
Nonlinear propagation in silicon-based
plasmonic waveguides from the

standpoint of applications

Ivan D. Rukhlenko,1,∗ Malin Premaratne,1 and Govind P. Agrawal2

1Advanced Computing and Simulation Laboratory (AχL), Department of Electrical and
Computer Systems Engineering, Monash University, Clayton, VIC 3800, Australia

2Institute of Optics, University of Rochester, Rochester, NY 14627, USA
∗ivan.rukhlenko@monash.edu

Abstract: Silicon-based plasmonic waveguides can be used to simul-
taneously transmit electrical signals and guide optical energy with deep
subwavelength localization, thus providing us with a well needed connect-
ing link between contemporary nanoelectronics and silicon photonics. In
this paper, we examine the possibility of employing the large third-order
nonlinearity of silicon to create active and passive photonic devices with
silicon-based plasmonic waveguides. We unambiguously demonstrate that
the relatively weak dependance of the Kerr effect, two-photon absorption
(TPA), and stimulated Raman scattering on optical intensity, prevents them
from being useful in μm-long plasmonic waveguides. On the other hand,
the TPA-initiated free-carrier effects of absorption and dispersion are much
more vigorous, and have strong potential for a variety of practical applica-
tions. Our work aims to guide research efforts towards the most promising
nonlinear optical phenomena in the thriving new field of silicon-based
plasmonics.
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1. Introduction

Silicon is beginning to be considered for on-chip integration of recently demonstrated pho-
tonic devices [1–9] with mainstream electronic components [10–13]. Such an integration will
eliminate the basic drawbacks of electronic circuitry and become a significant milestone in the
development of power-efficient, high-speed optical supercomputers. One of the major obsta-
cles we face when trying to bring photonics functionalities to the scale of nanoelectronics is the
diffraction of light. Specifically, the diffraction phenomenon places a fundamental limit on the
miniaturization of photonic devices fabricated with silicon-on-insulator (SOI) technology. Even
the smallest SOI waveguides have dimensions of ∼ 300 nm [1, 6, 7], which are about ten times
what is required for successful integration of electronics and photonics for novel breakthrough
applications.

Assistance in the controlling of light on the nanoscale comes from the paradigm of plasmon-
ics [14–18]. In certain situations, light can interact with collective oscillation of electron-hole
plasma and form coupled waves known as surface plasmon polaritons (SPPs) [19, 20]. The
metal–semiconductor nanowires that guide SPPs are not restricted by the diffraction limit of
light and are suitable for carrying information at bit rates comparable to that of high-bandwidth
fiber-optic channels. A marriage of silicon photonics with plasmonics will merge the advan-
tages of optical data transfer with the strongest points of modern nanotechnology, facilitating
the development of all-optical chips for future supercomputers.

Before such supercomputers can be realized on a silicon platform, a number of technical
issues need to be solved and fundamental questions answered. Many of these issues have re-
cently been investigated, and continue to receive much attention [11–13]. Among them is the
problem of strong dissipation of SPPs which normally decay within a distance of a few tens
of micrometers [21–23]. Another challenge is to create a CMOS-compatible source of SPPs
that would allow their generation through electrical pumping [24–26]. Of primary importance
are also the questions of the coupling efficiency of closely spaced nanowires, and their inter-
action with the environment [27]. In this paper, we address a further important question that
naturally arises in connection with the adoption of silicon-based functionalities by plasmonic
nanowires, which is whether or not the nonlinear effects in silicon are strong enough to control
the propagation of SPPs along silicon–metal nanowaveguides. This is a nontrivial issue, as deep
subwavelength localization of an optical field makes the nonlinear effects more pronounced, but
the short lifetime of SPPs severely limits the interaction length.
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We start our analysis by deriving a general integro-differential equation for the slowly vary-
ing envelope of the SPP mode in a slot metal–silicon–metal (MSM) plasmonic waveguide. The
planar geometry of the waveguide was selected intentionally to allow for an analytic approach.
General considerations indicate that the conclusions obtained with our model will hold true for
other geometries, specifically for nanowires. Our analysis takes fully into account the vectorial
nature of the SPP mode and incorporates all linear and nonlinear effects that may possibly affect
its propagation. We examine the impact of different nonlinear effects on the intensity and phase
of SPPs, using two approximate analytical solutions of our integro-differential equation in the
quasi-continuous-wave (quasi-CW) regime. The results of our analysis are unequivocal: third-
order nonlinear effects themselves are too weak to distinctly affect SPPs, but the free-carrier
effects initiated by two-photon absorption (TPA) can be used to manipulate light squeezed
tightly into the SPP mode.

2. Nonlinear propagation equation

It is convenient to describe the propagation of SPPs along MSM plasmonic waveguides within
the frame of the slowly varying envelope approximation (SVEA). As applied to MSM waveg-
uides, the idea of SVEA is to separate the rapid spatial oscillations and steep spatial decay of the
SPP field—described by the complex-valued propagation constant β (ω)—from its much more
slow variation due to the nonlinear effects in silicon. The electric and magnetic field vectors
E(x,z, t) and H(x,z, t) of the SPP mode are thus represented in the form [28–30]

E(x,z, t)≈
√

2
N

A(z, t)E0(x,ω)exp[i(β z−ωt)]+ c.c., (1a)

H(x,z, t)≈
√

2
N

A(z, t)H0(x,ω)exp[i(β z−ωt)]+ c.c., (1b)

where A(z, t) is the temporal envelope, E0(x,ω) and H0(x,ω) describe the lateral profile of
the SPP mode (unperturbed by the nonlinear effects) at the carrier frequency ω , and N is a
normalization constant. From here onwards, we consider a slot MSM waveguide that is infinite
in the y direction and assume that SPPs propagate along its z axis (see Fig. 1). Nevertheless, as
will be evident from the following discussion, the conclusions we reach are also valid for MSM
nanowires.

It can be readily verified using Eq. (1) that, if we set

N =
1
2

+∞∫
−∞

ez [E0(x,ω)×H∗
0(x,ω)]dx+ c.c., (2)

where ez is the unit vector in the z direction and an asterisk denotes complex conjugation, then
the SPP-mode power per unit width of the plasmonic waveguide (in the y direction) has the
form

P(z, t) = |A(z, t)|2 exp(−z/LSPP),

where LSPP = (2Imβ )−1 is the propagation length of SPPs. Even though, formally, there is
ambiguity in the corresponding intensity, I(z, t) = P(z, t)/D , due to an extension of the mode
field to infinity in the x direction, the tight confinement of SPPs within the silicon layer makes
the effective mode thickness D approximately equal to the layer thickness d. Mathematically,
D is given by

D =
1
Q

(∫ +∞

−∞
|E0|2 dx

)2

, Q =

+∞∫
−∞

|E0|4 dx, (3)
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Fig. 1. Geometry of a metal–silicon–metal plasmonic waveguide and electromagnetic field
components of the TM SPP mode. Two metallic regions of permittivity ε2 are separated by
a silicon layer of thickness d and permittivity ε1.

a form naturally arising during derivation of the propagation equation. With this definition, we
can apply the same propagation equation for both the MSM and SOI waveguides.

The slot MSM waveguide in Fig. 1 supports only antisymmetric, transverse-magnetic (TM)
SPP modes of the form E0 = {Ex,0,Ez} and H0 = {0,Hy,0}. The spatial profile of these modes
is given by [31–33]

Ex(x,ω) =

{
cos(k1x), |x|< d/2,
cos(k1d/2)(ε1/ε2)exp[ik2(|x|−d/2)], |x|> d/2,

(4a)

Ez(x,ω) =
k1

iβ
×
{

sin(k1x), |x| ≤ d/2,
sin(k1d/2)sign(x)exp[ik2(|x|−d/2)], |x| ≥ d/2,

(4b)

and Hy(x,ω) = Yj(ω)Ex(x,ω). Here, Yj(ω) = ε0ε jω/β (ω), k j = (ε jk2 −β 2)1/2 for ( j = 1,2),
k = ω/c, and c is the speed of light in vacuum.

The propagation constant β is found from the SPPs’ dispersion relation [16]

tanh

[
ik1(ω)d

2

]
=

ε1(ω)

ε2(ω)

k2(ω)

k1(ω)
, (5)

where we assume ε1(ω) to be real and ε2(ω) to be complex. In the case of ultrathin MSM
waveguides with d � |k1|−1, Eq. (5) leads to the following explicit form of β :

β (ω,d)≈ 1
d

{
ε2(kd)2 +

[
ε1/ε2 −

√
(ε1/ε2)2 +(ε1 − ε2)(kd)2

]2
}1/2

.

As an example, the relative error in |β (ω,d)| calculated using this formula at the wavelength
of 1.55 μm is below 1.5% for a silver–silicon–silver (Ag/Si/Ag) waveguide with d ≤ 50 nm.
A simple analysis of the function β (ω,d) in the limit d → 0 reveals that, in contrast to SOI
waveguides where β tends to

√
ε2 k, in MSM waveguides it diverges like β ∼−(2/d)(ε1/ε2).

As a consequence of this limiting behavior, LSPP ∼ d|ε2|2/(4ε1Imε2), i.e., the propagation
length of SPPs tends to zero in ultrathin waveguides. This feature clearly forces a compromise
between strong localization of the field energy and its guiding over reasonable distances.

Our derivation of the propagation equation for A(z, t) closely follows that detailed in Ref. [28]
and is not reproduced here. The major difference of the plasmonic problem from optical prop-
agation through SOI waveguides is associated with the decay of SPPs. This decay is taken into
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account by employing the equality (see Appendix A)

i(β +β ∗)|Ex|2 +Ex
dE∗

z

dx
−E∗

x
dEz

dx
= iωμ0(E0 ×H∗

0 +E∗
0 ×H0)ez, (6)

instead of Eq. (A6) in Ref. [28]. The resulting equations for the slowly varying envelope of the
fundamental SPP mode and the density N of TPA-generated free carriers are found to be:

∂A
∂ z

+
∞

∑
n=1

in−1 βn

n!
∂ nA
∂ tn = iγ

1+ ir
1+ iϖ

|A|2A− B

1+ iϖ

(σα
2

+ ikσn

)
NA, (7a)

∂N
∂ t

=− N
τeff

+
β̂TPA

2h̄ωDd
|A|4, (7b)

where βn = dnβ/dωn is the nth order dispersion parameter.
Other parameters appearing in the preceding two equations are defined as

γ =
kn2η
D

(
n0kΓ
Reβ

)2

, r =
βTPA

2kn2
, B =

ε0n0c
N

+d/2∫

−d/2

|E0|2 dx, Γ =
Reβ

μ0ωN

+∞∫
−∞

|E0|2 dx,

η =
1
Q ∑

κλ μν

+d/2∫

−d/2

Eκλ μνE∗
κEλ E∗

μEν dx, β̂TPA = βTPA
η

1+ϖ2

(
n0kΓ
Reβ

)2

.

Here, τeff is the effective free-carrier lifetime, n2 = 6× 10−5 cm2/GW is the nonlinear Kerr
parameter, n0 = 3.484, βTPA = 0.5 cm/GW, σα = 1.45×10−21 m2, and σn = 5.3×10−27 m3

[34–36]. The parameters Γ ≥ 1 and 0 < η < 1 are, respectively, the longitudinal enhancement
factor (LEF) and the nonlinear overlap factor (NOF) introduced in Ref. [28]. They show how the
nonlinear effects in silicon are enhanced due to the presence of the longitudinal electric field and
weakened because SPPs reside partially inside the metal. Using Eq. (6) it is easy to show that,
in order for Γ to be close to unity, both the longitudinal electric field and its transverse variation
should be small. The fourth-rank tensor Eκλ μν appearing in η characterizes the anisotropy of
the Kerr effect and TPA, which depends on the orientation of the principal axes in silicon [37].
The factor B > 0 is responsible for enhancement of the free-carrier effects due to confinement
of the electric field within the semiconductor layer.

Notice that we do not include in Eq. (7a) the term accounting for linear absorption, since
this type of loss is automatically included by the imaginary part of the propagation constant.
Except for this term, the fundamental difference between Eqs. (7a) and (7b) and the analogous
equations for SOI waveguides [34, 38, 39] lies in the presence of the new parameter

ϖ =
Imβ

μ0ωN

+∞∫
−∞

|Ex|2 dx,

which owes its existence to the decay of SPPs along the MSM waveguide. We refer to this
parameter as the plasmonic attenuation factor (PAF). The PAF is seen not only to reduce the
efficiency of different nonlinear effects, but also to affect their phase. As a result of this influ-
ence, for instance, FCA can change the refractive index of the silicon layer, while FCD can
affect the intensity of the SPP mode. It should be also noted that various dispersion parameters
in Eq. (7a) are complex-valued.

Using the spatial mode profiles given in Eq. (4), we analytically calculate the effective mode
thickness D and other factors (η , Γ, and B) that affect the SPP propagation (see Appendix B
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Fig. 2. (a) Parameters Γ, η , B, and D for the fundamental mode as functions of silicon layer
thickness d in MSM (Ag/Si/Ag) and SOI waveguides; circles correspond to D = d. (b)
Plasmonic attenuation factor ϖ and SPP propagation length LSPP for the same Ag/Si/Ag
waveguide.

for details). Figure 2(a) shows how these parameters vary with the thickness of the MSM
waveguide (Ag/Si/Ag) at the telecommunication wavelength λ = 1.55 μm. We assume that
the waveguide is fabricated as shown in Fig. 1 and use the dielectric function of silver from
Ref. [40]. For comparison, dashed curves show the same parameters calculated for a single-
mode SOI waveguide. It is seen that the factors BMSM and ΓMSM diverge as d approaches
zero, while ηMSM weakly depends on d and tends to unity in this limit; this behavior reflects
the increasing confinement of SPPs within the silicon layer. On the other hand, the inability of
SOI waveguides to tightly confine optical mode when d is below 200 nm, results in BSOI → 0,
ηSOI → 0 and ΓSOI → 1. Hence, as was expected, the nonlinear effects in an MSM plasmonic
waveguide become much more pronounced compared with a SOI waveguide as the waveg-
uides’ cross sections decrease. Because the same parameters affect different third-order effects,
this conclusion covers all of them, including stimulated Raman scattering (SRS), even though
it is neglected in our model.

In Fig. 2(b), we plot the PAF for the same Ag/Si/Ag plasmonic waveguide as a function of
its thickness. This factor grows monotonously with decreasing d and becomes proportional to
Γ when d tends to zero. For λ = 1.55 μm, PAF exceed 0.1 and starts affecting the phase of
SPPs in waveguides thinner than 20 nm. Meanwhile, the intensity of SPPs is affected in thicker
waveguides with ϖ � 0.01, as will be seen later.

3. Efficiency of nonlinear effects in MSM plasmonic waveguides

In this section we analyze the evolution of a SPP by solving Eq. (7), and estimate quantita-
tively the magnitude of nonlinear changes in its intensity and phase expected for realistic MSM
waveguides.

3.1. Simplified propagation equation

Equation (7) holds for broad range of experimental conditions and can be used to simulate
propagation of the TM SPPs over arbitrary distances along an MSM waveguide. In practice,
however, it is inefficient to use waveguides that are vastly longer than the propagation length of
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Fig. 3. (a) Group velocity vg = (Reβ1)
−1 and dispersion parameter Re(β2) as a function

of the silicon-layer thickness in an MSM plasmonic waveguide; dashed curve shows the
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as functions of waveguide thickness d for τeff = 5 ns, 50 ps, and 5 ps. Other parameters are
the same as in Fig. 2.

SPPs. Since this length is typically less than 10 μm [see Fig. 2(b)], dispersive effects of second
and higher orders have little impact on the SPP [27]. To illustrate this point, we plot in Fig. 3(a)
the real part of group-velocity dispersion parameter β2, which determines the dispersion length
LD of optical pulses. As can be found using these data, the dispersion length of a 100-fs pulse in
a 25-nm-long MSM waveguide exceeds 1 mm, i.e., it comprises of more than 1000 propagation
lengths. A further examination shows that this ratio between LD and LSPP holds approximately
for shorter waveguides as well.

By neglecting the dispersion terms in Eq. (7), we can write it in the following compact
integro-differential form [38]:

1
A

∂A
∂ z

=−
(

βeff

2
− iγeff

)
|A|2 −

(
ζr

2
+ iζi

)∫ ∞

0
|A(z,τ − τeffq)|4 exp(−q)dq, (8)

where the four parameters defined as

βeff = 2γ
r−ϖ
1+ϖ2 , γeff = γ

1+ϖr
1+ϖ2 , ζr =

Bβ̂TPAτeff

2h̄ωDd
σα +2kσnϖ

1+ϖ2 , ζi =
2kσn −σα ϖ
σα +2kσnϖ

ζr

2
,

are responsible for the TPA, Kerr effect, FCA, and FCD, respectively. The retarded time, τ =
t −β1z in Eq. (8) is not purely real due to the small imaginary part of β1; this part is, however,
insignificant for even 100-fs pulses and can be safely neglected. Interestingly, βeff and ζi can
change their sign and become negative in thin MSM waveguides. If this were to take place, TPA
will result in amplification of SPPs, and FCD will increase the refractive index of silicon (just
as the Kerr effect does). Unfortunately, as will become evident from the following discussion,
these unusual properties are unlikely to be utilized in practice.

Similar to the situation in SOI waveguides, the parameters ζr and ζi are proportional to
the effective free-carrier lifetime. By varying τeff, we can shift the relative importance of the
third-order nonlinear effects and free-carrier effects. The effective free-carrier lifetime can be
substantially reduced by removing carriers from the optical mode region through the application

#136997 - $15.00 USD Received 21 Oct 2010; revised 13 Dec 2010; accepted 17 Dec 2010; published 22 Dec 2010
(C) 2011 OSA 3 January 2011 / Vol. 19,  No. 1 / OPTICS EXPRESS  213



of a static electric field. If V is the external voltage applied to the metallic parts of the MSM
waveguide, then τeff is given by the relation

τ−1
eff = τ−1

c +2μV/d2,

where μ ≈ 1000 cm2/(V · s) [39] is the carrier mobility and τc is the free-carrier lifetime in the
absence of rejection. For example, by applying a voltage of 10 mV to a 100-nm-thick MSM
waveguide, we reduce τeff from ns-range to 5 ps, while staying well below the breakdown field
of ≈ 3×105 V/cm for silicon.

3.2. Propagation of SPPs in the quasi-CW regime

Consider an optical pulse of width T0 
 τeff (quasi-CW pulse), so that we may set A(z,τ −
τeffq) ≈ A(z,τ) in Eq. (8). The resulting equation has a well known analytical solution [41]
of the form A(z,τ) =

√
I(z,τ)exp[iϕ(z,τ)]. In order to separately estimate the efficiency of

different nonlinear effects in MSM plasmonic waveguides, we use explicit solutions of this
equation in two specific cases; (i) when TPA and the Kerr effect dominate over FCA and FCD,
the solution is given by

IK(z,τ) =
I0(τ)

1+βeffI0(τ)Dz
, ϕK(z,τ) =

γeff

βeff
ln |1+βeffI0(τ)Dz| ; (9)

(ii) in the opposite limit, where FCA and FCD dominate over TPA and the Kerr effect, the
solution has the form

IFC(z,τ) =
I0(τ)√

1+2ζrI2
0 (τ)D2z

, ϕFC(z,τ) =− ζi

2ζr
ln
∣∣1+2ζrI

2
0 (τ)D2z

∣∣ . (10)

Here, I0(τ) is the temporal profile of the input pulse used to excite the SPP inside the MSM
waveguide. It is easy to see that solution (9) is applicable when

max [IK(z,τ)]� min

( |βeff|
ζrD

,
γeff

|ζi|D
)
,

while the solution (10) is valid as long as

IFC(z,τ)
 max

( |βeff|
ζrD

,
γeff

|ζi|D
)
.

The two ratios involved in the above inequalities are plotted in Fig. 3(b) for three values of
the dc voltage. It is seen that, if τeff = 5 ns (V = 0), free-carrier effects are by far much stronger
than the Kerr effect and TPA for all intensities of practical interest. As τeff is reduced to 50 ps
(V = 1 mV), TPA and the Kerr effect start to dominate for IK ∼ 1 GW/cm2 in MSM waveguides
thinner than 15 nm. To make FCA and FCD negligible as compared to the third-order effects in
thicker waveguides, τeff = 5 ps (V = 10 mV) is required.

Of primary importance for practical applications is the extent of changes induced by dif-
ferent nonlinear effects in the SPP mode. As we mentioned earlier, the natural characteristic
length that should be used to estimate these changes is the propagation length of SPPs. Figure 4
shows the intensity and phase of the quasi-CW SPP, once it covers a distance of LSPP through
MSM waveguides of different thicknesses. It was assumed that τeff = 5 ns, and the free-carrier
effects dominate. One can see that the FCD can produce nonlinear phase shifts ∼ π within a
length of only 1–2 μm for a 30-nm-thick MSM waveguide. At the same time, FCA may be
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rather moderate, if the pulse intensity is not very high. These results imply that the free-carrier
effects can be successfully employed to realize all FCA- and FCD-based device functionalities
on a nanoscale that have been previously demonstrated on a centimeter scale with the SOI tech-
nology. These applications include all-optical switching [41–45], wavelength conversion [46],
optical modulation [47, 48], and pulse compression [49].

Similar estimations for the Kerr effect and TPA performed with Eq. (9) show that
ϕK(LSPP)/π � 0.005, and the relative decrease in intensity is below 0.5%, irrespective of the
specific values of I0 < 10 GW/cm2 and d < 230 nm. Thus, for making use of the third-order
nonlinear effects in silicon for the SPPs, the prediction is rather unfavorable: they are too weak
to develop on the length scale of LSPP and unlikely to be employed in practice. It is easy to
ascertain the reason behind such a result. In the limit d → 0, the coefficients βeff and γeff behave
like ∝ Γ2, whereas ζr and ζi grow much faster—as a product B Γ2 [see Fig. 3(b)]. Physically,
this discrepancy is due to different dependance of the free-carrier and third-order nonlinear ef-
fects on optical intensity. Since SRS also stems from the third-order susceptibility, it is clear
that neither Raman amplification nor lasing are likely to be possible with the silicon-based
plasmonic waveguides (despite the fact that SRS coefficient in silicon is much bigger than the
TPA coefficient). Of course, one can always introduce gain into silicon layer to compensate for
ohmic losses and allow SPPs to build up sufficient gain or phase shift [21–23,27]. However, in
this case, the advantage of strong localization of optical power, conferred by MSM waveguides,
will be completely offset by their increased length.

As a closing remark, it is worth noting that the derived equations are quite applicable to MSM
waveguides with ultrathin silicon layers (d ∼ 1 nm), in which the field intensity is extremely
high. This situation seems unusual for SOI waveguides, where nonlinear effects produced by
strong optical fields significantly perturb the lateral mode profile. In MSM waveguides, the
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intensity of the electric field becomes more and more uniform inside the silicon layer, as its
thickness decreases. As a consequence, the intensity-dependant nonlinear effects cannot modify
the lateral profile of the SPP mode, and the accuracy of the approximations used to derive
Eq. (7) improves.

4. Conclusions

We have examined the possibility of building photonic devices by employing the nonlinear
optical phenomena in silicon-based plasmonic waveguides. Although, for simplicity and con-
creteness, we analyzed a slot silver–silicon–silver plasmonic waveguide at λ = 1.55 μm, our
conclusions are valid for other waveguide geometries and wavelengths, and are not specific
to silver. Our estimates show that, even though all nonlinear effects are substantially stronger
in a metal-silicon-metal (MSM) plasmonic waveguide than in a SOI waveguide of the same
thickness, the reduced length of the MSM waveguide makes the Kerr effect, two-photon ab-
sorption, and stimulated Raman scattering too inefficient for device applications. Fortunately,
the free-carrier effects remain strong enough even in a 10-nm-thick MSM waveguide that is
only 500-nm long, and they can dramatically affect the propagation of SPPs. Therefore, it is
free-carrier absorption and free-carrier dispersion that should be used to control light in nano-
sized, silicon-based plasmonic waveguides.

Appendix A

Equation (6) is a special case of a more general relation

i(β +β ∗)|ẼT |2 + ẼT ∇T Ẽ∗
z − Ẽ∗

T ∇T Ẽz = iωμ0(Ẽ× H̃∗+ Ẽ∗ × H̃)ez, (11)

which holds for any solution of the Maxwell’s equations of the form

Ẽ(r) = E0(x,y)exp(iβ z), H̃(r) = H0(x,y)exp(iβ z).

To prove this relation, we rewrite its right side using the law of induction, iωμ0H̃ = ∇× Ẽ,

iωμ0(Ẽ× H̃∗+ Ẽ∗ × H̃)ez = ez
[
Ẽ∗ × [∇× Ẽ]

]− c.c. (12)

Employing the vector-triple-product identity and decomposing the electric field into transverse
and longitudinal components, we obtain

ez
[
Ẽ∗ × [∇× Ẽ]

]
= ez [∇(Ẽ∗Ẽ)− (Ẽ∗∇)Ẽ] = Ẽ∗ ∂ Ẽ

∂ z
− (Ẽ∗∇)Ez

= iβ |Ẽ|2 − (Ẽ∗
T ∇T )Ez − iβ Ẽ2

z = iβ |ẼT |2 − (Ẽ∗
T ∇T )Ez.

Substituting this result in Eq. (12), we arrive at Eq. (11).
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Appendix B

Denoting the real and imaginary parts of k j as k′j and k′′j for ( j = 1,2) and using Eq. (4), we
obtain

I1 ≡
+d/2∫

−d/2

|E0|2 dx = Π(1)
+ −

∣∣∣∣k1

β

∣∣∣∣
2

Π(1)
− , Π(ν)

± =
1
2

[
sin(νk′1d)

k′1
± sinh(νk′′1d)

k′′1

]
,

+∞∫
−∞

|E0|2 dx = I1 +
1
k′′2

{∣∣∣∣ε1

ε2
cos

(
k1d
2

)∣∣∣∣
2

+

∣∣∣∣k1

β
sin

(
k1d
2

)∣∣∣∣
2
}
,

+∞∫
−∞

|Ex|2 dx = Π(1)
+ +

1
k′′2

∣∣∣∣ε1

ε2
cos

(
k1d
2

)∣∣∣∣
2

,

Q = Λ++

∣∣∣∣k1

β

∣∣∣∣
4

Λ−− 1
4

∣∣∣∣k1

β

∣∣∣∣
2

Π(2)
− +

1
2k′′2

{∣∣∣∣ε1

ε2
cos

(
k1d
2

)∣∣∣∣
2

+

∣∣∣∣k1

β
sin

(
k1d
2

)∣∣∣∣
2
}2

,

Λ± =
d
4
+

Π(2)
+

8
± 1

2
Re

[
sin(k1d)

k1

]
,

and

N = ε0ω

{
Re

(
ε1

β

)
Π(1)

+ +Re

(
ε2

β

)
1
k′′2

∣∣∣∣ε1

ε2
cos

(
k1d
2

)∣∣∣∣
2
}
.

Since Ey = 0 for the TM SPP mode (see Fig. 1), only the following eight components of the
anisotropy tensor contribute to the material polarization [37]:

Exxxx = 1, Ezzzz =
1+ρ

2
, Exxzz = Ezzxx = Exzzx = Ezxxz = Exzxz = Ezxzx =

ρ
3
,

where ρ ≈ 1.27 in the 1.55-μm region. With these components, we find that

ηQ = Λ++
1+ρ

2

∣∣∣∣k1

β

∣∣∣∣
4

Λ−− ρ
6

∣∣∣∣k1

β

∣∣∣∣
2

Π(2)
−

− 2
3

ρ

{
Re

(
k2

1

β 2

)[
d
4
− Π(2)

+

8

]
+

1
2

Im

(
k2

1

β 2

)
Im

[
sin(k1d)

k1

]}
.

The same expressions are applicable to SOI waveguides, after the replacement
sinh(νk′′1d)/k′′1 → νd.

Acknowledgments

The work of I. D. Rukhlenko, M. Premaratne, and G. P. Agrawal was sponsored by the Aus-
tralian Research Council (ARC) through its Discovery Grant scheme under grants DP0877232
and DP110100713. The work of G. P. Agrawal was also supported by the NSF Award ECCS-
0801772.

#136997 - $15.00 USD Received 21 Oct 2010; revised 13 Dec 2010; accepted 17 Dec 2010; published 22 Dec 2010
(C) 2011 OSA 3 January 2011 / Vol. 19,  No. 1 / OPTICS EXPRESS  217




