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Abstract: We present a general theory of negative refraction in periodic
stratified heterostructures with an arbitrary number of homogeneous,
isotropic, nonmagnetic layers in a unit cell. With a 4×4-matrix technique,
we derive analytic expressions for the normal modes of such a heterostruc-
ture slab, introduce the average refraction angles of the energy flow and
wavevector for the TE- and TM-polarized plane waves falling obliquely
on the slab, and derive expressions for the reflectivity and transmissivity
of the whole slab. For a specific case, in which all layers in a unit cell
are much thinner than the wavelength of light, we obtain approximate
simple formulae for the effective refraction angles. Using the example of
a semiconductor heterostructure slab with two layers in a unit cell, we
demonstrate that ultrathin layers are preferable for metamaterial applica-
tions because they enable higher transmissivity within the frequency band
of negative refraction. Our theory can be used to study the optical properties
of any stratified metamaterial, irrespective of whether semiconductors or
metals are employed for fabricating its various layers, because it includes
absorption within each layer.
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1. Introduction

Within the last several years, interest in man-made composites, known as metamaterials, has
grown rapidly due to their potential to revolutionize optical technologies [1–6]. Owing to an
artificially engineered subwavelength structure, metamaterials exhibit novel electromagnetic
properties that are far beyond those available with ordinary materials existing in nature. In
particular, the design of meta-atoms allows strong interaction of the magnetic field of an elec-
tromagnetic wave with the metamaterial, leading to a variety of beneficial applications [7–11].
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Several promising applications are associated with the phenomenon of negative refraction, oc-
curringwhen an incoming optical wave bends in such a manner that the incident and refraction
angles have opposite signs. More importantly, recent advances in modern nanotechnology en-
able fabrication of metal-dielectric composites that possess a negative refractive index at optical
frequencies [12–19]. Such metamaterials have led to the concept of “perfect” lens that can be
used for imaging objects with a subwavelength resolution [19–23].

In general, a metamaterial exhibits negative refraction in a spectral range over which real
parts of both the permittivity and permeability are negative [6,24]. This situation can be realized
by creating metamaterials with overlapping resonances for the functionsε(ω) andµ(ω) [5,25–
28]. Recently, a simpler way to attain a negative refractive index has been proposed [2]. Instead
of simultaneously producing electric and magnetic resonances in one metamaterial, one can
fabricate a periodic stratified heterostructure using alternating layers of two ordinary materials,
only one of which has Reε < 0 (or Reµ < 0) within a certain frequency band. Because of the
anisotropic nature of such a heterostructure, it exhibits the phenomenon of negative refraction
with respect to either a TM- or TE-polarized beam, depending on whether its permittivity or
permeability has a resonance [19,29–31].

To harness the full potential of such stratified periodic metamaterials, a comprehensive theory
capable of explaining their behavior is required. Although ample theoretical efforts have been
made to study optical response of thin films and periodic layered heterostructures [32–34],
these results cannot be directly used to analyze negative-index metamaterials. In this paper,
we fill this gap by developing a comprehensive theory of stratified nonmagnetic metamaterials
exhibiting negative refraction. Following Berreman [34], we discuss in Section 2 the general
solution of Maxwell’s equations for a layered heterostructure in the 4×4 matrix representation.
Using this solution, we find the eigenvalues of the translation matrix, and the corresponding
normal modes, for a multilayer slab. The normal modes are then used to define the average
refraction angles for energy flow and wavevector as well as to calculate the transmissivity and
reflectivity of a multilayer slab. In many practical situations, the layers of stratified metamaterial
are much thinner then the wavelength of light, and the effective medium approximation is valid
[22,28,35]. This regime is considered in Section 3. We illustrate our general theory in Section 4
through an example of an all-semiconductor heterostructure, used originally to demonstrate the
phenomenon of negative refraction in the long-wavelength infrared region.

2. Light propagation through a slab of periodic stratified heterostructure

To describe the phenomenon of negative refraction, we use an elegant 4×4-matrix technique,
developed initially to study the optical properties of liquid-crystal films [36, 37]. We briefly
discuss the idea behind this technique, before employing it to calculate the refraction angles for
energy flux and wavefront, as well as the transmission and reflection coefficients for a plane
wave falling obliquely on a periodic stratified heterostructure.

2.1. 4×4-matrix formalism

Consider a plane electromagnetic wave of frequencyω, incident at an angleϑ0 on the surface
z= 0 of a stratified periodic heterostructure slab, as shown in Fig. 1. Each unit cell of this slab
containsn layers of different thicknessesh j and different permittivitiesε j(ω) ( j = 1,2, . . . ,n).
Each layer is composed of a homogeneous, isotropic material so thatε j is a scalar quantity
that does not depend onx andy coordinates. Without loss of generality, we assume that the
heterostructure is periodic in thez direction, and the wavevector of incident plane wave lies in
thex–zplane. In the Cartesian coordinates, the electric and magnetic fields of this plane wave
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Fig. 1. Geometry of a periodic stratified heterostructure surrounded by a transparent media
of refractive indexn0; h is the length of the unit cell. Plane electromagnetic wave obliquely
incident in thex–zplane, at an angleϑ0 to the normal of the surfacez= 0.

in the planez> 0 can be written in the form

E(x,z,t) =





Ex

Ey

Ez



exp[i(βx−ωt)]+c.c., H(x,z,t) =





Hx

Hy

Hz



exp[i(βx−ωt)]+c.c.,

whereβ = n0ksinϑ0 is thex component of the wavevector,n0 > 0 is the refractive index of the
medium surrounding the heterostructure,k = ω/c, andc is the speed of light in vacuum.

In the adopted geometry, only four components of the vectorsE andH are linearly inde-
pendent. In the 4×4-matrix method, the problem of light propagation is formulated for the
four tangential components that are continuous on the heterostructure interfaces, and form the
elements of a four-dimensional vector defined as [34]

ψ(z) =









Ex

Hy

Ey

−Hx









.

Using this vector, Maxwell’s equations can be written in a compact form. It turns out that this
vector satisfies a first-order differential equation of the form

dψ
dz

= ik∆(z)ψ, (1)

where ∆(z) is a periodic 4×4 matrix characterizing optical properties of the heterostruc-
ture [34]. The other two components of the electromagnetic field inside any nonmagnetic,
isotropic medium of permittivityε can be found from the relations

Ez = −(β/k)(1/ε)Hy, Hz = (β/k)Ey. (2)

The specific form of the matrix∆(z)depends on the heterostructure composition. We assume
it to consists ofm identical unit cells, each of which is made ofn layers of thicknessesh j
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( j = 1,2, . . . ,n) whose permittivities are constant within individual layers but change abruptly
at the interfaces. Since∆ is independent ofz inside each layer, Eq. (1) can be integrated to
obtain the field within thejth layer in the form

ψ(z) =exp(ik∆ jz)ψ(h1 +h2 + . . .+h j−1), (3)

where 0≤ z ≤ h j and ∆ j is the matrix inside thejth layer. In this notation,ψ(h1) =
exp(ik∆1h1)ψ(0).

Since the layers are made of nonmagnetic and isotropic materials characterized by the per-
mittivities ε j ( j = 1,2, . . . ,n), the matrix exponential in this solution,P j(z)≡ exp(ik∆ jz),
called here the transfer matrix, has the following block-diagonal form [34]

P j(z) =









cosφ j iπ j sinφ j 0 0
(i/π j)sinφ j cosφ j 0 0

0 0 cosφ j iσ j sinφ j

0 0 (i/σ j)sinφ j cosφ j









, (4)

whereφ j = kz jz, π j = kz j/(ε jk), σ j = k/kz j, andkz j =
(

ε jk2−β 2
)1/2

. The two sub-blocks of
this matrix describe propagation ofπ- andσ -polarized plane waves, respectively, also known
as TM and TE modes [32]. Although these two waves are independent of each other, and the
results for one of them can be obtained from the results of the other using the well known
symmetry of Maxwell’s equations, we consider both of them for comprehensiveness in what
follows.

Using Eqs. (3) and (4), we can calculate the optical field at any positionzwithin the first unit
cell from the matrix relation

ψ(z) =G j(z)ψ(0), (5)

where the translation matrixG j is a product of multiple transfer matrices and is given by

G j(z) =P j(z)Pj−1(h j−1)×·· ·×P2(h2)P1(h1).

Extending this approach to the whole heterostructure, Eq. (5) solves the problem of light prop-
agation through it. It should be recognized that in deriving Eq. (5) from Eq. (3), we used the
fact thatψ is continuous at the interfaces between the layers.

2.2. Solution of the eigenvalue problem

Equation (5) itself is not very useful, since it does not explicitly contain information about the
directions of the wavefront normal and energy flux inside the heterostructure. To find these
directions, we need to analyze the evolution of the optical field within one heterostructure pe-
riod. This evolution is governed by the unit-cell translation matrixFh = Gn(hn), with the four
eigenvalues [34]

q±η = Kη ±
(

K2
η −1

)1/2
, η = π or σ . (6)

The coefficientKη is given by

Kη =

(

2n
n

∏
j=1

η j

)−1

∑(−1)r(η1±η2)(±η2±η3)×·· ·

· · ·× (±ηn−1±ηn)(±ηn +η1)cos(ϕ1±ϕ2± . . .±ϕn),
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where the sum is taken over 2n−1 possible sign combinations of the cosine argument, while
ensuring that the signs in front ofη j (= π j or σ j) andϕ j = kz jh j ( j = 2,3, . . . ,n) are the same;
r is the number of minuses in the expressionϕ1±ϕ2± . . .±ϕn.

The four “normal” modes that correspond to the eigenvalues in Eq. (6) have the form

ψ±
π =









1
Ψ±

π
0
0









, ψ±
σ =









0
0
1

Ψ±
σ









, (7)

whereΨ±
π = (q±π −F11)/F12, Ψ±

σ = (q±σ −F33)/F34, andFuv are the elements of the matrixFh

given in Appendix A.
To proceed further, we need to specify which of the normal modes in Eq. (7) represent the

waves moving in positivez direction. This is not as trivial a task as it might appear at first
glance, for none of the signs in Eqs. (6) and (7) can be attributed to the wave traveling in the
positivezdirection, regardless of the material parameters(h j andε j , j = 1,2, . . . ,n). The reason
for this is that the secular equationFhψ±

η = q±η ψ±
η does not determine the phase of the complex

eigenvalues uniquely but only gives them up to a modulo factor of 2π, i.e.,

argq±η = Argq±η +2πN, N = 0,±1,±2, . . . ,

where Argq±η ∈ (−π,π] is the principle value of the argument function. For the phase of the
electromagnetic field to steadily grow, as the wave propagates through the heterostructure, we
have to select different eigenvectors in different situations. It is possible to show (see Ap-
pendix B) that theη-polarized plane wave traveling in the positivez direction is described
by the normal mode with

ReΨ±
η > 0. (8)

In what follows, we shall omit the superscripts± for the elementsΨη satisfying this condition.

2.3. Refraction of wavefront and energy flux

The wavevectors of both theπ-polarized andσ -polarized plane waves constantly vary during
their propagation through a heterostructure slab. Inside thejth layer, the angleϑk,π, j between
the wavevector of theπ-polarized plane wave and thez axis is characterized by the relation

tanϑk,π, j =
β

d(ArgHy j)/dz
=

|Hy j|
2

Re(ε jEx jH∗
y j)

1
k/β

, ( j = 1,2, . . . ,n). (9)

Here, according to Eqs. (5) and (7),Ex j = G( j)
11 +G( j)

12 Ψπ andHy j = G( j)
21 +G( j)

22 Ψπ , whereG( j)
uv

are the elements of the matrixG j(z)given in Appendix A.
A similar expression holds for the direction of the wavevector of theσ -polarized wave:

tanϑk,σ , j =
β

d(ArgEy j)/dz
= −

|Ey j|
2

Re(EyjH∗
x j)

1
k/β

, (10)

whereEy j = G( j)
33 +G( j)

34 Ψσ andHx j = −G( j)
43 −G( j)

44 Ψσ .
SinceEz is discontinuous on heterostructure interfaces, the energy flux in theπ-polarized

plane wave refracts on each interface. In thejth layer, the tangent of the angle between the
Poynting vectorSand thezaxis vary with wave propagation as

tanϑS,π, j = −
Re(Ez jH∗

y j)

Re(ExjH∗
y j)

=
|Hy j|

2

Re(ExjH∗
y j)

Re(1/ε j)

k/β
. (11)
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Fig. 2. Illustration of the averaging procedure in Eq. (13): (a) first, the direction ofk is
averaged within each layer; (b) resulting angles are then averaged over all layers in a unit
cell. (c) Directions of energy flow andk for a π-polarized plane wave undergoing negative
refraction inside a heterostructure slab with ultrathin layers.

In contrast, the energy flux in theσ -polarized plane wave does not refract on heterostructure
interfaces. It is easy to see that its direction in thejth layer is characterized by the tangent

tanϑS,σ , j = −
Re(Ey jH∗

z j)

Re(EyjH∗
x j)

= tanϑk,σ , j . (12)

Hence, the energy flux in aσ -polarized plane wave propagating through a slab of stratified pe-
riodic heterostructure (composed of nonmagnetic layers) always refracts normally. This result
is expected because the slab is isotropic with respect to the TE wave.

By looking at Eqs. (9)–(12), we immediately conclude that the four angles are equal only
in the case of a single nonabsorbing slab. In all other cases, the first three angles are generally
different. The form of Eq. (11) also suggests (see Appendix B) that Reε j < 0 is required for
at least one of the layers within a unit cell for aπ-polarized plane wave to experience nega-
tive refraction. Of course, the layers with a negative real part ofε j should be thick enough to
substantially contribute to the effective permittivity of the slab, but thin enough to enable high
transmissivity of the wave.

The effective directionΘq,η of the vectorq (= k or S) for theη-polarized plane wave can be
found by averaging values of tanϑq,η , j over the thickness of each layer, followed by an average
over the number of layers within a heterostructure period, i.e.,

Θq,η = tan−1
(

1
h

n

∑
j=1

∫ h j

0
tanϑq,η , j dz

)

, (13)

whereh = h1 + h2 + . . . + hn. Figure 2 illustrates this definition. Physically, the angleΘS,η
(η = π, σ) determines the parallel shift of theη-polarized optical beam caused by its single
pass through the heterostructure slab.

2.4. Reflection and transmission coefficients

Once the eigenvectors of the unit-cell translation matrix and the normal modes of the het-
erostructure slab are known, we can calculate the reflection and transmission coefficients for
the π- andσ -polarized plane waves. Remarkably, in the eigenvector formalism, these coeffi-
cients can be found analytically without resorting to the Chebyshev identity for themth power
of the unit-cell translation matrix [32,33].
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The mth power of the translation matrixFh relates the field at the output heterostructure
surface,ψ±

η (mh), to that at the input surface,ψ±
η . This power is eliminated by employing

the eigenvalue equation(Fh)
mψ±

η =
(

q±η
)mψ±

η (η = π,σ). The electromagnetic boundary
conditions atz= 0 andz= mh require that the input, transmitted, and reflected fields,ψi , ψt ,
andψr , satisfy the equations

ψi +ψr = A+
π ψ+

π +A−
π ψ−

π +A+
σ ψ+

σ +A−
σ ψ−

σ , (14a)

ψt = A+
π Q+

π ψ+
π +A−

π Q−
π ψ−

π +A+
σ Q+

σ ψ+
σ +A−

σ Q−
σ ψ−

σ , (14b)

whereQ±
η =

(

q±η
)m

andA±
η (η = π,σ) are the normalized complex-valued amplitudes of the

normal modes inside the slab.
The input, transmitted, and reflected fields are described by the four-dimensional vectors

ψi =









1
rπ
1
rσ









, ψr =









Rπ
−rπRπ

Rσ
−rσ Rσ









, and ψt =









Tπ
rπTπ
Tσ

rσ Tσ









,

where rπ = n0secϑ0 and rσ = n0cosϑ0. The system of eight linear equations (14) for the
unknownsA±

η , Rη , andTη (η = π,σ) is readily solved to obtain

A±
η = ∓2rηQ∓

η (Ψ∓
η − rη)/Dη , (15a)

Rη = (Q−
η −Q+

η )(Ψ+
η − rη)(Ψ−

η − rη)/Dη , (15b)

Tη = 2rηQ+
η Q−

η (Ψ+
η −Ψ−

η )/Dη , (15c)

whereDη = Q+
η (Ψ+

η − rη)(Ψ−
η + rη)−Q−

η (Ψ+
η + rη)(Ψ−

η − rη).
We can see that, in the limith → 0, the matrixFh becomes a unit matrix. SinceQ±

η → 1
in this limit, Eqs. (15b) and (15c) reduce toRη = 0 andTη = 1. It can also be verified that
|Rη |

2 + |Tη |
2 = 1 in the absence of optical losses. When absorption inside layers is included

through their complex permittivity, total losses can be characterized by the coefficientDη =
1−|Rη |

2−|Tη |
2.

3. Negative refraction in the limit of ultrathin layers

The problem of negative refraction in stratified media is particularly simple for ultrathin layers,
i.e., when the heterostructure period is much shorter than the wavelength of light(kh≪ 1).
We treat this situation separately, to illustrate the application of the formalism developed in
Section 2.

Whenφ j ≪ 1 for all layers (j = 1,2, . . . ,n), the trigonometric functions in Eq. (4) can be
approximated by the first terms of their Taylor series. As a result, the unit-cell translation matrix
takes the simple form

Fh =









1 ik2
⊥h/(ε⊥k) 0 0

iε‖kh 1 0 0
0 0 1 ikh
0 0 ik2

‖h/k 1









, (16)

wherek⊥ =
(

ε⊥k2−β 2
)1/2

, k‖ =
(

ε‖k2−β 2
)1/2

, and the components of the effective permit-
tivity tensor are given by

εxx = εyy ≡ ε‖ =
1
h

n

∑
j=1

h jε j , εzz≡ ε⊥ =

(

1
h

n

∑
j=1

h j

ε j

)−1

.
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The eigenvalues and eigenvectors of the translation matrix (16) are easy to find. The eigen-
values are given by

q±π = 1± ik⊥h(ε‖/ε⊥)1/2, q±σ = 1± ik‖h.

The normal modes are given by Eq. (7) with the elements

Ψ±
π = ±(k/k⊥)(ε‖ε⊥)1/2, Ψ±

σ = ±k‖/k.

Using these results in Eqs. (9)–(13), the four angles are found to be

tanΘk,π ≈±
β

Re
[

k⊥(ε‖/ε⊥)1/2
] , tanΘS,π ≈±

β |ε‖|Re(1/ε⊥)

Re
[

k⊥(ε∗‖/ε⊥)1/2
] , (17)

Θk,σ = ΘS,σ ≈± tan−1
(

β
Rek‖

)

, (18)

wherethe plus or minus sign should be taken to comply with the requirement in Eq. (8). In
deriving Eqs. (17) and (18), we neglected the variation of the optical field within the unit cell.

Equation (17) shows that, in the limit of ultrathin layers, the effect of negative refraction oc-
curs for frequencies that satisfy the condition Reε⊥(ω) < 0. At certain frequencyω0, the real
part of the transverse permittivity may vanish, leading toΘS,π = 0 regardless of the incident
angleϑ0. That means that any TM wave incident obliquely on the heterostructure slab propa-
gates in thezdirection. This effect can be used to collect light coming from all spatial directions
within a narrow spectral band aroundω0.

4. A periodic heterostructure composed of two semiconductors

We now consider in more detail a periodic heterostructure with two layers in its unit cell. The
expressions for the elements of the translation matrixG j(z) that correspond to this situation are
given in Appendix B. For numerical examples, we focus on the case in which two layers in
each unit cell are made of p-doped InGaAs(p-InGaAs)and intrinsic AlInAs semiconductors
characterized by the permittivities [19]

ε1(ω) = 12.15×

(

1−
ω2

p

ω(ω + iδ )

)

andε2 = 10.23, respectively, whereωp is the plasma frequency at the free-carrier density of
7.5× 1018 cm−3, and δ = 1013 rad/s. The effect of negative refraction may then occur at
frequencies belowω0 = (ω2

p − δ 2)1/2, which approximately corresponds to the wavelength
of 8.8µm. We also assume that the heterostructure slab is surrounded by air(n0 = 1). It should
be stressed that our analysis is not limited to only heterostructures made with semiconductor
materials, and can be used even for heterostructures in which some or all layers are made of
metals.

In Figs. 3(a) and 3(b), we plot the effective refraction angles for the energy flux and wavevec-
tor for aπ-polarized beam incident at an angle ofπ/3 on the heterostructure surface. The blue
and red curves correspond to 2- and 0.2-µm-thick layers, respectively; open circles show the
approximate solution calculated with Eq. (17) valid only for thin layers. In the case of thin
layers, the beam refracts at negative angles within the wavelength range from 8.8 to 11.9µm
marked by the red shaded band. As discussed earlier, this band coincides precisely with the
range where Reε⊥ < 0 [see the wine-color curve in Fig. 3(a)]. In the heterostructure with thick
layers, the phenomenon of negative refraction occurs within a much narrower band (shaded in
blue) with a larger absolute value of the maximum refraction angle.
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Fig. 3. Effective refraction angles of (a) energy flux and (b) wavevector for aπ-polarized
plane wave incident at an angleϑ0 = π/3 on a heterostructure made with 0.2- and 2-µm-
thick layers; the shaded bands show the regions of negative refraction in the two cases;
open circles correspond to the approximate solution in Eq. (17). (c) Transmission (T) and
absorption (A) spectra for 4-µm-thick slabs made of thick (blue) and thin (red) layers.

It is important to compare the transmissivity of heterostructure slabs with different layer
thicknesses. For such comparison to be fair, the total thicknesses of the slabs should be equal.
As an example, Fig. 3(c) shows the transmission and absorption spectra for two 4-µm-thick
slabs; one slab contains twenty 0.2-µm-thick layers (red curves), while the second slab is made
of only two 2-µm-thick layers (blue curves). One can see that the transmissivity of thin layers is
considerably higher than that of thick layers within the negative refraction band. This difference
is not due to stronger optical absorption by the second slab. In fact, as the dashed curves show,
absorption is much larger within the negative refraction band for the structure with thin layers.
Therefore, it is the higher reflection that drastically reduces the transmissivity of the second
slab.

The effective anglesΘS,σ = Θk,σ and the transmission spectra for theσ -polarized beam are
shown in Fig. 4 under the conditions identical to those used for Fig. 3. A comparison of these
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Fig. 4. (a) Effective refraction angles of energy flux and wavevector for aσ -polarized plane
wave incident at an angleϑ0 = π/3 on a heterostructure made with 0.2- and 2-µm-thick
layers; circles correspond to the approximate solution in Eq. (18). (b) Transmission (T) and
transmission plus absorption (T&A) spectra for 4-µm-thick slabs made of thick (blue) and
thin (red) layers.

two figures shows that the wavefronts ofπ- andσ -polarized beams refract similarly, regardless
of the layers’ thicknesses. It is also interesting to note that, within the band of negative refraction
for π polarization, the transmissivity of thin layers with respect to theσ -polarized beam is much
higher than the transmissivity of thick layers. The reason behind this fact, however, differs
from the one given above forπ polarization. As indicated in Fig. 4(b), the reflectivity from
thin layers in this case is higher compared to that from thin layers, and the poor transmissivity
predominantly results from stronger absorption.

Figure 5 shows the angular dependence of the refraction anglesΘS,π andΘk,π , as well as the
transmission, reflection, and absorption coefficients for the two 4-µm-thick slabs with twenty
thin and two thick layers. These results support our previous conclusions and reveal a further
difference in the properties of the two slabs. According to Eq. (17), when the wavelength is
close to the band edge of negative refraction, the energy propagates through the slab made of
thin layers perpendicular to its surface, whatever the incident angle is. This effect is illustrated
in Fig. 5(a) forλ = 8.8137µm. The picture is completely different when the layers are thick.
In that case, normal and negative refractions switch at certain incident angles±ϑc, as shown
in Fig. 5(b) for λ = 8.84 µm. If the incident angle lies in the range−ϑc < ϑ0 < ϑc, the π-
polarized beam exhibits negative refraction; otherwise, it refracts normally. In addition to small
transmissivity [see Fig. 5(d)], the absolute values ofΘS,π for |ϑ0| < ϑc are relatively small;
further investigation is required to make this effect suitable for practical applications.

We should also point out that our analysis can be readily generalized to the case of layers that
possess magnetic properties. In this situation,Hz j = (β/k)(1/µ j)Ey j, whereµ j ( j = 1,2, . . . ,n)
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Fig. 5. Effective refraction angles of energy flux and wavevector [(a), (c)] and transmission,
reflection, and absorption coefficients [(b), (d)] for aπ-polarized beam incident at different
angles on heterostructures made of thin [(a), (b)] and thick [(c), (d)] layers.

are the permeabilities, and one should use the functionsσ j = µ jk/kz j and kz j =
(

ε j µ jk2 −

β 2
)1/2

in Eq. (4). However, the form of Eqs. (6)–(11), (13)–(15), and (17) does not change in
the magnetic case.

5. Conclusions

Using the 4×4-matrix formalism of Berreman [34], we have developed a simple theory of
negative refraction in periodic stratified heterostructures composed of homogeneous, isotropic,
nonmagnetic layers. We derived analytic expressions for the normal modes of heterostructure
slabs with an arbitrary number of layers in a unit cell. We introduced suitable definitions for
the average refraction angles, associated with the energy flow and the wave vector, for the TE-
and TM-polarized plane waves falling obliquely on the heterostructure slab. We also derived
general expressions for the reflectivity and transmissivity of such plane waves, and applied
them to study negative refraction by a slab of ultrathin layers for which simple approximate
formulae for the average refraction angles can be obtained. A numerical investigation of a
heterostructure with two semiconductor layers per unit cell revealed that ultrathin layers are
preferable to thick layers for optical applications, as they facilitate higher transmissivity within
the frequency band of negative refraction; this feature does not appear to have been noted in
previous work. Our results are valid for heterostructures containing metallic layers, and provide
a well-needed theoretical treatment for stratified periodic metamaterials.
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Appendix A

Thematrix G j(z) in Eq. (5) has the same block diagonal form as the matrixP j(z) in Eq. (4).
Its four elements appearing in the top block can be written as follows:

G( j)
11 (z) =

(

2 j−1
j−1

∏
p=1

πp

)−1

∑(−1)s(π1±π2)(±π2±π3)×·· ·

· · ·× (±π j−1±π j)cos(ϕ1±ϕ2± . . .±ϕ j−1±φ j), (19a)

G( j)
12 (z) = i

(

2 j−1
j−1

∏
p=2

πp

)−1

∑(−1)s(π1±π2)(±π2±π3)×·· ·

· · ·× (±π j−1±π j)sin(ϕ1±ϕ2± . . .±ϕ j−1±φ j), (19b)

G( j)
21 (z) = i

(

2 j−1
j

∏
p=1

πp

)−1

∑(−1)r(π1±π2)(±π2±π3)×·· ·

· · ·× (±π j−1±π j)sin(ϕ1±ϕ2± . . .±ϕ j−1±φ j), (19c)

and

G( j)
22 (z) =

(

1+G( j)
21 G( j)

12

)

/G( j)
11 ,

where the sums are taken over 2j−1 possible sign combinations in the arguments of the sine
and cosine functions, while ensuring that the signs in front of the parametersπp andϕp (p =
2,3, . . . , j) are the same;s is the number of minuses in the expressionϕ1±ϕ2± . . .±ϕ j−1 and
r is the number of minuses in the expressionϕ1±ϕ2± . . .±ϕ j−1±φ j .

The elementsG( j)
33 , G( j)

34 , G( j)
43 , andG( j)

44 associated with the second block are obtained, re-

spectively, fromG( j)
11 , G( j)

12 , G( j)
21 , andG( j)

22 by the replacementπp → σp (p = 1,2, . . . , j). The
elements of the matrixFh are obtained from those of the matrixG j(z)after noting the definition

Fuv = G(n)
uv (hn).

When the unit cell of a periodic heterostructure has only two layers, one can use Eq. (19) to
perform the sum explicitly and obtain the following analytic expressions:

G(2)
11 =

1
2π1

[

(π1 +π2)cos(ϕ1 +φ2)+(π1−π2)cos(ϕ1−φ2)
]

,

G(2)
12 =

i
2

[

(π1 +π2)sin(ϕ1 +φ2)+(π1−π2)sin(ϕ1−φ2)
]

,

G(2)
21 =

i
2π1π2

[

(π1 +π2)sin(ϕ1 +φ2)− (π1−π2)sin(ϕ1−φ2)
]

.

The coefficientKπ appearing in Eq. (6) in this case is reduced to

Kπ =
1

4π1π2

[

(π1 +π2)
2cos(ϕ1 +ϕ2)− (π1−π2)

2cos(ϕ1−ϕ2)
]

.

Appendix B

Let us first prove that Eq. (8) holds for theπ-polarized plane wave moving in the+z direction.
The field of this wave in thejth layer satisfies Eq. (1). This equation can be written in the form

d
dz

(

Exj

Hy j

)

= ik

(

0 ϖ j

ε j 0

)(

Ex j

Hy j

)

, (20)
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whereϖ j = 1−β 2/(k2ε j) andε j are the elements of the matrix∆(z) [34]. Since the phase of
the electric field must build up during its propagation, we can write

d(ArgEx j)

dz
=

d
dz

[

tan−1
(

ImEx j

ReExj

)]

> 0.

Using Eq. (20), we obtain the condition

Re
(

ϖ jE
∗
x jHy j

)

> 0. (21)

A similar condition for the magnetic field, d(ArgHy j)/dz> 0, results in

Re
(

ε jEx jH
∗
y j

)

> 0. (22)

Equations (21) and (22) show that

Re
(

E∗
x jHy j

)

> 0,

which proves our above statement that negative refraction requires Reε j < 0 for at least one
heterostructure layer. The last inequality holds for anyz within the jth layer. Specifically, at
the pointz= 0 inside the first layer, where the matrixG1(0) is unitary, it reduces to the desired
result ReΨπ > 0.

Equation (8) can be proved for theσ -polarized plane wave in a similar fashion. In this case,
we have

d
dz

(

Eyj

−Hx j

)

= ik

(

0 1
ε jϖ j 0

)(

Ey j

−Hx j

)

.

The inequality ReΨσ > 0 readily follows from the analog of Eq. (21)

Re
(

Ey jH
∗
x j

)

< 0.
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