the modes of the resonator. This was also the situation
in most experiments [4,5], and it is often argued that an on-
resonance pulse launch is required for AWC to occur. The ef-
fect of input frequency detuning was studied experimentally
in [4], showing that less light is converted as the input is
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detuned from resonance. In this subsection we consider off-
resonance launching of input pulses. Figure 10 shows the
shape and the spectrum of output pulses when the 10ps Gaus-
sian pulse is detuned from resonance by �25GHz. All other
parameters are kept identical to those in Fig. 5. In particular,
Δ ¼ 0:001 and Tf − Ti ¼ 3 ps. It is evident from Fig. 10 that all
qualitative spectral and temporal features that occur when in-
put pulse is on-resonance also occur in the off-resonance case
with minor modifications.

A new feature that is apparent in Fig. 10(a) is related to the
direction in which the peak of the output pulse moves in a
dynamic resonator compared to the static case (green curve).
More specifically, the pulse peak shifts toward or away from
the leading edge depending on whether the detuning Δνc is
−25GHz or þ25GHz. The can be understood by noting that
the cavity resonance moves toward the blue side in both cases
(because of a negative index change). If the pulse is initially
detuned on the red side of the resonance peak, a larger por-
tion of its trailing part will experience reduced transmittance
compared to when the pulse is initially detuned on the blue
side. The oscillation frequency is different in the two cases
because the beat frequency between the original and shifted
peaks is different (about 140 and 200GHz) as seen from the
spectra in parts (b) and (c).

The relative power of the AWC peak is larger in the case of
positive detuningΔνc (case b in Fig. 10) compared to the case
of negative detuning (case c). This can also be understood
from the blueshift of the AWC peak in the case of a negative
index change. The opposite would happen if the index were
increased and the AWC peak were shifted toward the red side
of the original peak. This behavior is shown more clearly in
Fig. 11 by plotting the relative power f s of the AWC peak
as a function of input detuning. A somewhat surprising feature
of this figure is that, contrary to the conventional wisdom, the
maximum energy transfer to the AWC peak does not occur
under on-resonance conditions. Clearly, if the objective is

to transfer as much pulse energy as possible to the AWC peak,
one should detune the input pulse carrier frequency in
the same direction in which the resonator mode is expected
to shift after changes in the refractive index have been
completed.

6. CONCLUDING REMARKS
We present a simple and intuitive model based on the impulse
response of linear systems for describing the propagation of
optical pulses through a dynamic FP resonator, containing a
linear medium whose refractive index changes with time. Our
model is based on how the transit time of different slices of the
launched pulse is affected by time-dependent index changes.
It shows that the adiabatic wavelength shift results from a
scaling of the slice transit time by a factor that depends on
both the magnitude and sign of the index change. We apply
our general theory first to the case in which pulses that are
short compared with the round-trip time are transmitted,
and the refractive index of the resonator is changed instanta-
neously after a pulse has been launched. We obtain an analytic
form of the resonator output in this situation.

The case of pulses longer than the round-trip time is dis-
cussed in detail, as it is expected to be more relevant experi-
mentally. We consider transmission of picosecond Gaussian
pulses through a 10 μm long FP resonator and allow the refrac-
tive index of the resonator to change over a duration ranging
from 3 to 30ps. The magnitude of index change also varies
between 0% to 0.4%. We show that an adiabatic wavelength
shift is always accompanied by significant changes in both
the shape and the spectrum of output pulses. We discuss in
detail how such temporal and spectral changes depend on ex-
ternally controllable parameters such as the magnitude and
the speed of the index change and detuning of the input pulse
from the cavity resonance. Our result should find applications
in the area of optical signal processing with resonant photonic
structures based on microrings or photonic crystals.

ACKNOWLEDGMENTS
This work is supported in part by the National Science
Foundation (NSF) under award ECCS-1041982.

−10 0 10 20 30
0

0.2

0.4

0.6

0.8

1

 

 

T
em

po
ra

l p
ow

er
 

Time (ps)

0 0.1 0.2
10

−2

10
−1

Detuning ∆ν (THz)

S
pe

ct
ra

l p
ow

er

0 0.1 0.2
10

−2

10
−1

Detuning ∆ν (THz)

Input
Output, static, ∆ν

c
= ±25GHz 

Output, dynamic, ∆ν
c
= +25GHz

Output, dynamic, ∆ν
c
= −25GHz

(c)(b)

(a)

T
f

T
i

Fig. 10. (Color online) Impact of detuning Δνc of the input pulse
from a cavity resonance (Δνc ¼ ν0 − νc, where ν0 and νc are the input
carrier frequency and cavity-resonance frequency, respectively) for a
−0:1% linear change in the refractive index between Ti ¼ 3 ps and
Tf ¼ 6 ps (the round-trip time is 0:23ps). (a) Output pulse shapes
show an asymmetry with respect to the sign ofΔνc. (b) The amplitude
of the AWC peak is larger for aþ25GHz detuning than for the −25GHz
detuning (in this negative index-change case).

−50 −40 −30 −20 −10 0 10 20 30 40 50
0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

0.2

0.22

Detuning of input frequency ∆ν
c
 (GHz)

R
el

at
iv

e 
sp

ec
tr

al
 p

ow
er

 f s

∆n= −0.1%
∆n= +0.1%

Fig. 11. (Color online) Fraction of pulse energy transferred to the
AWC peak as a function of detuning of input pulse from a cavity re-
sonance under the same long-pulse conditions as in Fig. 10 but for an
index change of −0:1% (blue solid curve) and þ0:1% (red dotted
curve).

Xiao et al. Vol. 28, No. 7 / July 2011 / J. Opt. Soc. Am. B 1691



REFERENCES
1. M. F. Yanik and S. Fan, “Stopping light all optically,” Phys. Rev.

Lett. 92, 083901 (2004).
2. M. F. Yanik and S. Fan, “Time reversal of light with linear optics

and modulators,” Phys. Rev. Lett. 93, 173903 (2004).
3. M. Notomi and S. Mitsugi, “Wavelength conversion via dynamic

refractive index tuning of a cavity,” Phys. Rev. A 73, 051803
(2006).

4. S. Preble, Q. Xu, andM. Lipson, “Changing the colour of light in a
silicon resonator,” Nat. Photon. 1, 293–296 (2007).

5. T. Tanabe, M. Notomi, H. Taniyama, and E. Kuramochi, “Dy-
namic release of trapped light from an ultrahigh-Q nanocavity
via adiabatic frequency tuning,” Phys. Rev. Lett. 102, 043907
(2009).

6. Z. Gaburro, M. Ghulinyan, F. Riboli, and L. Pavesi, “Photon
energy lifter,” Opt. Express 14, 7270–7278 (2006).

7. S. E. Harris and O. P. McDuff, “Theory of FM laser oscillation,”
IEEE J. Quantum Electron. 1, 245–262 (1965).

8. M. J. Lawrence, B. Willke, M. E. Husman, E. K. Gustafson, and
R. L. Byer, “Dynamic response of a Fabry–Perot interferometer,”
J. Opt. Soc. Am. B 16, 523–532 (1999).

9. M. Rakhmanov, “Doppler-induced dynamics of fields in Fabry–
Perot cavities with suspended mirrors,” Appl. Opt. 40, 1942–
1949 (2001).

10. H. Rohde, J. Eschner, F. Schmidt-Kaler, and R. Blatt, “Optical
decay from a Fabry–Perot cavity faster than the decay time,”
J. Opt. Soc. Am. B 19, 1425–1429 (2002).

11. D. Redding, M. Regehr, and L. Sievers, “Dynamic models of
Fabry–Perot interferometers,” Appl. Opt. 41, 2894–2906 (2002).

12. M. Rakhmanov, R. L. Savage, D. H. Reitze, and D. B. Tanner,
“Dynamic resonance of light in Fabry–Perot cavities,” Phys. Lett.
A 305, 239–244 (2002).

13. T. Kampfrath, D. M. Beggs, T. P. White, A. Melloni, T. F. Krauss,
and L. Kuipers, “Ultrafast adiabatic manipulation of slow light in
a photonic crystal,” Phys. Rev. A 81, 043837 (2010).

14. Y. Xiao, G. P. Agrawal, and D. N. Maywar, “Spectral and tempor-
al changes of optical pulses propagating through time-varying
linear media,” Opt. Lett. 36, 505–507 (2011).

15. G. P. Agrawal, Lightwave Technology: Components and Devices

(Wiley, 2004).
16. G. P. Agrawal, Nonlinear Fiber Optics, 4th ed. (Academic,

2007).

1692 J. Opt. Soc. Am. B / Vol. 28, No. 7 / July 2011 Xiao et al.


