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We investigate how the transverse localization of light in evanescently coupled, disordered, lossless
waveguide lattices depends on the shape and size of an input beam. Our detailed numerical study not only
reveals waveguide-like propagation of the localized state inside such a disordered discrete medium but also
shows that a specific localized state is independent of the spatial profile of the input beam. Dependence of the
localized state on input beam parameters and lattice parameters is also reported. Our results should be of
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1. Introduction

Sajeev John was the first to suggest theoretically that light might
get localized in a disordered dielectric lattice structure [1], an effect
analogous to the well-known phenomenon of Anderson localization
[2] of an electronic wave packet. Raedt et al. [3] investigated the idea
of light localization further and introduced the concept of transverse
light localization in a semi-infinite disordered geometry i.e., confine-
ment occurs only in the plane perpendicular to the direction of light
transport. With the advent of and intense research on photonic
bandgap devices and discrete photonic structures, transverse locali-
zation of light has attracted considerable attention in recent years in
the context of disordered periodic structures [4–6]. In a 2007
experiment, Schwartz et al. [5] realized transverse localization of
light in disordered, two-dimensional, photonic lattices and studied
the interplay between a medium's nonlinearity and its degree of
disorder. Lahini et al. [6] experimentally demonstrated the effect of a
medium's nonlinearity on light localization and concluded that the
nonlinearity in a disordered medium favors localization to occur
within a shorter distance. The interplay between Anderson localiza-
tion and the optical gain in a two-dimensional disordered medium
has also been studied from the standpoint of realizing a random laser
[7].
However, none of these studies seems to have considered the
effect of input beam shape and size on the localization of light in a
disordered dielectric medium. Further, study on dependence of the
coupling efficiency into a localized state on spatial location of the
input beam is missing in the literature. The absence of such a study,
the ever-growing literature on light propagation in microstructured
waveguide array devices and photonic crystals, and the possibility of
light localization in disordered bandgap geometry [8] have motivated
us to undertake the present investigation. In this paper, we report
explicitly for the first time to our knowledge, dependence of the
localized state on the shape and width of an optical beam when it is
coupled into an evanescently coupled, disordered, waveguide lattice
array. Our study reveals several underlying interesting features of
light confinement to a localized state in such a medium of finite
length. We have studied the nature of input light coupling to different
localized modes of a disordered medium under different input
excitation conditions. We also show that light can propagate without
any diffractive spread (in the transverse direction) beyond the point
of localization in a disordered lattice, a feature that mimics guided
mode-like propagation. Our results should be useful for manipulating
the flow of light in novel discrete photonic superstructures designed
to exploit the Anderson type of light localization.

2. Simulation and methodology

Motivated by the experimental results reported in [5], we consider
propagation of a continuous-wave (CW) beam in a lossless,
disordered, dielectric structure. The medium's general refractive
index n (x, y) is assumed to have a built-in periodicity in either of
the two transverse directions and it alternates between n1 and n2
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along the x-direction, shown schematically in Fig. 1. In addition, it is
assumed to vary randomly from these nominal values. For our study of
light localization in such disordered media, we focus on an
evanescently coupled, equally spaced, waveguide lattice [6] consisting
of 100 unit cells. We assume that all the waveguides are buried inside
a medium of constant refractive index n0. The overall dielectric
structure is homogeneous in the longitudinal z direction along which
the optical beam is assumed to propagate. Such a structure should be
realizable through the laser-inscripted waveguide fabrication tech-
nique [9,10] i.e. by inducing localized modifications of the material by
shining a high intensity tightly focused laser beam (operating as CW
or emitting femtosecond pulses) because it can increase the local
refractive index of a transparent material such as glass. Typical
refractive index changes Δn realizable by the laser-beam inscription
technique are ~10−4 (for a CW beam) or ~0.001 (for a pulsed laser)
[9]. In our numerical study, we have accordingly assumed the index
contrast in the individual units of the lattice to be of this order. The
disorderness in the chosen lattice geometry could result either from
slight variations in the thickness of higher-index core layers, or in
their spacing [6], or in their refractive indices. In this study, as a
specimen, we consider randomness only in the refractive index of the
chosen lattice.

In the paraxial limit, wave propagation inside a dielectric medium
is, in general, governed by the following equation that is formally
similar to the Schrödinger equation except that t is replaced by z [5]:
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where A(r) is the electric-field amplitude of a CWoptical beam, E(r, t)=
Re[A(r)ei(kz−ωt )]. Here, k=n0ω /c,n0 is the uniform background
refractive index, and Δn (x, y) represents a random deviation of the
refractive index over its nominal value n0. However, in our study we
have considered 1D coupledwaveguide lattice geometry. Thus,Δn (x, y)
is a function of x coordinate only. Accordingly, the transverse
dependence of the field thus becomes a function of x alone. Because
of the underlying periodic nature of the dielectric structure (see Fig. 1),
Δn(x) consists of a deterministic periodic partΔnp of spatial periodΛ and
a spatially periodic random component δ (uniformly distributed over a
specified range0 to 1). Therefore, it can be algebraically expressed in the
form

Δn xð Þ = Δnp 1 + Cδð ÞH xð Þ ð2Þ

where C is a dimensionless constant, whose value governs the level of
disorder in the periodic backbone structure. The periodic function H (x)
takes the value 1 inside the higher-index regions and is zero otherwise.

We solve Eq. (1) numerically through the scalar beam propagation
method, which we implemented in MatLab. We deliberately choose a
relatively small refractive index contrast along with a relatively long
unit-cell period compared to thewavelength (Λ ›› λ) to ensure that the
N = 100
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Fig. 1. Schematic of the chosen sample as evanescently coupled waveguides, each of
equal width and spaced equally apart from its neighboring waveguide (100 unit cells);
different shades of color signify different refractive indices over an average refractive
index.
bandgap effects remain negligible. Every individual unit of the lattice
functions as a single-mode waveguide at the operating wavelength λ
when the lattice is perfectly ordered. We have also considered a
sufficiently long sample length (N10,000λ) to seize the effect of linear
discrete diffraction and to ensure that propagating light feels the
existence of z-independent transverse disorder. We have chosen the
aspect ratio of the lattice as well as the number of unit cells in such a
way that any edge effects in the evolution of the beam could be easily
avoided. Due to a finite width of our sample, there would always be a
small but finite radiation loss; however, in our simulations, these
small losses have been neglected. This is justified in practice if the
number of unit cells is large and the geometrical aspect ratio is
optimally chosen.

If M is the number of grid points along the x-direction, the
disorderness of the medium is represented by an array of M random
elements. This array is constructed using randomnumbers distributed
uniformly in the range of 0 to 1. Since, scattering in a disordered
system is of stochastic nature, we assign different random arrays for
different realizations (chosen to be 100 in our numerical simulations)
and average over 100 realizations of the lattice disorder.
3. Results

For simulating the waveguide lattice shown in Fig. 1, we have
chosen a set of experimentally feasible parameters. We consider a
waveguide array consisting of 100 evanescently coupled waveguides,
each of 7 μm width and separated from each other by 7 μm (i.e.,
center-to-center spacing is 14 μm) whose length could vary from 5 to
20 mm. The lattice is buried within a background material of
refractive index n0=1.46. The value of Δnp was chosen to be 0.001
i.e. the refractive index inside each waveguide is uniformly greater by
this amount over its surroundings in the absence of disorder. To
introduce disorder in the structure, we distribute the refractive index
from one unit cell to the next in a random fashion following the
prescription indicated in Eq. (2). An input CW beam at the operating
wavelength of 980 nm is assumed incident on the unit cell located
around the central region of our grid (irrespective of the index of the
local lattice unit). The input beams were chosen to be either Gaussian,
parabolic, hyperbolic secant, or exponential in shape. In all cases,
irrespective of beam shapes, the input beam width (w0) was set such
that the full width at half maxima (FWHM) of the beam is 10 μmat the
input plane of the sample. With this choice of width, the beam covers
several high and low index sites at the input plane, and other initial
conditions are not very critical to incorporate the diffraction effect [3].

We first consider the case of a perfectly periodic lattice (i.e.
without any disorder) and set C=0. Our chosen lattice geometry has
already been exploited (either as a linear or as a nonlinearmedium) to
demonstrate discretization of light behavior [11–13] and confinement
of light flow in weakly coupled waveguide arrays [14]. Because of the
evanescent coupling among the waveguides, the beam initially
spreads in the transverse direction and its power gets distributed
across multiple lattice sites with propagation. We could observe such
linear discrete diffraction effect [11] numerically with propagation of
the light beam along our chosen 20 mm-long device as is evident from
Fig. 2. A linear increase in the effective width of a beam along the
sample length is known as the ballistic mode of light propagation [5].
From Fig. 2, this ballistic mode of beam propagation is clearly evident
when a Gaussian beam is launched into the sample. A similar ballistic
feature was seen if the input beam was chosen to be parabolic,
hyperbolic secant, or exponential in shape. This discrete diffraction
phenomenon could be observed irrespective of the point of incidence
of the beam at the input plane of the lattice. Moreover, this feature
was found to be independent of the characteristic size of the input
beam. In other words it also did not depend whether the input beam
covered one or more lattice sites.
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Fig. 2. Illustrative (contour plot) ballistic (discrete linear diffraction) mode of
propagation of a Gaussian input beam of FWHM 6.75 μm (launched at the 52nd lattice
site) through a 20 mm long perfectly ordered lattice. The calculated normalized
intensity (diffracted) profile at the end of the waveguide lattice is also shown on the
figure.
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For studying propagation in a disordered medium, we repeat the
preceding steps with the same set of parameters except for an
additional parameter, namely the disorder parameter C, which was
chosen at first to be as 0.2. The results are shown in Fig. 3, from which
it can be seen that the presence of 20% disorder significantly modifies
the propagation behavior of the beam as much as it opens up a
waveguide-like channel through the lattice. The CW beam initially
spreads in a ballistic fashion but soon its evolution is dictated by the
transverse disorderness across its wings. When the beam width
becomes comparable to the characteristic localization length [5] for the
chosen level of disorder, the beam remains localized to the central
region with further propagation beyond that point and acquires the
exponential tail characteristic of light localization. Beyond the point of
localization, fluctuations in the intensity become entirely statistical in
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Fig. 3. Transition (contour plot) of an input Gaussian beam of FWHM6.75 μm(launched
at the 52nd lattice site) from ballistic regime to a localized regime while propagating
through a 20 mm long 20% disordered waveguide lattice; the figure corresponds to a
particular realization (i.e. a particular δ).
nature. Physically, light scattered from disordered scattering centers
interferes constructively and evolves toward a state whose envelope
exhibits exponentially decaying tails that are the signature of a
localized state [3,5], analogous to the Anderson localization of the
electronic wave function. The presence of underlying periodicity
enhances the interplay between scattering and constructive interfer-
ence [8].

It is well known that transverse localization always occurs in a 1D
disordered lattice which consists of infinite number of unit cells with
any amount of disorder when the propagation distance is sufficiently
long (similar to transverse localization in a 2D disordered lattice, but
unlike the crucial requirement of a threshold strength of disorder for
Anderson localization to occur in a 3D disordered system) [5,6].
However for a 1D disordered lattice with finite number of unit cells,
the transverse localization of light is possible only for long enough
distance of propagation of the beam through it. Thus in a disordered
lattice of finite extent (which in our case consisted of 100 coupled
waveguide units) the propagating light beam sees the initial ballistic
expansion and then evolves to a state where ballistic and localized
states co-exist [6]. If we increase the level of disorder in the lattice, the
initial ballistic distance of propagation and consequential free
diffraction-like broadening with propagation reduce and much faster
transition to a localized state is achieved through a short intermediate
mixed regime of ballistic and localizedmodes of propagation. Thus the
interplay between sample aspect ratio and strength of disorder plays a
key role to govern the propagation dynamics of the beam and the
onset of the localized state in a finite lattice. In order to investigate this
issue further, we study evolution of the beam through the lattice for
different levels of disorder by varying the value of the C parameter in
Eq. (2). To study the beam transport in more details, we checked the
intensity distribution at the output end of the disordered lattices. For
each value of C, we examined the output intensity distribution for
several sample lengths in the range of 5 to 20 mm. To account for the
statistical nature of the localization, we averaged the output intensity
profile over 100 realizations (i.e., 100 different δ's). To highlight this
statistical behavior over different realizations for a given level of
disorder, we quantify the degree of localization through an average
effective width (ωeff) of the beam which is defined as [5]

ωeff = 〈P〉
−1=2

P≡ ∫I x; Lð Þ2 dx
h i

= ∫I x; Lð Þdx
h i2

where P is averaged over multiple realizations of the same level of
disorder. In Fig. 4a we depict the results of our study by plottingωeff of
the output beam as a function of the sample length for different values
of C (including C=0). In contrast to the case of a perfectly ordered
lattice for which the effective beam width increases linearly with
propagation (see case G which corresponds to C=0), this width
increases sublinearly for a disordered lattice with finite values of C and
saturates to a constant value, which corresponds to evolution to a
localized light state when C exceeds a critical value (CN40%). These
results clearly demonstrate transition from a ballistic mode of
propagation to a localized state in the presence of relatively strong
disorder, which is required to observe localization for the particular
lattice length. Fig. 4b reveals a clear statistical nature of the study
showing the statistical standard deviation (error bars) along with the
average value of the effective widths. In other figures, we have not
shown the error bars just to avoid the possible reduction of clarity of
the plot. In Fig. 5 we plot the ensemble-averaged output beam width
as a function of the sample length for four different input spatial
intensity profiles (parabolic, hyperbolic secant, and exponential along
with Gaussian shape) for different levels of disorder. In other three
cases, the CW beam exhibits a behavior that is qualitatively similar to
that of a Gaussian beam in Fig. 4a. This similarity leads us to conclude
that the phenomenon of light localization in a disordered waveguide
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Fig. 4. a. Variation in the ensemble-averaged effective width (ωeff) of a Gaussian beam
(FWHM 10 μm) with propagation through the waveguide lattice for different strengths
(C) of disorder labeled as A (=60%), B (=50%), C (=40%), D (=30%), E (=20%),
F (=10%), and G (=0%). The inset shows schematic of the chosen disordered sample;
different shades of color signify different refractive indices over an average index; in the
calculations, the input beam was launched at the 52nd lattice site. b. Variation in the
ensemble-averaged effective width (ωeff) of a Gaussian beam (FWHM 10 μm) with
propagation length of the waveguide lattice for different strengths of disorder. The
error bars are the statistical standard deviations of effective beam widths.
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array is independent of the shape of the input beam. Results of Figs. 4a
and 5 also enable us to estimate the threshold level of disorder at
which the significant localization of light occurs in our lattice
geometry. The theoretical analogy and intuitive physical arguments
have drawn the similarities between Anderson localization in 3D and
counterpart transverse localization (e.g. in 1D and 2D geometries)
[3,5]. Thus according to the theory of transverse localization of light in
a 1D disordered lattice, an input beam of light will propagate along the
length and expand until the beam diameter becomes of the order of
the transverse localization length. In our chosen z-independent
waveguide lattice geometry, as the transverse refractive index is a
random function, constructive interference between the scattered
lights will lead to localization of light injected by an input beam of
arbitrary spatial shape as evidenced in simulation studies through
exponentially decaying tail of the propagating beam [3]. The input CW
light having a certain beam profile would be always localized in the
presence of either diagonal or both diagonal and off-diagonal
disorders [3,6]. Hence our numerical simulation results for transverse
localization of light as an input beam profile-independent phenom-
enon evidently strengthen the theory and relax apparent constraints
with regard to choice of specific input beam shapes in experimental
studies of this phenomenon, which has lately attracted intense
interest. Another important issue is whether, once the localization
sets in for a given input beam profile, the localized state remains
unchanged with further propagation inside the disordered medium.
To investigate this, we analyze the transport dynamics shown in
Figs. 4a and 5. Above the threshold disorder level, fluctuations in the
effective width of a localized state are only due to its statistical nature.
Our results clearly show that the average intensity profile of the
localized state remains essentially unchanged with propagation,
exhibiting a waveguide-like propagation of light in a disordered
medium. It is our belief that these features could be exploited to
realize discrete optical devices in disordered optical structures.

Fig. 6 shows the combined features of Figs. 4a and 5 by plotting
effective beam width as a function of disorder parameter C at the
output ends of two different lattice lengths of 10 mm and 20 mm,
respectively for four different shapes of the input CW beam. In all
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cases, a more disordered lattice with larger values of C increasingly
favors localization. These features clearly indicate that transverse
localization of the light beam always occurs as the level of disorder is
increased progressively. From these results, it appears that a length of
15 mm would be sufficient to achieve localized state for the case of
C=0.6. In order to test this hypothesis, we carried out further
calculations for an input Gaussian beam of FWHM 10 μm in a 15 mm
long waveguide lattice having 60% disorder, and the results are shown
in Fig. 7a, in which a relatively smooth transition of the input Gaussian
beam towards a localized state with propagation can be seen. This plot
also highlights the evolution of the beam from the initial ballistic
regime to a localized regime, through an intermediate co-existence of
these two components. In order to corroborate our results with the
theory of transverse localization, we have plotted the results from
Fig. 7a for the realized localized state on a logarithmic scale in Fig. 7b.
A clear presence of linearly decaying tails (equivalently exponential
when plotted on a linear scale) on both sides of the beam profile
confirms that the observed localization effect is of Anderson type.

Relatively large fluctuations in Fig. 7b are a result of the statistical
nature of disorder. For a better agreement with the expected
exponentially decaying tails, characteristic of localized light, we
have averaged the output intensity profiles over 100 δ's. This average
profile is shown in Fig. 8 on a log scale with the inset showing the
same profile on a linear scale. Both the plots manifest the
exponentially decaying tails, a well-known feature characteristic of
Anderson localization in the presence of transverse disorder [3,5]. To
further investigate the impact of input beam shape on the desired
localized state, we depict in Fig. 9 the corresponding ensemble-
averaged intensity profiles for three other input CW beams having
spatial profiles as parabolic, hyperbolic secant and exponential. It is
evident that the Anderson type of light localization occurs in each
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the localized state through a 15 mm long 60% disordered (a particular realization)
lattice geometry. Two different propagation regimes (ballistic to localized) are clearly
evident from this plot. b. Logarithmic plot of the intensity profile for the localized state
(one realization) achieved in Fig. 7a showing the acquired linear tail.
case, irrespective of the input beam shape, once the level of disorder
exceeds the threshold value for each beam shape.

For a deeper appreciation of the nature of localized states for
different input profiles, we carried out further calculations and
observed that, for our sample having an array of 100 waveguides,
the localized states that were populatedwere not identical for the four
input beam profiles. This is evident from the values of the transverse
localization length plotted in Fig. 10 as a function of the disorder
parameter C for the four different beam shapes but of the same
FWHM. To obtain the localization length, we averaged 100 output
intensity profiles for a given value of C and then performed a three-
point moving average to smoothen further the resulting profile. In
order to find the transverse localization length we then fitted the
decaying tails with an exponential function of the form [5]

Iα exp −2 xj j = Lcð Þ:

The nearly linear variation in the case of the exponential input
profile indicates that in this case the transition to the localized state
occurs in a smooth fashion in contrast to the cases of other spatial
profiles. Variations in the localization lengths in Fig. 10 can be
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sample having C=0.6; A: parabolic, B: hyperbolic secant, and C; exponential.



Fig. 10. Localization lengths vs levels of disorder for different input beam profiles over a
15 mm long lattice geometry; A: Gaussian, B: parabolic, C: hyperbolic secant, and
D: exponential. As before, calculations have been carried over 100 ensembles of the
same disorder level. Error bars show the possible fitting error encountered during
calculations.
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interpreted as the signature of differences in the localized states for
different input beam shapes.

We have also investigated dependence of the localized mode on
the spatial location of the input beam on the input plane of the
waveguide array for different beam widths covering one or more
lattice units. For example, when a Gaussian input beam was incident
at the 45th, 52nd and 59th waveguides of the sample, it evolved into a
localized state in all the three cases, as shown in Fig. 11, with an
ensemble-averaged ωeff of 55.2 μm, 49.5 μm, and 51.8 μm, respective-
ly. The closeness in these values indicates that the localization
phenomenon is also independent of the location of the input beam as
long as it is not launched too close to an edge of the sample. This is so
because we need a sufficient number of lattice units on both sides of
the injection point of the beam in order to realize localization. These
results of Fig. 11 conclusively revealed that formation of the localized
state is nearly independent of the input position of the incident beam
though the shape of the localized eigenstate depends on the location
of the input beam.

4. Conclusions

We have carried out a numerical study on various aspects of
transverse light localization in a disordered waveguide lattice. Our
results reveal that the phenomenon of light localization is indepen-
dent of the input beam shape for a CW beam launched with a plane
phase front. We have also investigated the dependence of the
localized state on different parameters of the lattice as well as the
input beam. The diffraction-free propagation of such a localized
optical beam beyond its point of localization could be exploited to
mimic waveguide-like propagation in discrete optical structures. Our
study showing engineering the evolution of light beam in disordered
photonic geometries (1D evanescently coupled multiple planar
waveguides taken as an example) is significant as it reveals an
additional wave-guiding platform in addition to already existing
conventional waveguides and photonic bandgap fibers. Our compre-
hensive study on the light localization phenomena should be of
interest to those involved in designing novel light-manipulating
optical circuits for future optical telecommunication and sensing
networks.
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