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The presence of higher order dispersion leads to the 
transfer of energy from soliton to dispersive waves 
(DWs: also called non-solitonic radiation), which play 
a significant role in blue-component generation in the 
supercontinuum (SC) process. The frequency of DWs 
is controlled by the general phase-matching condition 
requiring that DWs propagate with the same phase  
velocity as that of the soliton. In the present study, the 
generation of DWs in the SC process inside the non-
linear microstructured fibre/photonic crystal fibre is 
explored under different operational conditions. The 
role of third, fourth and other higher order dispersions 
on the generation and control of DWs is described  
using numerical solution of generalized nonlinear 
Schrödinger equation. The study reveals several  
important facts such as all positive, even-order disper-
sion terms always generate dual radiation and all odd-
order dispersion produces single radiation. Even the 
numeric sign of the dispersion coefficient modulates 
the non-solitonic radiations dramatically. A more gen-
eral study unfolds that dispersion profile of a specific 
fibre can control the generation of DWs; in fact, the 
zero dispersion points turn out to be excellent predic-
tors of the number of radiation peaks being generated. 
It is also demonstrated that with proper tailoring of 
dispersion profile of nonlinear medium, it is possible 
to generate dual radiation in the same side of the  
input pulse in frequency domain. Here we have con-
sidered the case of a highly nonlinear photonic crystal 
optical fibre. Further, it is observed that DWs can still 
be generated when the pump frequency falls on the 
normal dispersion domain. Finally the validity of the 
proposed theory is established through experimental 
verification. 
 
Keywords: Dispersive waves, optical solitons, photonic 
crystal fibres, supercontinuum generation. 
 
SPECTRAL broadening and the generation of new fre-
quency components are the intrinsic features of nonlinear 
optics. Because of these novel characteristics of nonlinear 
optics, it is possible to produce an artificial white light 
with unique spectral properties having high brightness. 
Under such a process an ultra short optical pulse propa-

gating through a nonlinear medium experiences extreme 
spectral broadening. Owing to its broad and continuous 
spectrum, such extreme spectral broadening is generally 
called supercontinuum (SC)1,2. The generation of white  
laser in terms of SC is an important phenomenon having 
great physical implications. It certainly offers novel solu-
tions in the field of optical communication, coherent  
tomography, multiplex light sources for nonlinear spectro-
scopy, biomedical lasers, etc.3. The mechanism of SC gene-
ration is mainly dominated by soliton dynamics when a 
femtosecond pulse is used as a pump, whereas four wave 
mixing (FWM) and nonlinear Kerr effect are considered 
to be the most important processes in SC generation for 
wider (pico or nanosecond) input pulses. In both the cases 
higher-order dispersions (HODs) play a significant role in 
modulating and controlling the spectrum. At this point it 
is pertinent to mention that in recent years photonic crystal 
fibre (PCF) has come out to be an excellent medium to 
support the phenomenon of SC generation owing to its 
high nonlinearity and flexible dispersion properties. The 
phenomenon of soliton dynamics is primarily involved in 
the SC generation process when the optical pulse is 
pumped in an anomalous dispersion regime. The interplay 
between nonlinearity and dispersion may produce stable 
pulse propagation in terms of optical soliton which does 
not change its shape in time and spectral domain during 
propagation4. The increment of input power makes the 
stable propagation periodic over distance. This is a feature 
of higher order soliton, where input pulse evolves peri-
odically both in time and spectral domain4. However,  
under realistic condition the higher order nonlinear and 
dispersive effects disrupt this stable periodic evolution 
and split the soliton into its components through the fis-
sion process5. During the fission process, the presence of 
higher order dispersions lead to transfer of energy from 
soliton to narrow band resonance and associate a low  
amplitude temporal pedestal6. The radiation of dispersive 
waves (DWs) is also known as non-solitonic radiation 
(NSR) because generally its wavelength falls on the  
normal dispersion domain where optical soliton ceases to  
exist1,2. The frequency of the radiation emitted by the 
soliton in terms of DWs can readily be obtained from a 
phase-matching condition involving the linear and 
nonlinear phase change of the soliton and associated  
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continuous wave7. The generation of DWs is physically  
important because of their imperative contribution in  
producing visible light during the SC process. The blue or 
UV components of the SC spectra are in fact produced 
through DWs. However, a suitable combination of HODs 
may produce radiation even in the higher wavelength side 
compared to input pump wavelength. An extensive study 
reveals that all HOD terms individually play a crucial 
role in generating DWs and more importantly, the growth 
of the radiation peaks is critically dependent on relative 
values of HODs and their numeric signs. 
 Because of the significant impact of DWs in SC  
generation, it requires a complete study which unfolds the 
physical mechanism involved in resonant radiation in the 
form of DWs. Though considerable amount of work has 
already been done in describing the phenomenon of NSR, 
there is ample scope to discuss elaborately the entire 
physical processes. Our objective here is to present a uni-
fied discussion on the various aspects of DW generation 
during the SC process. The present review is based on 
theory and extensive numerical simulations that illustrate 
characteristics of soliton-mediated resonant radiation 
covering a wide range of experimental parameters. More-
over, we perform experiments with self-made PCFs and 
the results are analysed with the existing theory and nu-
merical simulation. We mainly focus on understanding 
the complex process of DW generation and the role of 
different HODs on its evolution. The present article is  
organized in the following fashion. First we briefly discuss 
about PCF and its properties. Since PCF is believed to be 
the most effective and dynamic nonlinear waveguide in 
order to produce efficient SC, it is pertinent to include a 
brief discussion on its nonlinear and dispersion proper-
ties. The fundamental aspects of SC generation are then 
described. The role of soliton dynamics in the femtosec-
ond regime and the characteristics of experimentally gene-
rated SC are discussed by introducing the generalized 
nonlinear Schrödinger equation (NLSE). In the derivation 
we have used the convenient form of dimensionless 
NLSE. Finally, we elaborately study the generation of 
DWs in the SC process. The role of the third, fourth and 
all HOD terms on the evolution of DWs is explained with 
numerical examples. The present study would evolve  
certain fundamental information that may be useful for 
the fabrication of PCFs, which helps in controlling the 
generation of non-solitonic radiation. We also try to focus 
on the recent understanding and the new insights of the 
physics of soliton-mediated radiations during the SC 
process. The importance of the new class of optical fibre 
is highlighted. 

Photonic crystal fibre 

PCF or microstructured optical fibre (MOF) is the new 
generation of optical waveguides which is solely made of 
silica8. In solid-core PCFs, the central silica core is sur-

rounded by a periodic array of air-holes running along the 
propagation distance. The presence of the air-holes in the 
cladding region eventually reduces the effective refrac-
tive index compared to the core silica and light guidance 
occurs through the principle of total internal reflection. 
The air-hole diameter (d) and their relative separation (Λ) 
offer additional degrees of freedom in tailoring the dis-
persion property9–11. A careful and properly designed  
arrangement of air-holes may produce a unique disper-
sion profile which is difficult to attain in conventional  
fibres. The dispersion in the standard telecom fibre is 
anomalous at wavelengths larger than 1.3 μm, whereas 
one can tailor the anomalous dispersion of PCF in the 
range 0.6–1.3 μm by suitably modulating d and Λ. Stan-
dard numerical process based on finite element method 
(FEM) is generally used to study the dispersion property 
of PCFs12. Owing to the tight confinement of the optical 
field in the small core region, PCF possesses enormous 
nonlinearity which is an additional advantage to excite 
higher order nonlinear effects. Another important aspect 
of PCF is its endlessly single-mode nature in which 
propagation of higher order modes is not observed even 
at short wavelengths. The reported SC generation in  
experiments primarily occurs through the excitation of 
the fundamental mode and for this reason in our numeri-
cal simulation we assume propagation only for the  
fundamental mode. However, in a recent study SC char-
acteristics were also examined for multimode fibres by 
generalizing NLSE in femto-second regime13. The disper-
sion property of PCF is crucial in SC generation because 
it determines the extent to which different spectral com-
ponents of an ultrashort pulse propagate at different 
group velocities. The identical group velocity of DWs 
and red-shifted soliton eventually creates a situation 
where blue-shifted radiation is trapped, a phenomenon 
experimentally observed by Nishizawa and Goto14. 
 The group velocity dispersion (GVD) coefficient of an 
MOF is defined as follows: 
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Here λ represents the wavelength, c the velocity of light 
and neff is defined as the effective index of the fundamen-
tal mode of MOF. The value of neff at a particular  
wavelength for a given MOF structure is determined  
numerically by FEM using commercial software, COMSOL 
Multiphysics. β2 is the second-order derivative of wave 
number β (ω) over frequency (ω). In Figure 1 the photo-
graph SEM of a highly nonlinear PCF is shown with its 
dispersion profile. It is found that this particular PCF 
structure exhibits zero dispersion (D = 0) around the 
wavelength of 987 nm. 
 The process of making PCF is different from conven-
tional composite-core fibre. PCF fabrication is a two-step
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Figure 1. a, SEM photograph of the cross-section of a highly nonlinear photonic crystal fibre (PCF) fabricated at  
the Fiber Optics and Photonics Division, Central Glass and Ceramic Research Institute (CGCRI), Kolkata. The effective 
area of the PCF is calculated as 8 μm2 and air-filling fraction (d/Λ) is 0.91. b, Dispersion characteristic of the same fibre. 
The commercial software COMSOL Multiphysics based on finite element method is used to determine the effective index 
(neff) of the fibre at different wavelengths. The zero dispersion wavelength of the fibre is calculated to be at 987 nm. 

 
 
process. The first step consists of developing a ‘preform’ 
which contains the signature of the fibre, but on a macro-
scopic scale. In the second stage, the final fibre is drawn 
from a high-temperature furnace in a fibre-drawing 
tower. The main issue involving preform design and  
development in the case of PCFs is preservation of air-to-
silica ratio in the cladding15. PCFs can be fabricated by 
several methods, including extrusion16, sol–gel route17, 
mechanical boring or milling, i.e. drilling of holes in the 
matrix material18,19, etc. But a relatively simple process is 
the ‘stack and draw’ technique20–22, which we have also 
adopted for fabrication of nonlinear PCFs using a preci-
sion fibre-drawing tower. This method is highly versatile, 
allowing complex lattices to be formed from individual 
stackable units or capillaries of the correct size and shape 
as accurate as ± 5 μm. The key parameters of PCF draw-
ing are the furnace temperature, speed at which the pre-
form is fed into the furnace (feed rate), fibre-drawing 
speed and the differential pressure within the capillaries. 
Precise monitoring and optimization of these parameters 
lead to significant modification of the geometry of the  
final fibre to get the desired microstructure23,24. It was  
observed that temperature of the furnace played a crucial 
role in the pressurization and expansion of the air-holes. 
Higher temperature led to increase in the air-filling frac-
tion, whereas increase in the fibre-drawing speed lowered 
the fibre diameter and core diameter. After standardizing 
all the drawing parameters, one can achieve high  
air-filling fraction.  

Supercontinuum generation 

It has been already mentioned that SC generation is a 
nonlinear process where one would expect enormous 
spectral broadening of an ultrashort pulse during its 

propagation inside a nonlinear waveguide. A major part 
of spectral broadening is related to soliton dynamics, 
when an ultrashort pulse is launched in the anomalous 
GVD (β2 < 0) domain25,26. Hence it is important to under-
stand the basic processes involved in soliton propagation. 
When an optical pulse propagates inside the waveguide, 
the dispersion and nonlinear property both introduce ad-
ditional phase. Physically, the phase induced by the dis-
persion depends on its numeric sign and in anomalous 
dispersion domain (i.e. for negative sign of dispersion) it 
counter balances the additional phase introduced through 
nonlinear self-phase modulation (SPM)4. Because of this 
cancellation process, pulse broadening ceases to occur 
and one would expect optical soliton. The most standard 
equation that mathematically describes the propagation of 
an optical soliton is given as4 
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The general solution can readily be obtained as U(ξ, τ) = 
Nsech(τ)exp(iξ/2), where N = 1 characterizes fundamen-
tal soliton and N > 1 for higher order solitons (HOS). 
 The order of soliton N is defined as 1/ 2

D NL( / ) ,L L  where 
2

D 0 2/ | |L T β=  is the dispersion length and NL 01/L Pγ=  is 
the nonlinear length with T0, P0 and γ being the pulse 
width, peak power and nonlinear coefficient respectively. 
For N > 1, the optical soliton evolves periodically both in 
temporal and spectral domain. The stable periodic evolu-
tion of HOS disrupts significantly because of the pre-
sence of HOD and higher order nonlinearity, viz. Raman 
scattering, self-steepening, etc. The perturbing effects  
result in pulse break-up through the soliton fission  
process, where a HOS splits into its components and
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Figure 2. a, Temporal and spatial evolution of a third-order soliton (N = 3) in an ideal condition without any perturbation. b, Evolution of the 
same soliton perturbed under the intra-pulse Raman Scattering (IPRS) process. The fission takes place roughly around 1/N normalized distance 
which comes out to be 0.33 for N = 3 and is evident from plot (iii). The frequency downshifting characterized by IPRS is clearly observed in plot 
(iv), where it is shown how a major part of pulse energy is shifted to the lower frequency side. 
 

ejects from the input pulse in an ordered fashion, one by 
one. The highest peak power soliton, generally called 
Raman soliton exhibiting largest group velocity differ-
ence from pump, is delayed most in time domain during 
propagation. A theoretical treatment reveals that the Nth 
order soliton splits into its components having amplitude 
Ak = A0(2N – 2k + 1)/N and width Tk = T0(2N – 2k + 1)–1, 
where k takes the value from 1 to N representing the indi-
vidual components5. The separation of the individual 
components of the soliton is physically controlled by the 
momentum conservation principle. An ideal propagation 
of an optical soliton of order three is captured in Figure 
2 a. The periodic temporal and spectral evolutions are 
shown in plots (i) and (ii). In Figure 2 b, the fission pro-
cess is shown where a third-order soliton is perturbed by 
intra-pulse Raman scattering (IPRS)4. Plot (iii) readily 
shows how Raman soliton is delayed and plot (iv) cap-
tures the Raman frequency downshifting. 
 To capture different nonlinear effects in the process of 
SC generation, it is essential to solve the generalized 
NLSE numerically. The normalized form of the genera-
lized NLSE in the anomalous dispersion domain (β2 < 0) 
can be obtained as 
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where the field amplitude U(ξ, τ ) is normalized such that 
U(0, 0) = 1 and the other dimensionless variables are  
defined as: 
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Here P0 is related to the peak power of the ultrashort 
pulse launched into the fibre, T0 is the input pulse width, 
νg the group velocity, γ the nonlinear parameter of the  
fibre, s = (2πνsT0)–1 is the self-steepening parameter and 
R(τ) the nonlinear response function of the optical fibre 
in the form 
 
 ( ) (1 ) ( ) ( ),R R RR f f hτ δ τ τ= − +  (5) 
 
where fR = 0.245 and the first and the second terms corre-
spond to the electronic and Raman responses respec-
tively. As discussed by Lin and Agrawal27, the Raman 
response function can be expressed in the form 
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where the functions ha(τ ) and hb(τ ) are defined as 
 

 
2 2
1 2

2
2 11 2

( ) exp sin ,ah
τ τ τ ττ

τ ττ τ
⎛ ⎞ ⎛ ⎞+

= −⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

 

 

 2
2

( ) exp ,b
b

bb
h

τ τ ττ
ττ

⎛ ⎞ ⎛ ⎞−
= −⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎝ ⎠⎝ ⎠

 (7) 

 
and the coefficients fa = 0.75, fb = 0.21, and fc = 0.04 
quantify the relative contributions of the isotropic and
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Figure 3. a, Visible part of the supercontinuum (SC) spectra under femtosecond pumping. The fibre used is same as that 
shown in Figure 1 a. b, White-light generation through SC process. The experiment was done at the Fiber Optics and 
Photonics Division, CGCRI, Kolkata. 

 
 

 
 

Figure 4. Experimental and the corresponding numerical simulation of SC generation in two different highly nonlinear PCFs. The blue 
curve represents the experimental spectra, whereas the numerical solutions are given by red curves. The input pulse width was 110 fs in 
both cases. 

 
 
anisotropic parts of the Raman response. In eq. (7), τ1, τ2 
and τb have values of 12, 32 and 96 fs respectively. In our 
notation, they have been normalized by the input pulse 
width T0. 
 The numerical solution of eq. (3) using split-step 
method4 proves to be an excellent tool in understanding 
the intermediate processes of SC generation. The experi-
ment for generating ultra-broadband spectra in femtosecond 
regime is performed using the highly nonlinear PCF as 
shown in Figure 1, and the visible part of the generated 
SC spectra is depicted in Figure 3. 
 The experimental SC spectra are comprehensively 
modelled by the numerical solution of the generalized 
NLSE as shown in Figure 4. The figure depicts SC gen-
eration for two different PCFs designed and fabricated at 
the Central Glass and Ceramic Research Institute (CGCRI), 
Kolkata. The corresponding simulated results (red curves) 
based on the numerical solution of generalized NLSE 
predict the experimental spectra quite reasonably. The 

simulations give an idea about the evolution pattern of 
SC during propagation. In both the cases we find distinct 
blue peaks around 800 nm wavelength, which are gene-
rated because of the radiation of DWs. 
 The process of SC generation mainly comprises three 
distinct processes. (i) Initial symmetric spectral broaden-
ing due to SPM; (ii) Generation of red component  
because of Raman frequency downshifting, and (iii) DW 
generation which creates the visible part of the spectra. 
To explore these entire processes conveniently, we adopt 
another interesting technique called the frequency resolved 
optical gating (FROG) or spectrogram. The technique 
provides simultaneous information about pulse shape and 
spectrum at a particular distance. Mathematically, the 
spectrogram is described as 
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where U is the output pulse, W the reference window 
function generally taken as Gaussian, L the fibre length 
and τ is an adjustable delay. The spectrogram as shown in 
Figure 5 interprets different SC features that would be of 
importance in understanding the process. The plot imme-
diately identifies DWs, Raman soliton component and 
their correlation. The parabolic group delay variation 
over wavelength indicates that Raman soliton and DWs 
propagate with identical group velocity and the blue  
radiation is hence trapped, as observed experimentally14. 
We have separately calculated the delay using HOD co-
efficients and it is represented as a white dotted line in 
Figure 5. The intensity of the Raman soliton is stronger 
than DWs. So the cross phase modulation (XPM) induced 
by the Raman soliton on DWs is significant. The interac-
tion of Raman soliton and DWs in fact generates new 
frequencies under the XPM process. This feature can only 
be observed in the spectrogram representation and in  
Figure 5 it is indicated by a red circle. 

Dispersive waves: a theoretical development 

The perturbation theory of soliton propagation was stu-
died extensively in the early 90s by several groups28–31. 
Enquiring the effect of dispersion, all the results pre-
dicted the side band in spectral domain. A more elaborate 
study by Akhmediev and Karlsson7 finally revealed the 
phase-matching condition associated with NSR and  
theoretically predicted the radiation amplitudes. The 
blue-shifted NSR in the formation of SC was further 
elaborated by Husakou and Herrmann32. In the same year 
a detailed experiment was conducted to understand the 
 

 
 

Figure 5. Spectrogram at propagation distance of 30 cm. It correlates 
the spectral and temporal evolution during the SC process. In the x-axis 
wavelength is plotted, whereas the normalized relative group delay is 
plotted along y-axis. The delay curve, calculated from the given disper-
sion values, is superimposed as a white doted line. The cross phase 
modulation (XPM) induced frequency component is indicated by red 
circle. 

solitonic phenomena such as pulse-breaking and  
low-amplitude radiation in generating ultra-broad SC 
spectra33. In a more comprehensive study by Dudley et 
al.34, the temporal and special characteristics were further  
resolved using cross-correlation frequency resolved opti-
cal gating (XFROG) trace. The physical origin of DWs 
and their evolution was demonstrated well34. The strong 
blue radiation in the form of DWs was again experimen-
tally studied35 and a tentative proposal was made in  
explaining the generation of DWs by invoking pulse-
trapping phenomenon, which is controlled by the group 
velocity matching among infrared and visible pulses. The 
formation and behaviour of a blue-shifted, non-solitonic 
component, emitted as the soliton evolves towards the 
stable regime, was studied and the role of phase matching 
through higher-order dispersion was highlighted by  
Hilligsøe et al.36. The mechanism of the visible peak  
being generated in SC spectra was explained in a study37 
which revealed that the process of DW generation is ini-
tiated when a higher order optical soliton contracts in a 
manner that the corresponding spectrum overlaps the 
resonant DW region. It was further shown that DW may 
generate for each incidence when extended soliton spec-
trum overlaps the UV region in frequency domain during 
propagation. The investigation of XPM between the soli-
ton and DW was examined by Genty et al.38 for sub fem-
tosecond pulses. It was shown that XPM plays a 
significant role in extending the SC band towards lower 
wavelength. The interaction of optical soliton with DW 
was further studied by Eflimov et al.39, who demonstrated 
that interaction of the orthogonally polarized DW and 
soliton results in the generation of new resonant frequen-
cies under the condition when four-wave mixing is not 
phase matched. The role of two zero dispersion profiles 
and their effect on DW generation was another interesting 
aspect studied extensively40,41. Practically, the enhance-
ment of fourth-order dispersion (4OD) is directly related 
to the occurrence of two zero dispersion points in the  
dispersion profile. In a later section we elaborately dis-
cuss the specific condition where 4OD primarily affects 
the generation of NSR. 
 The soliton fission process alone does not produce 
high-frequency spectral component in normal dispersion 
regime. Generation of DWs plays a pivotal role in expand-
ing the wide spectrum in extreme blue or UV region, which 
generally falls in the normal dispersion domain for a PCF. 
The low-amplitude temporal background pulses which 
are generated after the fission process and clearly obser-
ved in all numerical simulations, cannot be explained 
through only the soliton fission phenomenon. In order to 
obtain satisfactory answers for these questions, it is nec-
essary to study the role of higher order dispersion on soli-
ton fission process. The presence of HOD terms modifies 
the soliton fission process in two distinct ways. First, the 
ejected fundamental soliton in the fission process experi-
ences varying second-order dispersion (2OD) at different
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Figure 6. a, Low-amplitude pedestal in the form of dispersive wave (DW). b, Non-solitonic radiation (NSR) in spectral domain under 
two zero dispersion conditions where fourth-order dispersion (4OD) is dominant. 

 
 
points. Accordingly, it adjusts its peak power and tempo-
ral width to conserve the soliton energy. Secondly, the 
presence of HOD leads to the transfer of energy from the 
soliton to a narrow band resonance radiation in the nor-
mal dispersion regime and accordingly, develops a low-
amplitude temporal pedestal. In Figure 6, generation of 
DWs in time domain as well as frequency domain is 
shown. It should be mentioned that, it is not necessary to 
generate DWs in only normal dispersion regime; in cer-
tain conditions and for specific dispersion profiles, DWs 
may be generated in anomalous dispersion domain. 
 Normally a DW cannot be phase-matched with a fun-
damental soliton whose wavenumber lies in a range  
forbidden for a linear DWs. However, the presence of 
HODs can lead to a phase-matched situation in which  
energy is transferred from the soliton to DW at a specific 
frequency4,6,7. The frequency of NSR is governed by a 
simple phase-matching condition which can be given as 
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where ωs and ωd are the frequencies of the soliton and 
DW respectively. The different orders of dispersion are 
indicated by the integer m. Ps is peak power of the Raman 
soliton formed after fission process and γ is the nonlinear 
coefficient. The RHS of eq. (9) is introduced because of 
the additional nonlinear phase experienced by the soliton. 
The phase-matching condition clearly indicates that the 
frequency of DW critically depends on the operating 
wavelength. It also suggests that if we do not include 
higher order terms (m > 2) in the equation, then we can-
not get any real solution for a DW to occur when the soli-
ton propagates in the anomalous dispersion (β2 < 0)  
region. Hence theoretically the presence of third-order 

dispersion (3OD) is the primary condition to generate 
DWs when the optical pulse propagates as a soliton. In 
fact, in Figure 7 we demonstrate how 3OD leads to NSR. 
As shown in Figure 7 a, in the absence of 3OD there is 
absolutely nothing in the lower wavelength range, but the 
situation changes dramatically with the introduction of 
3OD. A distinct radiation peak generated through DW is 
observed around 675 nm for nonzero 3OD coefficient as 
shown Figure 7 b. Another important observation is that 
the frequency of the red-shifted pulse due to the IPRS 
process significantly reduces because of the generation of 
DWs at the low frequency side. Fundamentally, the  
momentum conservation principle is responsible for the 
reduction of frequency in red shifting. 
 It is obvious that the radiation wavelength/frequency 
and peak amplitude of DW depend on the numeric value 
of the 3OD coefficient. In the next section we will dis-
cuss in detail the influence of 3OD coefficient on the evo-
lution of DW or NSR. 

Role of 3OD in generation of DW 

Akhmediev and Karlsson7 proposed an analytical expres-
sion for the frequency and amplitude peak of NSR gener-
ated in the output spectrum because of the perturbation of 
3OD. In the present study we have generalized the work 
of Akhmediev and Karlsson by introducing HOS and all 
higher order nonlinear effects. It turns out that the pertur-
bation of 3OD manifests through emission of NSR at a 
different frequency that is associated with the soliton28. 
DW normally cannot be phase-matched with the soliton 
whose wavenumber lies in a range forbidden for a linear 
DW. However, the presence of 3OD can lead to a phase-
matched situation in which energy is transferred from  
the soliton to DW at a specific frequency. Considering up
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Figure 7. a, Spectrum of a second-order soliton (N = 2) in the absence of third-order dispersion (3OD) at 10 m of propagation distance. 
b, Spectrum of a second-order soliton in the presence of 3OD, where DW is generated distinctly around the wavelength of 675 nm. 

 
 
to m = 3, the phase matching condition as given in eq. (9) 
can simply be written as 
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where Ωd =ωd – ωs, the frequency difference between the 
DW (ωd) and the soliton (ωs). Here only 3OD is consi-
dered. Based on the given phase-matching condition, one 
can predict the radiation frequency. In our notation, this 
frequency is given by a relatively simple dimensionless 
expression7 
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where Δνd = νd – νs, and νs and νd are the carrier frequen-
cies associated with the soliton and DW respectively. δ3 
is the normalized 3OD coefficient as defined in eq. (4). It 
is also possible to calculate the peak power level Pd of the 
NSR, and the relative power (pd), correct to first-order in 
δ3, is given by7 
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One may ask whether eqs (11) and (12) apply when the 
input pulse propagates as a higher-order soliton (N > 1), 
the situation encountered commonly for SC generation. 
In this case, 3OD and IPRS induce the fission of the 
higher-order soliton, such that the Nth-order soliton splits 
into N fundamental solitons of different widths and  
amplitudes. As mentioned earlier, the most energetic soli-
ton (Raman soliton) has a width Ts that is (2N – 1) times 

smaller than the input pulse width T0 and its peak power 
is larger by a factor of (2N – 1)2/N2 (ref. 5). The theory in 
Akhmediev and Karlsson7 should be applied to this soli-
ton because it is perturbed the most by 3OD. The fre-
quency and the amplitude of DW can again be obtained 
using the same procedure, and the result is found to be42 
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  (14) 
 
It should be stressed that eqs (13) and (14) apply only for 
the shortest soliton (with maximum peak power), which 
is primarily responsible for generating NSR. Other soli-
tons also produce DWs, but their amplitudes remain rela-
tively low. Figure 8 a and b shows how the NSR power pd 
varies with δ3 for a fixed N, and with N for a fixed δ3, re-
spectively, using the analytical result given in eq. (14). In 
both cases, we assume that a relative power level of 10–8 
(or –80 dB) is the lowest limit for the formation of the 
NSR peak in the output spectrum. We note that a mini-
mum value of δ3 is needed before the onset of NSR, but 
this value depends strongly on the soliton order N. For 
example, δ3 should exceed 0.06 for N = 1, but this value 
is reduced to below 0.02 for N = 2. Once the NSR peak is 
formed, its amplitude grows rather rapidly with both δ3 
and N because of the exponential term in eq. (14). We 
should also stress that the validity of eq. (14) becomes 
doubtful once the relative power of NSR has reached a 
level close to −15 dB, because of a perturbative approach 
requiring (2N – 1)δ3 ^ 1 used to derive it. 
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Figure 8. Variation of NSR power (a) with the 3OD parameter δ3 and (b) with the soliton order N based on the  
analytic result in eq. (14). 

 
 
 We note from Figure 8 that the normalized 3OD  
parameter δ3 plays a crucial role in controlling NSR gen-
eration. Even a small change in the value of δ3 can make 
a relatively big difference in the peak power level of the 
NSR. Being dimensionless, one can get the same value of 
δ3 for many different combinations of β2, β3 and T0. With 
this feature in mind, in this section we study numerically 
how the amplitude and the frequency of the NSR peak 
vary with δ3 for a given soliton order N. In particular, we 
focus on the N = 2 case. 
 An interesting question is how much the NSR ampli-
tude and frequency are affected by the IPRS-induced red 
shift of the shortest soliton created through the fission 
process. Figure 9 a shows the frequency, and Figure 9 b 
the relative power of the NSR peak as a function of δ3 for 
the second-order soliton (N = 2) with (circles) and with-
out (stars) the higher-order nonlinear effects. Although 
the frequency of the NSR peak is not much affected by 
IPRS, the amplitude of this peak is reduced significantly 
because of IPRS, especially for low values of δ3 for 
which this reduction may exceed a factor of 20 dB. The 
continuous transfer of energy initiated by IPRS towards 
longer wavelengths may be responsible for this feature. 
Note that the amplitude of the DW first increases rapidly 
with increasing δ3 (up to δ3 = 0.04 approximately), but 
then saturates for values of δ3 > 0.05. Note also that it be-
comes difficult to separate the NSR peak from the rest of 
the pulse spectrum when δ3 exceeds 0.1, because of the 
inverse dependence of Δνd on δ3. 
 The dot–dashed lines in Figure 9 show the analytical 
prediction based on eqs (13) and (14). The numerical  
results for the NSR frequency in Figure 9 a agree well 
with this prediction for low values of δ3. The agreement 
is reasonable even for higher values of δ3, even though 
the numerical values are consistently larger by about 5% 
or so. What is surprising is that the NSR frequency does 
not change much when IPRS is included. One possible 
explanation is that the NSR peak is generated right after 

the soliton fission. At that point, IPRS has not yet pro-
duced any spectral changes, and the prediction of eq. (13) 
applies. Even though IPRS continuously shifts the soliton 
frequency toward the red side beyond this point, and the 
value of δ3 changes because of changes in β2 and β3, it 
appears that these changes have no impact on the NSR 
frequency. The situation is quite different as far as the 
amplitude of the NSR peak is concerned. The dot-dashed 
line in Figure 9 b falls quite close to the numerical results  
obtained with the full NLSE that includes the higher-
order nonlinear effects, but it deviates considerably from 
the data obtained in the absence of IPRS. In deriving  
eq. (14), we used the peak power and pulse width of the 
shortest soliton, generated by the fission process and 
shifting the most towards the red side because of IPRS. 
The results show that our approximate analytical results 
given in eqs (13) and (14) can be used to predict the fre-
quency and amplitude of the NSR peak under realistic 
conditions, as long as δ3 is not too large, because the ana-
lytic results are valid only for relatively small values of 
δ3 due to their perturbative nature. This is especially true 
in the case of the NSR amplitude. As seen in Figure 9 b, 
the relative power of the NSR peak saturates to a value 
close to 10% of the input peak power. This is what one 
would expect on physical grounds. Hence the study  
reveals that with increasing value of 3OD coefficient, the 
resonant frequency becomes closer to the frequency of 
the input soliton with increasing peak amplitude. A  
relevant question at this point is what would happen if we 
make 3OD negative. For negative 3OD coefficient 
(δ3 < 0), the radiation falls in the lower frequency side. 

Role of 4OD in generation of DW 

Fourth-order dispersion is the next significant term after 
3OD that influences NSR resulting in the generation of 
dual radiation43. The existing theory7 suggests that the
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Figure 9. Frequency shift (a) and relative peak power of the NSR peak (b) plotted as a function δ3 (circles) and esti-
mated from the numerically calculated output spectra. Dot–dashed lines show the analytical prediction based on theory as 
given in eqs (13) and (14). Star symbol shows the results obtained when higher-order nonlinear effects are neglected. 

 
 
positive 4OD always generates a conjugate radiation 
where a blue and red peak are observed in the output 
spectrum. The extensive numerical simulation confirms 
the fact that in the absence of higher order nonlinear ef-
fect and other dispersion terms, the dual peaks generated 
through 4OD are placed symmetrically in the frequency 
domain. At this point it is pertinent to mention that in the 
following sections the high frequency and low frequency 
NSR will frequently be represented as ‘blue radiation’ 
and ‘red radiation’ respectively. The terms ‘blue’ and ‘red’ 
are loosely used only to indicate the high and low fre-
quency radiations with respect to input frequency. Hence 
it is suggested not to confuse the ‘blue’ and ‘red’ terms 
by considering them as actual blue and red radiations. 
 In the SC generation process, HOD and IPRS act as 
perturbations that split the Nth-order soliton into N fun-
damental solitons of different widths and amplitudes. The 
shortest and most energetic soliton has a width Ts that is 
(2N – 1) times smaller than the input pulse width T0 and 
its peak power is larger by a factor of (2N – 1)2/N2 (ref. 
5). Hence the phase-matching expression given in eq. (9) 
can be represented in the following normalized form 
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where N stands for soliton order, x = 2π(νd – νs)T0, and νs 
and νd are the carrier frequencies associated with the soli-
ton and DW, respectively. 
 Expanding eq. (15) up to fourth order (m = 4), one may 
have a polynomial whose real solutions identify the fre-
quencies of the possible NSRs. In the present case we 
consider a condition where 3OD vanishes and only the 
4OD term is present. This situation gives two symmetric 
solutions and in the simulation we get almost two sym-
metric frequency positions around ± 1.75 indicating NSR, 

as shown in Figure 10 b. The phase-matching expression 
also identifies the exact frequency of the radiations. The 
overall asymmetry in the spectrum arises due to the pres-
ence of higher-order nonlinear terms. 
 Figure 10 shows several interesting facts regarding the 
dual radiation generated by 4OD. The generation of  
low-amplitude pedestals in time domain is an important 
feature that is observed during DW generation. This  
effect is shown in Figure 10 a, where in an extended scale 
(middle plot) one can clearly identify the pedestal waves. 
More interestingly, these radiations travel at different 
speeds inside the fibre. Red radiation travels faster whereas 
blue radiation travels slower than the Raman soliton. 
 In order to study the individual effect of 4OD it is  
essential to use the simple model of NLSE which is given 
as follows 
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where τR = TR/T0 and TR is the IPRS coefficient with a 
value of about 3 fs. This model assumes that the pulse 
bandwidth is a small fraction of the Raman shift (about 
13.2 THz for silica fibres) and is thus valid for pulses 
longer than 1 ps. 
 We used a standard split-step Fourier method4 to solve 
eq. (16) numerically. Figure 11 shows the output spectra 
and the corresponding spectrogram at propagation dis-
tance of four dispersion lengths and for soliton order of 2. 
Figure 11 plot (i) shows the idealized situation in which 
only the 4OD term acts as a perturbation (δ4 = 0.001),  
i.e. we set δ3 = 0 and τR = 0. As expected from the
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Figure 10. Effect of 4OD in temporal and frequency domain. a, Generation of two DWs is shown for a second-order soliton (N = 2). The 
low amplitude pedestals are represented in extended scale. b, The corresponding spectrum is shown where the phase matching curve identi-
fies the two radiation peaks generated in the blue and red side of the input frequency. 

 
 

 
 

Figure 11. a, Output spectra after four dispersion lengths for four different combinations of δ3, δ4 and τR. Input pulse excites a second-order soli-
ton (N = 2) that splits into two fundamental solitons soon after the pulse having initial frequency ν0 is launched inside an optical fibre. b, Spectro-
grams of the corresponding spectra.  
 
 
theory7, 4OD creates two spectral peaks located symmet-
rically on the red and blue side of the input carrier fre-
quency. Figure 11 plot (ii) shows how these NSR peaks 
are affected by the presence of 3OD (δ3 = 0.01). As one 
would expect, the presence of 3OD destroys the symmet-
ric nature of the NSR peaks. At the same time, the ampli-
tude of the blue peak increases whereas that of the red 
peak decreases. The frequency changes induced by a  
finite value of the 3OD parameter are expected from the 
phase-matching condition given in eq. (15). It should be 
noted that, being dimensionless quantities, one can get 
the same values of δ3, δ4 and N for many different combi-

nations of the pulse parameters T0 and P0, and fibre  
parameters β2, β3 and β4. Our results indicate that the  
resulting output spectrum will be the same in all cases as 
long as the dimensionless parameters δ3, δ4 and N have 
the same values. We study next how the amplitudes and 
the frequencies of the two NSR peaks are affected by the 
IPRS, a process that transfers part of the pulse energy  
towards longer wavelengths. Figure 11 plot (iii) shows 
the influence of IPRS on the output pulse spectrum in  
the presence of 4OD alone (δ3 = 0). As one may expect, 
the spectrum becomes asymmetric because of a conti-
nuous transfer of energy from high frequencies to low
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Figure 12. Output spectra after one dispersion length for different combinations of δ3 and δ4. The generalized NLSE given in  
eq. (3) is solved numerically for a femtosecond input pulse with T0 = 50 fs. The soliton frequency is given by νs. 

 
 
frequencies3. However, notice that neither the positions 
nor the amplitudes of the NSR peaks are affected much 
by the IPRS process. This feature indicates that DWs are 
generated right after the soliton-fission process and their 
frequencies and amplitudes are not affected by the subse-
quent energy transfer induced by IPRS. In Figure 11 plot 
(iv) we include the effects of 3OD and IPRS simultane-
ously and obtain the output spectrum under a more gen-
eral and realistic situation. The spectrum is changed 
significantly from that seen in Figure 11 plot (iii). In par-
ticular, we find that the blue side of the pulse spectrum 
contains more pulse energy compared to the red side. 
This is related to the fact that 3OD by itself creates an 
NSR peak on the blue side of the spectrum when δ3 > 0. 
Even though a single peak occurs on the blue side in the 
presence of both 3OD and 4OD, its amplitude is en-
hanced as both perturbations contribute to it. 
 Figure 11 indicates that a symmetric NSR spectrum 
similar to that shown in plot (i) is unlikely to be observed 
because of the influence of 3OD and IPRS. Indeed, the 
blue NSR peak was found to be more intense than the red 

one in a recent experiment43. The simple IPRS model 
based on eq. (16) is reasonably accurate when the pico-
second pulse is concerned. A comprehensive study for the 
ultrashort pulse can only be possible with the use of eq. 
(3), which represents the generalized NLSE. 
 Figure 12 demonstrates how the relative values of 3OD 
and 4OD dispersion coefficients significantly affect the 
generation of DWs when the propagation dynamics of an 
ultrashort pulse is governed by eq. (3). The radiation peak 
and frequency positions both dramatically change with 
changing relative values of 3OD and 4OD coefficients. In 
our study we try to capture the evolution of amplitude as 
well as frequency positions of the radiation. 
 Figure 13 shows almost identical features that we have 
observed in the previous case (Figure 9), where the 3OD 
term is responsible for the generation of NSR. The only 
difference we get in this case is the dual radiation. In Fig-
ure 13 a, the solid curves represent the analytical pre-
dictions based on eq. (15), whereas open circles show 
simulated values obtained through the solution of eq. (3). 
The close agreement justifies the use of the phase-matching
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Figure 13. Frequency (a) and relative peak powers (b) of the red and blue NSR peaks plotted as a function of δ4 for three values of δ3. The 
blue, red and black lines are for δ3 = 0, δ3 = 0.01 and δ3 = 0.02 respectively. Open circles show the numerical values and solid lines represent the 
analytical prediction. b, Solid lines and the dot-dashed lines represent the peak powers of the red and blue NSR peaks respectively. 

 
 
matching condition given in eq. (15) and indicates that 
the IPRS process does not affect the NSR frequencies. 
Figure 13 suggests that for a fixed 3OD coefficient, with 
increasing δ4 both the frequencies (red and blue) of the 
NSR become closer to the input frequency and their rela-
tive spacing eventually becomes constant. On the other 
hand, peak amplitude of the radiation increases to reach a 
saturation point with increasing 4OD coefficient. We  
further examine the growth of DW for a third-order soli-
ton (N = 3) and find identical growth that we already 
have for N = 2 (ref. 44). The phase-matching condition as 
proposed in eq. (15) also holds good for N = 3. 
 At this point, it should be mentioned that the appear-
ance of two zero-dispersion wavelengths (ZDW) in the 
fibres is connected with the dominance of the 4OD term 
that leads to the conjugate radiations on both sides of the 
input spectrum. Properly designed PCFs may possess this 
special dispersion characteristic. Soliton spectral tunnel-
ling (SST) is another interesting phenomenon45,46 that  
occurs with this kind of dispersion behaviour when two 
anomalous dispersion regions are separated by an inter-
mediate normal dispersion zone. In Figure 14, the forma-
tion of SST is shown for a typical dispersion profile. 
Physically, a soliton formed in one anomalous dispersion 
region transfers its energy to a linear wave at a resonance 
frequency near the other zero-dispersion point. This sharp 
switching of soliton frequency from one anomalous dis-
persion domain to the other is interpreted by analogy with 
quantum mechanical tunnelling through a potential bar-
rier47. Apart from the SST effect, SC generation in a PCF 
with two ZDWs has been studied extensively48–50, where 
issues related to dual pumping48, soliton-pair genera-
tion49, etc. are considered, but not explicitly the issues  

related to DW generation which we try to explain more 
elaborately. 

Role of HOD in generation of DW 

So far we have studied the influence of 3OD and 4OD on 
the evolution of DWs. In this section, we look at the  
influence of individual and collective HOD terms in gen-
erating DWs based on normalized phase-matching condi-
tion as already mentioned in eq. (15). It is demonstrated 
that all positive even-order dispersion terms (i.e. 4OD, 
6OD, 8OD, etc.) emit conjugate radiations. No such ra-
diation is observed when the numeric sign of the even-
order dispersion coefficients are set as negative. It can 
also be shown that all positive odd-order dispersion terms 
(i.e. 3OD, 5OD, 7OD, etc.) are capable of generating blue 
radiation. The radiation falls on the red side when the 
sign of the odd dispersion coefficient is reversed. A detailed 
analysis based on a numerical solution of the generalized 
NLSE confirms these features associated with DWs (ref. 
51). The range of dispersion values that are used in our 
study are obtained from the design of realistic PCFs,  
indicating tremendous flexibility in dispersion tailoring. 
 The numerical solutions of the generalized NLSE as 
given in eq. (3) exhibit exciting results when different 
HOD terms are included in the simulation. The study 
shows dramatic modifications of NSRs with changing  
individual values of different HOD terms. In Figure 15 a 
we represent the output spectrum of a launched second-
order soliton (N = 2) at a normalized distance ξ = 2 for 
δ3 = 0.01 and δ4 = 0.0015 with the other HOD terms set 
to zero. Two distinct DW peaks on the blue and red sides
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Figure 14. a, A typical example of soliton spectral tunnelling for an arbitrary dispersion profile with soliton order N = 2. b, The corre-
sponding temporal evolution shows that the optical soliton becomes narrower and stronger at the point of tunnelling (roughly around 
ξ = 5). 

 

 
 

Figure 15. The contour and output spectra of a second-order soliton (N = 2) at two dispersions lengths. The phase-
matching curve is plotted simultaneously. The dimensionless dispersion coefficients used in the plots are: (a) δ 3 = 0.01, 
δ 4 = 0.015/10, δ 5 = 0, δ 6 = 0; (b) δ 3 = 0.01, δ 4 = 0.015/10, δ 5 = 0.01/100, δ 6 = 0; (c) δ 3 = 0.01, δ 4 = 0.04/10, δ 5 = 
0.01/100, δ 6 = 0, and (d) δ 3 = 0.01, δ 4 = 0.04/10, δ 5 = 0.015/100, δ 6 = 0. 

 
 
are observed under such conditions. The phase-matching 
condition predicts the exact frequencies as shown in the 
bottom plot for the same set of parameters. The dual 
peaks arise due to the presence of 4OD. 

 In Figure 15 b it can be observed that with the incorpo-
ration of 5OD term, the red peak vanishes and interest-
ingly, it reappears with an extra red peak (Figure 15 c) 
when the 4OD term is increased. Figure 15 d, again
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Figure 16. The contour and output spectra of a second-order soliton (N = 2) at two dispersion lengths. The phase-
matching curve is plotted simultaneously. The dimensionless dispersion coefficients used in the plots are: (a) δ 3 = 0.01, 
δ 4 = 0.015/10, δ 5 = –0.01/100, δ 6 = 0; (b) δ 3 = 0.01, δ 4 = 0, δ 5 = 0.01/100, δ 6 = 0.01/1000; (c) δ 3 = 0.01, δ 4 = –0.015/10, 
δ 5 = 0, δ 6 = 0, and (d) δ 3 = 0.01, δ 4 = 0, δ 5 = 0.01/100, δ 6 = –0.01/1000. 

 
 
shows how the red peaks vanish on further increment of 
the 5OD coefficient. More importantly, in all the cases the 
frequency of the radiation changes significantly and can 
be predicted quite accurately by the proposed normalized 
phase-matching expression given by the blue curve. The 
overall results given in Figure 15 unfold certain impor-
tant facts; for example, the positive odd-order dispersion 
terms always try to generate blue radiation, whereas posi-
tive even-order dispersion terms exhibit dual radiation. 
 The negative HOD coefficient significantly affects the 
radiation frequencies. Figure 16 a shows how the radia-
tion falls in the red side by inversing the sign of the 5OD 
term. In fact, we have verified this effect for other odd-
order dispersion terms by inverting their numeric signs. 
Another striking feature which we observe is that negative 
even HOD terms never create any dual conjugate reso-
nant DW. For negative even HOD terms there are no real 
roots of phase-matching equation. Hence under such a 
situation it is not possible to generate any DW. In Figure 
16 c and d, we show this effect for negative 4OD and 
6OD respectively. The physical parameters are the same 
as those used in Figures 15 a and b and 16 a and b except 

the negative sign of the 4OD and 6OD coefficients. The 
spectrum generated through the direct simulation of NLSE 
also predicts no peak generation under such condition. 

Role of dispersion profile in controlling DWs 

In the preceding section we concluded that every posi-
tive, even-order dispersion generates dual radiation, 
whereas every odd-order dispersion generates single  
radiation in the form of DW, and radiation frequency falls 
on the red or blue side of the operating frequency based 
on the negative and positive sign of the odd-order disper-
sion coefficients respectively. No radiation is expected to 
be generated for negative, even-order dispersion coeffi-
cients. Interpretation of the overall dispersion property 
was not considered in the study. We mainly concentrated 
on the individual value of dispersion coefficients, but the 
overall dispersion profile involving those individual  
dispersion coefficients was not taken into account. 
 In this section we show how the dispersion profile 
practically controls the generation of DWs. Now along
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Figure 17. DW generation for different group velocity dispersion (GVD) profiles. a, No NSR occurs as GVD curve does 
not have any zero dispersion point (ZDP). b, Single radiation as GVD curve cuts the zero line once. c, Dual radiation as 
GVD curve has two ZDPs. d, Three radiations correspond to three ZDPs in the dispersion profile. 

 

 
with the phase-matching curve we simultaneously plot 
the overall normalized dispersion (δ2(ν)) profile to get an 
idea about the chosen dispersion coefficients. In fact  
expanding GVD as a Taylor series, one can readily pre-
dict the overall dispersion profile for the given dispersion 
coefficients at operating wavelength. In normalized form 
the 2OD can be expressed through the Taylor series as 
follows 
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where x = 2π(ν – νs)T0, which has been already defined. 
The study reveals that the number of DWs generated in a 
spectrum is equal to the number of zero crossing points of 
δ2(x) that is, the number of zero dispersion wavelengths 
present in the fibre. For example, if we get a dual radia-
tion then the corresponding fibre must have two zero  
dispersion wavelengths. Figure 17 clearly indicates how 
zero dispersion points (ZDPs) present in a specific  
dispersion profile become an excellent predictors of the 

number of DW peaks present in the output spectra. We 
examine numerically dispersion profiles with as many as 
six ZDPs and find that this criterion always holds. 
 Another interesting feature we find is the generation of 
dual radiation on a single side. So far in all cases we  
observed that for dual radiation one can simultaneously 
have one blue and one red peak. But it is possible to gen-
erate two blue or two red peaks simultaneously by special 
dispersion profile. The observation suggests that for a  
fibre if both the ZDPs fall on the higher frequency side 
compared to the operating frequency, then one may  
expect two blue radiations. That means both the radia-
tions fall in the higher frequency side compared to νs, the 
operating frequency. This behaviour is shown in Figure 
18 a. Conversely, if both the 2DPs fall on the lower  
frequency side of the soliton frequency νs, then one 
would expect two red peaks. Figure 18 b shows this con-
dition. With this result it may be concluded that, if the 
zero dispersion frequency is greater than operating fre-
quency, then always blue radiation will be generated, 
whereas one may expect red radiation if the zero disper-
sion frequency is less than the input soliton frequency. 
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Figure 18. Dual radiation at the blue side (a) and red side (b). In both cases, the operating frequency falls in the anomalous dispersion 
domain. 

 
 
DW generation under normal GVD pumping 

In all the preceding cases, we have considered the operat-
ing wavelength in anomalous dispersion domain in order 
to study the NSR. We assume this condition because the 
soliton can form only in anomalous dispersion domain, 
whereas in a previous study7 it has been established that 
soliton fission has an important role in the generation of 
DW. Hence it is fairly justified to consider input pulse in 
anomalous dispersion domain for the study of DW  
because the optical soliton can only be constructed in 
such a condition. However, at this point the question 
must be asked whether there is any possibility to generate 
DW under normal GVD pumping. Interestingly, our  
numerical study reveals that DW maybe generated even 
under normal GVD pumping at relatively longer distance. 
However, we notice that the phase-matching condition 
does not accurately determine the frequency of the radia-
tion peak because of the extinction of soliton fission pheno-
menon under normal GVD pumping. 
 It has been already mentioned that SST is an important 
mechanism that can generate a DW-type radiation when a 
soliton tunnels from one anomalous dispersion region to 
another, separated by an intermediate region of normal 
dispersion45–47. A localized inhomogeneity of the GVD is 
responsible for SST to occur. In our case, the situation 
was different because we had launched a pulse in the 
normal dispersion regime. However, the pulse experi-
ences considerable spectral broadening, primarily through 
self-phase modulation, which broadens the pulse spec-
trum symmetrically on both sides of the input spectrum. 
At some point, a part of the pulse energy enters the 
anomalous dispersion region where a soliton can form. 
The question one may ask is whether the formation of 
this soliton is accompanied with the emission of some  
radiation. Our numerical results indicate that this is the 
case. In Figure 19 a we plot the output spectrum of a fem-

tosecond pulse launched in the normal dispersion  
regime of a fibre with δ3 = 0.05, δ4 = –0.01 and δ5 = 0.0005 
(all other higher-order coefficients set to zero). The spec-
trum indicates a distinct peak around 1.65 (in normalized 
unit) that is generated roughly at the same distance into 
the fibre where a soliton forms with the spectrum on the 
red side. This behaviour is clearly seen in the middle part 
of Figure 19 a. The abrupt change in the sign of the dis-
persion slope (δ3 shown by the green curve) disturbs the 
monotonous broadening of the spectrum and creates a 
distinct spectral peak on the blue side. This behaviour is 
similar to the soliton tunnelling effect, but we cannot call 
it soliton tunnelling because most of the pulse energy lies 
in the normal dispersion region. It should be noted that 
the phase-matching condition (shown by a blue curve) does 
not accurately predict the frequency of this radiation. 
 After DW has been generated, a part of the pulse spec-
trum lies in the anomalous region and can form a soliton. 
The temporal evolution in Figure 19 b shows the soliton 
formation clearly, where a part of the pulse energy is de-
layed by a large amount (as much as by 120 T0). This de-
lay can be understood by noting that the soliton spectrum 
is shifted towards the red side and that longer wave-
lengths travel slower in the anomalous dispersion region. 
 We have found a second mechanism of DW genera-
tion. An extensive numerical study covering a wide range 
of operating conditions, reveals that DWs can still be 
generated for a few specific dispersion profiles chosen, 
such that a narrow normal dispersion region is sur-
rounded on both sides by anomalous regions. In this case, 
SPM-induced spectral broadening forces most of the 
pulse energy to travel in the anomalous regions as a soli-
ton after some distance along the fibre. After that, a DW 
can be generated through soliton fission. This situation is 
illustrated in Figure 19 c by changing the dispersion para-
meters (δ3 = 0.01, δ4 = –0.01 and δ5 = 0.0005) from those 
used in Figure 19 a such that the normal GVD region is
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Figure 19. Spectral tunnelling effect when the input pulse is launched in the normal GVD region of the fibre with N = 3. a, Output spec-
trum (top), spectral evolution (middle) and GVD profile (red), dispersion slope (green) and phase-matching expression (blue) of the fibre 
(bottom) shown for the parameters δ3 = 0.05, δ4 = –0.01 and δ5 = 0.0005. b, Output pulse shapes and temporal evolution inside the fibre 
depicted when the fibre is pumped at normal GVD domain. c, d, Plots corresponding to different parameters (δ3 = 0.01, δ4 = –0.01 and 
δ5 = 0.0005) for which the DW peak forms on the blue side of the input spectrum. In both the cases third-order soliton is used as input. 

 
 
surrounded on both sides by anomalous domains (red 
curve). We now find two distinct spectral peaks at fre-
quencies 1.8 and 2.25 (in normalized units). The peak at 
1.8 is due to the tunnelling phenomenon discussed earlier. 
The new peak at 2.25 is due to a DW emitted through 
soliton fission and satisfies the phase-matching condition 
in eq. (15). The time domain evolution in Figure 19 d 
shows clearly how a DW is emitted near ξ = 10 with a 
large blue shift. Because its frequency falls in the normal 
dispersion region where blue-shifted components travel 
slower than the red-shifted ones, this DW is delayed and 
appears at τ ≈ 140 at the output end of the fibre. 
 The blue-shifted DW peak vanishes when the disper-
sion parameters of the fibre are changed slightly to δ3 = 
0.01, δ4 = –0.01 and δ5 = 0.000325. This case is shown  
in Figure 20 a. For this set of parameters, even though 
most of the pulse energy eventually enters the anomalous 

dispersion region, there is no solution of the phase-
matching condition that can create a DW (see the blue 
curve). The time domain evolution shown in Figure 20 b 
also supports this argument by exhibiting no trace of a 
DW radiation. The peak due to the tunnelling effect is 
still observed, but its position is now shifted around 1.4 
(in normalized units). In Figure 20 c we manipulate the 
dispersion curve (red line) in such a manner that it exhib-
its three ZDPs with a narrow anomalous dispersion zone 
falling in the lower frequency side surrounded by two 
normal dispersion zones. For this configuration, we cal-
culate δ3 (green line) as well as the phase-matching con-
dition (blue line). The phase-matching condition exhibits 
a DW solution around the normalized frequency of –2.25. 
The spectral evolution indeed shows such a red-shifted 
DW peak. The time domain evolution also shows a DW 
peak of low amplitude around τ = –100, i.e. DW travels
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Figure 20. Different dispersion values used in order to understand the spectral evolution under normal GVD pumping with soliton order 
N = 3. a, The parameters used are: δ3 = 0.01, δ4 = –0.01 and δ5 = 0.000325. No phase-matching solution can be obtained for these para-
meters and hence generation of DW ceases to exist. b, Time domain evolution does not exhibit any radiation. c, Formation of DW in red 
side shown for the following normalized dispersion coefficients: δ3 = –0.01, δ4 = –0.01 and δ5 = –0.0005. d, Time domain evolution exhi-
bits radiation as a pedestal around τ ≈ –100. 

 
faster than other parts of the pulse. This is understood by 
noting that GVD is normal at the DW frequency where 
red components travel faster than the blue components. 
We must emphasize that the traditional phase-matching 
expression generally fails when the optical pulse propa-
gates entirely in the normal GVD domain. However, if 
most of the pulse energy enters the anomalous GVD  
regime, it can be used to predict the formation of DWs. 
The tunnelling effect, on the other hand, takes place in a 
concurrent manner that exhibits additional fringes. It can 
be shown that no such radiation is possible if the GVD 
profile grows monotonically without any change in sign. 

Experiment of DW generation 

In the previous sections we have studied the generation of 
NSR theoretically based on the solution of generalized 

NLSE and the corresponding phase-matching condition. 
We chose arbitrarily the numerical values of HOD terms 
to produce the specific dispersion profile and investigated 
DW generation for that profile using the solution of the 
generalized NLSE. We even assign zero value of differ-
ent HOD terms during the numerical calculation to visu-
alize the role of individual dispersion terms on DW 
generation. However, in practice it is difficult to excite a 
definite dispersion order by suppressing other. A rela-
tively complicated structure may be required to achieve 
the desired dispersion profile where certain HOD terms 
predominate. Generally, all HOD terms contribute in the 
extended Taylor series expansion, which typically  
describes the overall dispersion profile. Nevertheless, the 
profile can be tailored significantly for PCF waveguides. 
In Figure 21, we represent the experimental output spec-
tra of SC for highly nonlinear PCFs fabricated at CGCRI. 
The effective refractive index over different wavelengths 
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Figure 21. Experimental spectra showing DW around 800 nm. The phase-matching curve (black solid line) based on eq. (15) exactly predicts the 
DW in both cases. (Inset) Cross-sections of the PCF used. The input energies for (a) and (b) are 4.5 and 110 nJ respectively, and in both the cases 
30 cm of PCF is used. For both cases pump wavelength falls in the anomalous dispersion domain. 
 
 
and nonlinearity of the two designed PCFs were calcu-
lated using COMSOL Multiphysics, a commercial soft-
ware based on FEM. Further, for both cases, we have 
calculated the corresponding phase-matching condition 
taking up to eighth order of dispersion coefficients and 
predicted the DW around 800 nm. As shown in Figure 21, 
the experimental spectra also produce the dispersive  
radiation around that wavelength. The zero dispersion 
wavelengths for the two PCFs have been calculated as 
987 nm (Figure 21 a) and 1040 nm (Figure 21 b) respec-
tively, and the pump wavelength used is 1060 nm. It 
should be noticed that for both the cases, the NSR falls on 
the same side that of the ZDP as theoretically predicted. In 
practice, DWs are frequently identified as a blue radiation 
because of the fact that for the general dispersion profile 
ZDP falls in the lower wavelength side with respect to 
operating wavelength, which is in the anomalous GVD 
regime. However, it is realistic to design the desired dis-
persion profile in PCFs to achieve specific DW peaks in 
the output spectra. The present theoretical study may be a 
useful guideline to enhance and control the SC bandwidth 
by modifying design parameters of PCF.  

Conclusion 

The SC generation is a complex process where some 
typical nonlinear phenomena are involved, which should 
be taken into account for further studies. Several interest-
ing processes are involved in the generation of SC and 
the origin of DW is one of them. The extreme blue com-
ponent of the wide SC band is mainly generated through 
DW or NSR. A detailed study reveals that HOD produces 
a perturbation in the stable propagation of higher order 
soliton. As a result, some energy is transferred from the 

soliton to narrow band resonance. The frequency of such 
a radiation is immediately predicted through the phase-
matching condition when an ultrashort pulse is pumped 
under anomalous GVD regime. The specific role of dif-
ferent orders of dispersion in generating DWs was studied 
extensively and it was found that 3OD is the primary 
term in creating DWs. The growth and frequency of  
radiation critically depend on 3OD. It has been shown 
that with increasing 3OD parameter the peak intensity of 
the radiation gradually increases and finally saturates. On 
the other hand, 4OD is responsible for dual radiation 
symmetrically placed in the frequency domain. However, 
the presence of 3OD and higher-order nonlinear effects 
destroys this symmetry. The growth of the radiation 
peaks follows is identical to that observed in the case of 
3OD. A more important inference is drawn when we in-
clude other HOD terms to generalize our study. We find 
that all odd, HOD terms (i.e. 3OD, 5OD, etc.) generate a 
single DW peak on the blue or the red side of the carrier 
frequency, depending on whether the odd-order disper-
sion coefficient has a positive or negative sign. On the 
other hand, the positive, even, HOD terms (i.e. 4OD, 
6OD, etc.), create conjugate DW peaks, one on the blue 
and the other on the red side. Interestingly, for negative 
values of the even HOD coefficients, no real solution of 
the phase-matching equation is possible, and hence no 
DW radiation is emitted under such conditions. A further 
study reveals that there is a close correlation among the 
overall dispersion profiles and NSR. Detailed simulations 
indicate that the number of ZDPs present in a specific 
dispersion profile is an excellent predictor of the number 
of dispersive peaks to be created in the output pulse spec-
trum. A fibre with a single ZDP has only one DW peak, 
and a fibre with two ZDPs always exhibits dual DW 
peaks. Moreover, no DW can be expected in a fibre that 
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has no zero-dispersion crossings over the entire range of 
wavelengths. We have examined numerically dispersion 
profiles with as many as six ZDPs and have found that 
this criterion always holds. Another interesting feature we 
noticed is that, if the frequency of ZDP is larger (smaller) 
than the operating frequency, DWs fall on the higher 
(lower) frequency side of the operating frequency. There-
fore, there is a possibility of generating two DW peaks on 
the same side (blue or red side) of the output pulse spec-
trum by tailoring the dispersion curve suitably. Finally, it 
is demonstrated that DWs can be generated under normal 
GVD pumping. Based on the results and discussion pre-
sented in this article we are now in a position to provide 
guidelines that would improve the experimental designs 
which are specifically targeted to enhance DW radiations 
at extreme edges of the SC spectra. 
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