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Abstract: A deep insight into the inherent anisotropic optical properties of
silicon is required to improve the performance of silicon-waveguide-based
photonic devices. It may also lead to novel device concepts and substantially
extend the capabilities of silicon photonics in the future. In this paper, for
the first time to the best of our knowledge, we present a three-dimensional
finite-difference time-domain (FDTD) method for modeling optical phe-
nomena in silicon waveguides, which takes into account fully the anisotropy
of the third-order electronic and Raman susceptibilities. We show that,
under certain realistic conditions that prevent generation of the longitudinal
optical field inside the waveguide, this model is considerably simplified
and can be represented by a computationally efficient algorithm, suitable
for numerical analysis of complex polarization effects. To demonstrate
the versatility of our model, we study polarization dependence for several
nonlinear effects, including self-phase modulation, cross-phase modu-
lation, and stimulated Raman scattering. Our FDTD model provides a
basis for a full-blown numerical simulator that is restricted neither by the
single-mode assumption nor by the slowly varying envelope approximation.
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1. Introduction

Themicroelectronics industry has thrived on the unique electrical and mechanical properties of
silicon, which have enabled significant miniaturization and mass-scale integration of electronic
components on a single silicon chip [1, 2]. Unfortunately, this miniaturization process cannot
be continued much beyond the current level because of the inherent heat generation and the
metal-interconnects bottleneck effect [3]. A promising way to overcome these fundamental
limitations is to use photons, instead of electrons, as information carriers. This would lead to
a gradual replacement of electronic integrated circuits (ICs) by photonic ICs. Silicon is well
suited for realizing photonic ICs, owing to the recent advances in the fabrication technologies
and the ease of integrating electronics with silicon photonics [4–9]. A relatively high refractive-
index contrast provided by the silicon-on-insulator (SOI) technology allows one to confine the
optical mode to subwavelength dimensions and to realize nanoscale optical waveguides (often
called photonic nanowires), for on-chip optoelectronic applications [8].

The strong optical nonlinearities of silicon give rise to a variety of nonlinear effects, such as
stimulated Raman scattering (SRS) [10,11], self-phase modulation (SPM) [12,13], cross-phase
modulation (XPM) [14], cross-absorption modulation (XAM) [15], four-wave mixing (FWM)
[16–18], and coherent anti-Stokes Raman scattering (CARS) [9, 19, 20]. These effects have
been successfully utilized in a number of chip-scale photonic devices, including lasers [21,22],
amplifiers [23, 24], switchers [15, 25], modulators [26–28], broad-band frequency converters
[20, 29], detectors [30], all-optical logic gates [25], continuum generators [31, 32], and pulse
compressors [33]. Since the Kerr effect, two-photon absorption (TPA), and Raman scattering
are anisotropic in the case of silicon, the state of polarization of the optical field and waveguide
orientation could be tailored to take advantage of optical anisotropy for making novel optical
devices. Even though there is a strong potential for anisotropic effects to be used in new devices,
none of the above-listed devices utilizes optical anisotropy. Meanwhile, recent theoretical works
have demonstrated that the anisotropy exhibited by silicon waveguides can be used to realize
fast optical switching [34–36] and power equalization [36].

To study the impact of anisotropic nonlinear effects on light propagation in silicon, a complex
numerical simulator that takes into account the tensorial nature of third-order susceptibility is
required. The finite-difference time-domain (FDTD) scheme is the best choice for sophisticated
modeling, since it allows Maxwell’s equations to be exactly solved in three dimensions with
few assumptions [37]. This scheme is suitable for analyzing complex waveguide geometries
with few-cycle pulses, which is beyond the capability of other popular modeling techniques.
In this paper, we present an FDTD model of optical phenomena in silicon waveguides, which
incorporates the anisotropy of silicon nonlinearities and the vectorial nature of the electromag-
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netic field. In Section 2, we describe the structure of the general FDTD algorithm for nonlinear
anisotropicmedia. Starting with Maxwell’s equations, we outline the steps required for obtain-
ing the update equations for the electromagnetic field and set up notations employed in the rest
of the paper. In Section 3, we consider the relation between the material polarization and the
electric field inside a silicon waveguide and derive the contributions of different optical effects
with emphasis on the underlying physics. The full material polarization is used in Section 4 to
derive the update equations for the electric field in the three-dimensional case. We then sim-
plify these equations to obtain a computationally efficient algorithm that can be used to simulate
SOI-based photonic devices. In Section 5, we apply the simplified algorithm to investigate the
impact of optical anisotropy on pulse propagation in silicon waveguides. We summarize our
study and conclude the paper in Section 6.

2. Three-dimensional FDTD scheme for nonlinear anisotropic media

Classical electromagnetic theory is based on Maxwell’s equations, which admit exact analyti-
cal solutions only for a limited number of relatively simple problems [38]. In modern nonlinear
optics, these equations are usually solved numerically using different computational schemes.
The FDTD method is one of the most widely used methods for this purpose, due to the simplic-
ity of its implementation, its applicability to arbitrary scattering media (e.g., media exhibiting
anisotropic and/or nonlinear responses), and the high accuracy of the generated results [37].

In order to establish the notations used in the following sections, we sketch the main steps
involved in the FDTD algorithm that solves the source-free Maxwell’s equations in their differ-
ential form [38]

∂B(r, t)
∂ t

= −∇×E(r, t),
∂D(r, t)

∂ t
= ∇×H(r, t), (1)

whereB(r, t) andD(r, t) are the magnetic and electric inductions, andE(r, t) andH(r, t) are
the electric and magnetic fields. For nonmagnetic media, the constitutive relations between the
four vector fields in Eq. (1) are given by

H(r, t) =
B(r, t)

µ0
, E(r, t) =

D(r, t)−P(r, t)
ε0

, (2)

whereµ0 andε0 are, respectively, the permeability and permittivity of vacuum. The response
of an inhomogeneous anisotropic medium to an external electric field is taken into account by
the material polarization vectorP(r, t).

An arbitrary vector fieldV = {B,D,H, E,P} can be split into its Cartesian componentsVξ
along the axisξ = {α,β ,γ} of theFDTD coordinate systemas

V(r, t) = α̂Vα(r, t)+ β̂Vβ (r, t)+ γ̂Vγ(r, t),

whereα̂, β̂ , and γ̂ are the unit vectors. In the FDTD scheme, each of these components are
discretized in time and space domains according to the recipe of Yee [37,39].

The discretization scheme proposed by Yee can be visualized using the cubic unit cell and
the time line shown in Fig. 1. The electric and magnetic fields are defined on different points of
the unit cell and at alternative time steps. Mathematically, each componentVξ (r, t) becomes a
function of four discrete arguments,

Vξ
∣

∣

n+d4
i+d1, j+d2,k+d3

≡Vξ [(i +d1)∆ξ ,( j +d2)∆ξ ,(k+d3)∆ξ ,(n+d4)∆t],

where{i, j,k,n} ∈ N, and∆ξ and ∆t are the space and time increments. The values ofdµ
(µ = 1,2,3,4), corresponding to the arrangement adopted in Fig. 1, are given in Table 1. It
should be noted that not all components shown in Fig. 1 belong to the same unit cell.
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t / t ∆n+1/2

n
n+3/2

n+2

E,DE,DE,D

H,BH,B

n+1
Eβ

αE

 Eγ

Hα

Hα

Hα

Hγ

Hγ

Hγ

Hβ

βH

βH

(i,j,k)

γ

α

β∆ξ

Fig. 1. Staggered space arrangement (left) and leapfrog time ordering (right) of discretized
electromagnetic-fieldcomponents using a cubic Yee cell.

In order to obtain the update equations for the discrete electromagnetic field, one needs to
replace the time and space derivatives in Eq. (1) by finite differences. With this approach, the
update equations for the vectorsB, H, andD can be readily derived from Eqs. (1) and (2). For
example, forα components the update equations are:

Bα
∣

∣

n+1/2
i−1/2, j−1/2,k−1/2 = Bα

∣

∣

n−1/2− S
c

(

Eγ
∣

∣

n
i, j+1/2,k−Eγ

∣

∣

n
i, j−1/2,k

−Eβ
∣

∣

n
i, j,k+1/2 +Eβ

∣

∣

n
i, j,k−1/2

)

,

Hα
∣

∣

n+1/2
i−1/2, j−1/2,k−1/2 = Hα

∣

∣

n−1/2
+

1
µ0

(

Bα
∣

∣

n+1/2−Bα
∣

∣

n−1/2
)

,

Dα
∣

∣

n+1
i jk = Dα

∣

∣

n
i jk +

S
c

(

Hγ
∣

∣

n+1/2
i, j+1/2,k−Hγ

∣

∣

n+1/2
i, j−1/2,k−Hβ

∣

∣

n+1/2
i, j,k+1/2 +Hβ

∣

∣

n+1/2
i, j,k−1/2

)

,

whereS= c∆t/∆ξ is the Courant stability number andc is the speed of light in vacuum. For
brevity, from here on we omit space indexes on the right side of update equations that coincide
with those on the left side. With these and similar equations for other field components, we can
calculate the values ofBξ , Hξ , andDξ at any time step, if their values and the values ofEξ are
known at the previous time step.

To update the electric field componentEξ (ξ = α,β ,γ) at the time stepn+ 1, we need to

Table 1. Values ofdµ specifying relative positions of componentsVξ inside a four-
dimensional unit cell.

Vξ d1 d2 d3 d4

Eα , Dα , Pα 0 0 0 0
Eβ , Dβ , Pβ −1/2 −1/2 0 0
Eγ , Dγ , Pγ −1/2 0 −1/2 0
Hα , Bα −1/2 −1/2 −1/2 1/2
Hβ , Bβ 0 0 −1/2 1/2
Hγ , Bγ 0 −1/2 0 1/2
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i α

γ

β
i-1 i+1

k

k-1

k+1

i α

β

γ
i-1 i+1
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Fig. 2. Positions of electric field components in the FDTD grid. The values of components
Eβ andEγ at the node(i, j,k) are calculated by averaging their four values over the nodes
(i±1/2, j ±1/2,k) and(i±1/2, j,k±1/2), respectively.

know the componentsDξ andPξ at the time stepsn+1 andn. According to Eq. (2), the update
equation takes the form

Eξ
∣

∣

n+1
i+d1, j+d2,k+d3

= Eξ
∣

∣

n
+

1
ε0

(

Dξ
∣

∣

n+1−Dξ
∣

∣

n−Pξ
∣

∣

n+1
+Pξ

∣

∣

n
)

. (3)

In turn, the material polarization can be calculated if the electric field inside the medium is
known. This polarization includes contributions from different physical phenomena, which may
be either isotropic(i) or anisotropic(a), i.e.,

P(r, t) = ∑
i

P(i) +∑
a

P(a).

The relations between the electric field and the induced polarizationsP(i) andP(a) are available
either in the time or the frequency domain, depending on the specific models of the dielectric
response [40–42]. The frequency-domain relations can be transformed into the time domain
either by using the standard replacementiω →−∂/∂ t or by employing the higher-order Fourier
transforms. The resulting time-domain relations can be converted into the update equations for
material polarization using finite differences for the derivatives.

If the material response is isotropic, then theξ component of the polarization vector depends
only on theξ component of the electric field, and we can write symbolically

P(i)
ξ

∣

∣

n+1
i+d1, j+d2,k+d3

= f (i)
ξ

(

P(i)
ξ

∣

∣

n
,P(i)

ξ

∣

∣

n−1
, . . . ,Eξ

∣

∣

n+1
,Eξ

∣

∣

n
,Eξ

∣

∣

n−1
, . . .

)

, (4)

where f (i)
ξ (. . .) denotes the functional dependence.

In the case of the anisotropic material response, the value ofP(a)
ξ is determined by all three

components of the electric field such that

P(a)
ξ

∣

∣

n+1
i+d1, j+d2,k+d3

= f (a)
ξ

(

P(a)
ξ

∣

∣

n
,P(a)

ξ

∣

∣

n−1
, . . . ,Eα

∣

∣

n+1
,Eβ

∣

∣

n+1
,Eγ

∣

∣

n+1
,Eα

∣

∣

n
,Eβ

∣

∣

n
. . .

)

. (5)

This equation assumes that the material response is local and that the values of three compo-
nents of the electric field are to be taken at the same grid node as the polarization component.
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However, only the componentEξ coincides in space withP(a)
ξ (see Table 1); the other two

components of the electric field are defined at the adjacent nodes. It is common to calculate the

values of these two components at the position ofP(a)
ξ by averaging their values over the four

nearest nodes surroundingP(a)
ξ [43–45]. For example, the componentsEβ andEγ are projected

onto the position of the componentP(a)
α using the relations (see Fig. 2)

Eβ
∣

∣

n
i jk =

1
4

(

Eβ
∣

∣

n
i−1/2, j−1/2,k +Eβ

∣

∣

n
i−1/2, j+1/2,k +Eβ

∣

∣

n
i+1/2, j+1/2,k +Eβ

∣

∣

n
i+1/2, j−1/2,k

)

,

Eγ
∣

∣

n
i jk =

1
4

(

Eγ
∣

∣

n
i−1/2, j,k−1/2 +Eγ

∣

∣

n
i−1/2, j,k+1/2 +Eγ

∣

∣

n
i+1/2, j,k−1/2 +Eγ

∣

∣

n
i+1/2, j,k+1/2

)

.

Equations (3)–(5) are solved iteratively for a fixed value ofD until the desired accuracy is
achieved.

3. Optical phenomena in silicon waveguides

As we have seen, both the isotropic and anisotropic contributions of the optical response of a
dielectric medium can be easily handled with the FDTD scheme. However, its implementation
requires establishing a functional relation between the material polarization induced in a silicon
waveguide and the electric field of the propagating mode inside the waveguide.

A number of linear and nonlinear optical phenomena should be taken into account for ac-
curate modeling of silicon-based photonic devices. The major linear effects are dispersion,
absorption, and scattering losses. Linear absorption in silicon is isotropic and much stronger
than that in fibers; however, its effect on optical propagation is usually weak as opposed to
the impact from nonlinear losses. Similar to optical fibers, linear dispersion plays a signifi-
cant role in silicon waveguides when the spectrum of a propagating pulse is sufficiently broad.
Due to a high refractive-index contrast, the dispersive properties of a SOI waveguide depend
strongly on its geometry; this dependence leads to a relatively largewaveguide dispersion. In
particular, large modal birefringence(∼ 10−3) can arise in SOI waveguides with asymmet-
ric cross sections [46], even though the intrinsic optical anisotropy of silicon is relatively low
(∼ 10−6) [47, 48]. Modal birefringence and waveguide dispersion are automatically included
in the FDTD scheme when the linear optical response of silicon is characterized by a scalar
susceptibility,χ̃(1)(ω).

If there is no inhomogeneous mechanical stress breaking the inversion symmetry of the crys-
tal field, the second-order electro-optic effect is absent in silicon [49–51]. In this paper, we only
consider silicon waveguides that are free from mechanical stresses and ignore all second-order
nonlinear effects.

The nonlinear interaction of an optical field with bound electrons of silicon atoms results
in the Kerr effect, two-photon absorption (TPA), and Raman scattering [52–54]. These effects
are of the third order with respect to the applied field. They have anisotropic character and are
described by two fourth-rank tensors,χ̃e

κλ µν andχ̃R
κλ µν [49,53,55].

The process of TPA may generate a considerable number of free carriers, which absorb light
and reduce the effective refractive index of a silicon waveguide. In addition, TPA generates heat
and raises the waveguide temperature leading to an increase in the refractive index; this phe-
nomenon is referred to as the thermo-optic effect (TOE) in the literature [56–59]. The impact
of TOE on pulse propagation is typically much stronger than that due to free-carrier dispersion
(FCD) [56]. Free-carrier effects and TOE are isotropic, but strongly nonlinear; their strength
grows in proportion to the fifth power of the electric field and can be approximately described
by an intensity-dependent susceptibility,χ̃FC(|E|4,ω).
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Fig. 3. Relative orientation of FDTD(α , β , γ) and crystallographic(x, y, z) axes adopted
in the paper. Forϑ = π

4 , the FDTD axesα , β , andγ coincide, respectively, with the[110],
[110], and[001]crystallographic directions. The inset shows the TM and TE polarizations
and an arbitrary linear polarization determined by the angleϕ .

With the preceding nonlinear processes in mind, the polarizationP̃κ(r, ω) induced inside a
silicon waveguide by the electric field̃Eκ(r, ω) can be represented in the form [49,53]

P̃κ(r, ω) = ε0χ̃(1)(ω)Ẽκ(r, ω)

+
ε0

(2π)2 ∑
λ µν

+∞
∫

−∞

dω1

+∞
∫

−∞

dω2 χ̃(3)
κλ µν(ω;ω1,ω2,ω3)Ẽλ (ω1)Ẽµ(ω2)Ẽν(ω3)

+ ε0χ̃FC(|E|4,ω)Ẽκ(r, ω), (6)

whereχ̃(3)
κλ µν = χ̃e

κλ µν + χ̃R
κλ µν , ω3 = ω −ω1−ω2, and we used the following convention for

the Fourier transform:

Ṽ(ω) = F[V(t)] ≡
+∞
∫

−∞

V(t)eiωtdt, V(t) = F
−1[Ṽ(ω)] ≡ 1

2π

+∞
∫

−∞

Ṽ(ω)e−iωtdω.

Equation (6) is written in the FDTD coordinate system, whose axes do not generally coincide
with the crystallographic axes of the waveguide (see Fig. 3). Therefore before using this equa-
tion, it is necessary to transform the third-order susceptibility tensor from the crystallographic
coordinates(x, y, andz) into the FDTD coordinates(α, β , andγ). The general transformation
for a fourth-rank tensor is given by [60]:

χ(3)
κλ µν = ∑

klmn

akκalλ amµanν χ(3)
klmn, (7)

where the Latin indices denote the crystallographic axes anda is the transformation matrix.
It is convenient to choose the FDTD axes along the edges of the silicon waveguide. Without

loss of generality, we select theα axis along the waveguide length and take the other two axes
to form a right-handed coordinate system. Since silicon waveguides are often fabricated on the
(001) plane, we assume that theγ axis coincides with the [001] direction (see Fig. 3). In this
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case, the FDTD axesα andβ are obtained by rotating the crystallographic axesx andy about
thez axis. If the rotation angle isϑ and the rotation is performed as shown in Fig. 3, then the
transformation matrix is of the form

a =





cosϑ −sinϑ 0
sinϑ cosϑ 0

0 0 1



 . (8)

As an example,ϑ = π/4 corresponds to the widely used waveguides fabricated along the[110]
direction [53,61].

3.1. Linear absorption and linear dispersion

Linear optical properties of silicon waveguide are described by the complex-valued dielectric
function

ε̃(ω) ≡ ε̃ ′(ω)+ iε̃ ′′(ω) = 1+ χ̃(1)(ω).

The real part of this function accounts for dispersion of the linear refractive indexn(ω) ≈
√

ε̃ ′(ω), while the imaginary part is responsible for linear losses,ε̃ ′′(ω)≈ cn0αL/(2ω), where
αL is the linear-loss coefficient andn0 ≡ n(ω0) is the refractive index at the absolute maximum
of the input field spectrum located at frequencyω0. In practice,αL includes scattering losses
occurring at waveguide interfaces.

Dispersion of the refractive index has been measured for silicon crystals over a broad spectral
range. The experimental data is often approximated with an appropriately chosen analytical
formula. One of the simplest formulae forn2(ω) is given by the 2s-pole Sellmeier equation
[62–64]

n2(ω) = 1+
s

∑
j=1

a jω2
j

ω2
j −ω2

,

wherea j andω j are the fitting parameters. In Section 5, we use this equation in the specific case
s= 2 with a1 = 9.733,a2 = 0.936,ω1 = 1032.49 THz, andω2 = 817.28 THz. These values
provide an accurate fit of the refractive-index data for silicon in the wavelength range from 1.2
to 2 µm [65].

3.2. The Kerr effect and two-photon absorption

At high optical intensities, electrons residing at the outer shells of silicon atoms start moving
anharmonically. This leads to an increase by∆nNL of the refractive index in proportion to the
local intensityI of light. This phenomena, referred to as the Kerr effect, is characterized by
the nonlinear coefficientn2 = ∆nNL/I ≈ 6×10−5 cm2/GW. The Kerr effect is responsible for
self-phase modulation (SPM), soliton formation, supercontinuum generation, and modulation
instability, among other things [12,64,66,67].

In the telecommunication band around 1.55µm, energy of infrared photons(about 0.8 eV)
exceeds one half of the indirect band gap in silicon(0.56 eV). As a result, silicon exhibits two-
photon absorption (TPA) accompanied with the emission of transverse optical (TO) phonons
[68,69] and generation of free carriers. Despite the fact that TPA is a nonlinear-loss mechanism
and is undesirable in majority of photonic devises, it has been successfully employed to create
ultrafast optical modulators and switches [25–27,33].

The general form of the susceptibilitỹχe
κλ µν(ω;ω1,ω2,ω3) required to calculate the elec-

tronic part of the nonlinear polarization, caused by an optical beam with an arbitrary spectrum,
is not known. Fortunately, the response time of bound electrons is comparable to the duration
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of an optical cycle and can be considered to be negligible for a relatively narrow field spec-
trum [49, 55]. In this case, dispersion of the electronic susceptibility can be ignored, and the
Kleinman’s symmetry can be used to factorize the third-order susceptibility as [49]

χ̃e
κλ µν(ω;ω1,ω2,ω3) ≈ χ̃e

αααα(ω)Eκλ µν ,

where χ̃e
αααα(ω) = ε2 − ηTPA/(iω), ε2 = ε0n2

0cn2, and ηTPA = 1
2ε0c2n2

0βTPA. The real and
imaginary parts of̃χe

αααα(ω) represent the Kerr effect and TPA, respectively. All anisotropic
effects are included through the anisotropy tensorEκλ µν .

In the crystallographic coordinate system, the anisotropy tensorEklmn has the following well-
known form [49,53]:

Eklmn = (ρ/3)(δklδmn+δkmδln +δknδlm)+(1−ρ)δklδlmδmn,

whereδkl is the Kronecker delta function and the real numberρ characterizes anisotropy of
the electronic susceptibility(ρ ≈ 1.27 nearλ = 1.55 µm). TransformingEklmn according to
Eqs. (7) and (8), we obtain the following nonzero elements of the anisotropy tensor in the
FDTD coordinates:

Eαααα = Eββββ = 1+Aϑ , Eγγγγ = 1,

Eαααβ = Eααβα = Eαβαα = Eβααα = Bϑ ,

Eβββα = Eββαβ = Eβαββ = Eαβββ = −Bϑ ,

Eααββ = Eαββα = Eββαα = Eαβαβ = Eβαβα = Eβααβ = ρ/3−Aϑ ,

Eααγγ = Eαγγα = Eγγαα = Eαγαγ = Eγαγα = Eγααγ = ρ/3,

Eββγγ = Eβγγβ = Eγγββ = Eβγβγ = Eγβγβ = Eγββγ = ρ/3,

whereAϑ = 1
2(ρ −1)sin2(2ϑ) andBϑ = 1

4(ρ −1)sin(4ϑ).
Using the preceding results and Eq. (6), we obtain the Kerr-induced material polarization in

the time domain in the form

PK
κ (r, t) = ε0ε2 ∑

λ µν
Eκλ µν Eλ (r, t)Eµ(r, t)Eν(r, t) = ε0ε2SK

κ (r, t)Eκ(r, t), (9)

where the auxiliary functionsSK
κ are given by

SK
α = (1+Aϑ )E2

α +(ρ −3Aϑ )E2
β +ρE2

γ +3Bϑ EαEβ −Bϑ E3
β /Eα , (10a)

SK
β = (1+Aϑ )E2

β +(ρ −3Aϑ )E2
α +ρE2

γ −3Bϑ EαEβ +Bϑ E3
α/Eβ , (10b)

SK
γ = ρE2

α +ρE2
β +E2

γ . (10c)

In the approximation of instantaneous electronic response, the anisotropy of TPA is identical
to that of the Kerr effect. Owing to this fact, the TPA-induced polarization can be written similar
to Eq. (9),

P̃TPA
κ (r, ω) = −ε0

ηTPA

iω
F

[

SK
κ (r, t)Eκ(r, t)

]

. (11)

In Section 4, we convert this equation into the time domain and use it together with Eqs. (9)
and (10) to incorporate the Kerr effect and TPA into the FDTD model.
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3.3. Raman scattering

If an intense optical field at frequencyωp propagates through a silicon waveguide, it generates
another two fields at frequenciesωp±ΩR through a phenomenon known as the spontaneous
Raman scattering [55,70]. These fields are induced by the spontaneous emission and absorption
of optical phonons of frequencyΩR, the so-called Raman shift. The process of Raman scattering
is substantially intensified (stimulated) if a second optical field of frequencyωs = ωp−ΩR is
launched into the waveguide. In this case, one says that the energy is transferred between the
fields via the process of stimulated Raman scattering (SRS) [53–55].

In silicon, Raman scattering is produced by optical phonons near the Brillouin zone cen-
ter [71]. The three phonon modes (almost dispersionless) have the same energy of about
65 meV. This energy determines the population of the phonon modes and relative intensities of
red-shifted (Stokes) and blue-shifted (anti-Stokes) lines in the optical spectrum. At room tem-
perature (T≈ 25 meV), the Stokes line is nearly 13.5 times stronger than the anti-Stokes line.
Even though the processes of Stokes and anti-Stokes scattering substantially differ in strength,
it is important for the accuracy of numerical data that both are easily accounted for in the FDTD
scheme.

The dispersion of Raman scattering is adequately described by treating silicon cores as classi-
cal oscillators [49,54]. With this model, one can write the Raman susceptibility in the form [53]

χ̃R
κλ µν(ω;ω1,ω2,ω3) =

1
2

[

H̃(ω1 +ω2)Rκλ µν + H̃(ω2 +ω3)Rκνµλ
]

, (12)

where the dimensionless tensorRκλ µν describes the anisotropy of the Raman scattering and
the functionH̃(ω) represents the Raman gain profile,

H̃(ω) =
2ξRΩRΓR

Ω2
R−2iωΓR−ω2

. (13)

Here,ξR = 2ε0n0c2gR(ω)/ω, gR(ω) is the Raman gain coefficient,ΩR = 15.6 THz, and 2ΓR≈
100 GHz is the gain bandwidth [72]. The ratiogR(ω)/ω is almost independent ofω since
gR(ω) ∝ ω [53]. In the 1.55-µm region, the values ofgR reported by different experimental
groups lie in the range from 4.3 to 76 cm/GW [73]. The fact that these values are more than
450 and 7500 times larger than the Raman gain coefficient in optical fibers (∼0.01 cm/GW),
enables net gain from SRS even in the presence of strong nonlinear absorption [21,74,75].

In the crystallographic coordinate system, the anisotropy tensor for silicon has the form

Rklmn = δkmδln +δknδlm−2δklδlmδmn.

This expression shows, for example, that the Raman scattering does not occur between two
optical beams polarized along the same crystallographic axis(Rk j j j = δk j + δk j −2δk j = 0).
Therefore, if a single pulse polarized along any principal axis propagates through a silicon
waveguide, the SRS-induced redistribution of energy within the pulse bandwidth does not oc-
cur.

As before, we transformRklmn into the FDTD coordinate system using Eqs. (7) and (8). It is
easy to see that the 24 nonzero elements of the anisotropy tensor are given by

Rαααα = Rββββ = −Rααββ = −Rββαα = Cϑ ,

Rαααβ = Rααβα = Rαβαα = −Rαβββ = Dϑ ,

Rβββα = Rββαβ = Rβαββ = −Rβααα = −Dϑ ,

Rαβαβ = Rβαβα = Rαββα = Rβααβ = 1−Cϑ ,

Rαγαγ = Rγαγα = Rαγγα = Rγααγ = Rβγβγ = Rγβγβ = Rβγγβ = Rγββγ = 1,
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whereCϑ = sin2(2ϑ) andDϑ = 1
2 sin(4ϑ).

Using Eq. (12) and introducing a new functionH(t) = F
−1[H̃(ω)], we arrive at the following

time-domain expression for the Raman susceptibility:

χR
κλ µν(t1, t2, t3) =

1
(2π)3

+∞
∫

−∞

dω1

+∞
∫

−∞

dω2

+∞
∫

−∞

dω3 χR
κλ µν(ω;ω1,ω2,ω3)e

−i(ω1t1+ω2t2+ω3t3)

=
1
2

[

δ (t1− t2)δ (t3)Rκλ µν +δ (t1)δ (t2− t3)Rκνµλ
]

H(t2).

With this result, the Raman-induced material polarization can be written in the following form
suitable for the FDTD implementation:

PR
κ (r, t) = ε0 ∑

λ µν

t
∫

−∞

dt1

t
∫

−∞

dt2

t
∫

−∞

dt3 χR
κλ µν(t − t1, t − t2, t − t3)Eλ (r, t1)Eµ(r, t2)Eν(r, t3)

= ε0 ∑
λ µν

Rκλ µνEλ (t)

t
∫

−∞

H(t − t1)Eµ(t1)Eν(t1)dt1 = ε0∑
λ

ΞR
κλ (r, t)Eλ (r, t), (14)

where

ΞR
κλ (r, t) =

t
∫

−∞

H(t − t1)SR
κλ (r, t1)dt1,

SR
αα = −SR

ββ = Cϑ (E2
α −E2

β )+2Dϑ EαEβ , SR
γγ = 0,

SR
αβ = SR

βα = Dϑ (E2
α −E2

β )+2(1−Cϑ )EαEβ ,

SR
κγ = SR

γκ = 2EκEγ , (κ = α,β ).

3.4. Free-carrier and thermo-optic effects

At high optical powers, TPA produces a large number of free electrons and holes, which give
rise to another optical-loss mechanism known as free-carrier absorption (FCA). Besides, free
carriers reduce the effective refractive index of silicon waveguides; this effect is referred to
as free-carrier dispersion (FCD). The strengths of FCD and FCA depend on the free-carrier
densityN and are proportional to the real and imaginary parts of the susceptibility as

χ̃FC(ω) = n0∆nFC(N)− cn0

2iω
∆αFC(N),

where∆nFC(N) and ∆αFC(N) stand, respectively, for the free-carrier-induced change in the
refractive index and for the loss coefficient. We assume that carriers are neither injected into
the waveguide nor moved out of it, and the densities of electrons and holes are equal. In this
case, it is common to use the following empirical formulas [53]:

∆nFC(N) = −ζ (ωr/ω0)
2N, ∆αFC(N) = σ(ωr/ω0)

2N,

ωr = 2πc/(1.55 µm), ζ = 5.3×10−27 m3, σ = 1.45×10−21 m2.

The evolution of free-carrier density is governed by the interplay between two processes: car-
rier generation via TPA and carrier recombination through all possible nonradiative channels.
These processes are described by the rate equation

∂N(r, t)
∂ t

= − N(r, t)
τc

+
βTPA

2h̄ω0
I2(r, t), (15)
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whereτc is the free-carrier lifetime andI(r, t) = 1
2cε0n0|E(r, t)|2 is the optical intensity.

Since silicon is nondirect gap semiconductor, TPA is accompanied by the emission of
phonons. In addition, phonons are emitted during the electron-hole recombination. As a result
of these two processes, the temperature and refractive index of a silicon waveguide increase. In
silicon, the effect of thermal changes in the refractive index—the thermo-optic effect (TOE)—is
much stronger than FCD [56]. This is a consequence of the large value of thermo-optic coeffi-
cientκ = 1.86×10−4 K−1, which relates the nonlinear change in the refractive index to device
temperature. The fact that all energy dissipated through TPA is eventually converted to heat,
allows one to account for TOE by reducing FCD coefficientζ by the amount

ζTOE =
2h̄ωκθ
Cτcρ

(

ω0

ωr

)2

,

whereθ ≈ 1 µs is the thermal dissipation time,C ≈ 0.7 J/(g×K) is the thermal capacity, and
ρ = 2.3 g/cm3 is the density of silicon. Generally, both FCD and TOE should be included in
the FDTD simulator because both effects are crucial for phase-sensitive problems.

4. Update equations for the electric field in silicon waveguides

The general FDTD scheme discussed in Section 2 will now be applied to silicon by employing
the various susceptibilities specified in the preceding section. This involves discretization of
the second constitutive relation in Eq. (2) and derivation of algebraic equations for updating the
electric field components.

4.1. Three-dimensional implementation

We start by considering the general situation in which dimensions of the silicon waveguide
and the polarization state of the input field are arbitrary. In this case, all six components of the
electromagnetic field should be accounted for in the FDTD scheme. In the frequency domain,
the electric field is related to the material polarization of the silicon waveguide as

Ẽκ(r, ω) = (1/ε0)
[

D̃κ(ω)− P̃LD
κ (ω)− P̃K

κ (ω)− P̃R
κ (ω)

]

+
ηTPA

iω
F
[

SK
κ (r, t)Eκ(r, t)

]

−n0∆nFCẼκ(ω)+
cn0

iω
αL +∆αFC

2
Ẽκ(ω),

whereκ = α, β , andγ. Multiplying both sides of this equation byiω and using Eqs. (9) and
(14), the standard replacement of the factor−iω with the finite-difference operator in the time
domain yields:

Eκ
∣

∣
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, (16)

where,for compactness, we have omitted the space subscripts(i + d1, j + d2,k+ d3) because
they are common to all functions. We continue to use this notational simplification in what
follows.
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To incorporate linear dispersion into the preceding equation, we calculate the value ofPLD
κ

at the time stepn+1, by independently updating itss components that correspond to different
terms in the Sellmeier equation, i.e.,

PLD
κ

∣

∣

n+1
=

s

∑
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PLD
κ j

∣

∣

n+1
.

Conversion into the time domain of the equation for thejth component,
(

ω2
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)

P̃LD
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ε0a jω j Ẽκ , gives us the differential equation
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This equation is readily discretized with the central difference scheme to obtain
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In a similar fashion, we use Eq. (13) to find that the evolution of nine auxiliary variablesΞR
κλ

in Eq. (14) is governed by the differential equation
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whose discretized version takes the form
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The relations between the functionsSR
κλ and the electric field components are given in Sec-

tion 3.3.
Since Eq. (15) is the first-order differential equation, the functions∆αFC(N) and∆nFC(N)

are defined at the non-integer time steps. The carrier density at the time stepn+ 1
2 canbe found

using its value at the time stepn− 1
2 andthe stored componentsEκ . The updated values of the

functions∆αFC and∆nFC are thus calculated using the equation
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. (19)

For stability and accuracy of the FDTD simulations, time step∆t should be much less than
the duration of a single optical cycle. Therefore, we can simplify the algorithm in Eq. (16) with
the approximation
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,

without noticeably affecting the FDTD results. Rearranging the terms in Eq. (16), we finally
arrive at the following coupled update equations for the electric field components:
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, (20)
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whereDNL
κ = Dκ −PLD

κ and

B
±
κ = 1+ΞR
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.

Notice that each of the auxiliary functionsSK
κ depends polynomially on all three components

of the electric field through Eq. (10). For this reason, Eq. (20) cannot be solved analytically for
the unknown componentEκ |n+1 (κ = α,β ,γ). Rather, values of the functionsPLD

κ j , ΞR
κλ , and

N are updated using Eqs. (17)–(19) and the electric field components calculated at the previous
time step. With these values, Eq. (20) is then solved iteratively to update the electric field.

4.2. A simplified FDTD model for silicon waveguides

Tight confinement of optical mode inside SOI waveguides results in strong variations of the
magnetic field over the mode profile. If the incident beam is polarized perpendicular to the
waveguide axisα, such variations generate a relatively large longitudinal componentEα of
the electric field as an optical beam propagates through the waveguide [35, 76]. Generally,Eα
cannot be ignored even in a single-mode waveguide for which spatial variations of the magnetic
field are relatively weak. The reason for this is the SRS-induced coupling between the electric
field components, which is expressed by the sum in Eq. (20).

However, the buildup of the longitudinal electric field in the vicinity of the mode center can
be ignored when the spectrum of the incident pulse is much narrower than the Raman shift of
15.6 THz. This condition is satisfied for optical pulses of widths> 100 fs. For shorter pulses, the
adopted models of the Kerr effect and TPA may need be modified to allow for a finite response
time of the bound electrons. Indeed, as can be seen from Eq. (14), the Raman polarizationPR

α is
not produced by the transverse componentsEβ andEγ when the waveguide is fabricated along
the crystallographic direction determined by the angleϑ j =

π
4 j, where j = 0,1,2,3 (see Fig. 3),

resulting inDϑ j = 0.
In this section we consider a one-dimensional FDTD domain in which the transverse spatial

distributions of the TE and TM modes are ignored, and Maxwell’s equations are solved only
along the waveguide length (the axisα). It amounts to assuming that the incident field is po-
larized in theβ–γ plane and the silicon waveguide is fabricated along one of the directionsϑ j .
Further, the waveguide dimensions are assumed to be large enough that the axial field compo-
nents remain small all along the waveguide length, i.e., the optical field preserves its transverse
nature along the mode center. The effects of waveguide dimensions are then included only
through the effective mode indexn0 and the effective mode area. In practice, the results of such
a simplified FDTD model should be applicable for square-shape waveguides with dimensions
larger than the optical wavelength inside silicon(λ/n0).

With these limitations in mind, the update equation (20) can be simplified considerably near
the mode center and takes the form
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∣
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B
+
κ

, (21)

whereκ = β or γ, ν 6= κ , and the functionsB±
κ should be used withEα = 0. These equations

show that the preceding two assumptions simplify the general three-dimensional FDTD model
substantially and reduce it to a pair of one-dimensional FDTD models [37, 43]. These two
one-dimensional models describe propagation of theβ -polarized andγ-polarized transverse
electromagnetic modes, which are coupled through the Kerr effect, TPA, and SRS. Free-carrier
effects do not couple Eqs. (21), as they depend on the electric field at the previous time steps,
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Fig. 4. Three one-dimensional Yee cells corresponding to the simplified FDTD model. The
electricand magnetic fields along the propagation directionα are ignored.

n andn−1. The one-dimensional nature of the coupled FDTD models is also evident by their
Yee cells shown in Fig. 4.

It is important to keep in mind that the reduced implementation of the FDTD scheme cannot
be used to analyze anisotropy stemming from the asymmetry of the waveguide cross section
(e.g., modal birefringence, FCA-induced polarization rotation, etc. [35]). However, it allows
one to examine the effects of intrinsic anisotropy of silicon nonlinearities without too much
computational effort. Since the maximum intensity is achieved at the center of a single-mode
waveguide, the one-dimensional implementation also allows one to estimate the strongest im-
pact of nonlinear optical phenomena on the field propagation.

5. Numerical examples and discussion

The FDTD algorithm developed here allows one to simulate the propagation of a short optical
pulse through a silicon waveguide under quite general conditions. In this section we use the
simplified FDTD algorithm to analyze polarization-dependent optical phenomena in silicon
waveguides. We consider propagation of optical pulses through waveguides fabricated along
the[110]direction on the(001)surface(ϑ = π/4). We include all nonlinear effects but neglect
thermal effects. In the case of XPM, we assume that the two pulses at different wavelengths
are launched at the same end of the waveguide. The parameter values are chosen to be:ε2 =
1.72×10−19 m2/V2, βTPA = 0.9 cm/GW,n0 = 3.17, andαL = 1 dB/cm.

5.1. Input–output characteristics

It is well known that the output power in silicon waveguides saturates with incident power, due
to the nonlinear absorption resulting from TPA and FCA [52,77,78]. For relatively short optical
pulses, TPA dominates FCA, and the output intensity exhibits dependence on input polariza-
tion. Figure 5 shows the input–output characteristics for three silicon waveguides, pumped by
Gaussian pulses with a full width at half maximum (FWHM) of 1.4 ps polarized along the TE
and TM directions, by plotting the output peak intensity as a function of the input peak inten-
sity. It can be seen that the output intensity is higher for TM pulses because TPA is larger for
the TE mode than for the TM mode by a factor of1

2(1+ρ) ≈ 1.14. More generally, Eqs. (10b)
and (10c) show that the anisotropy of TPA depends on the waveguide orientation specified
by the angleϑ as 1+ 1

2(ρ −1)sin2(2ϑ). Since the effects of TPA and FCA accumulate with
propagation, the peak output intensity is lower in longer waveguides.
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5.2. Nonlinear polarization rotation

Aside from different rates of TPA, TE and TM modes in silicon waveguides exhibit different
nonlinear phase shifts imposed by SPM and XPM. Both the TPA and XPM modify the state
of polarization (SOP) of a sufficiently strong optical field [35]. The efficiency of the nonlinear
polarization rotation can be characterized by the transmittance of a linearly polarized input
pulse through the analyzer that blocks the pulse for low input intensities [36]. Figure 6 shows
such a transmittance as a function of the input polarization angleϕ for a 1.4-ps Gaussian pulse;
ϕ = 0 andϕ = π/2 correspond to TE and TM modes, respectively (see Fig. 3). We define
the transmittance as a ratio of the energy flux,

∫ +∞
−∞ I(t)dt at the output and input ends of the

waveguide.
One can see from Fig. 6 that the pulse preserves its initial SOP not only when it propagates as

either a pure TE or TM mode but also when the input SOP corresponds toϕ0 = tan−1
(

1/
√

2
)

≈
35◦. Interestingly, the value ofϕ0 does not depend on the material parameters or pulse charac-
teristics. For an arbitrary fabrication directionϑ , it can be found by noting that conservation
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of SOP requiresSK
β = SK

γ at any point along the waveguide. Using Eqs. (10b) and (10c), this
condition yields

ϕ0 = tan−1

√

1− 1
2

sin2(2ϑ). (22)

Thus,ϕ0 reaches its maximum value ofπ/4 when the waveguide is fabricated along the princi-
pal axis[100]or [010]. The relative nonlinear phase shift between the TE and TM polarization
components increases monotonically with input pulse intensityI0 and waveguide lengthL.
However, due to nonlinear losses, there are optimal values ofI0 andL that maximize the pulse
transmittance [36].

5.3. Polarization variations along the pulse

Since the processes of SPM and TPA depend on optical intensity, different parts of a pulse
exhibit different polarization changes. It is useful to plot variations of the SOP along the output
pulse on the Poincaré sphere. The instantaneous SOP of the pulse can be characterized by the
polarization ellipse inscribed by the tip of the electric field vector [79]. The time evolution
of SOP at the waveguide output is then represented by a closed trace on the Poincaré sphere.
Figure 7 shows how SOP changes for the most intense pulse in Fig. 6(a). Each trajectory on
the Poincaŕe sphere starting from the equator corresponds to a specific linear SOP of the input
pulse. Consider a pulse withϕ = π/10 portrayed by the trace AB. As intensity builds along
the leading edge of the pulse, anisotropic nonlinear effects come into force and start increasing
the ellipticity and azimuth of the instantaneous SOP (arc AA′). After the ellipticity and azimuth
peak at the pulse center with maximum intensity (point B), the efficiencies of the TPA and SPM
processes start to decrease (arc BB′), and the SOP returns to the initial linear SOP at the trailing
edge of the pulse (point A).

It is interesting to note that the arcs AA′B and BB′A on the Poincaŕe sphere nearly coincide.
A detailed analysis shows that this feature reflects the fact that pulse polarization predomi-
nantly changes in response to cross-intensity modulation of the TM and TE modes caused by
the degenerate four-wave mixing (FWM), rather than by the SPM-induced relative phase shift
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between the two modes. The relative nonlinear phase shift between the two polarization com-
ponentsis negligible for picosecond pulses in waveguides shorter than 1 mm, but it becomes
important in the quasi-CW regimes or for longer waveguides.

Visualization of the SOP on the Poincaré sphere also reveals the significance of polarization
angleϕ0 in Eq. (22). Whenϕ < ϕ0, the intensity of the TE mode builds up more slowly than
the intensity of the TM mode at the leading edge of the output pulse owing to cross-intensity
modulation; this results in the development of the right-handed elliptic polarization. In con-
trast, whenϕ > ϕ0, energy transfer between the two polarization components results in steeper
growth of the TM mode and in the development of the left-handed elliptic polarization. The
TM and TE modes excited by an optical pulse whose linear SOP is characterized by the angle
ϕ0 do not exhibit degenerate FWM and, therefore, do not interchange any energy.

5.4. Nonlinear switching through polarization changes

Nonlinear polarization rotation (NPR) in silicon waveguides can be used for optical switch-
ing [34, 36]. Switching of a linearly polarized CW signal is realized by launching an intense
pump into the waveguide, which changes the SOP of the CW signal and results in its partial
transmittance through the output polarizer (called the analyzer). If the signal is in the form of a
pulse, its intensity must be small enough to avoid nonlinear effects in the absence of the pump.
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Otherwise, different parts of the signal experience different amounts of NPR, and the signal
cannotbe completely blocked by the analyzer. This restriction on signal intensity can, however,
be lifted, if the signal is in the form of a CW beam.

To analyze the switching scenario in detail, we consider switching of a 200-THz CW beam
(wavelength 1.5µm) by 350-fs Gaussian pulses whose spectrum peaks at 210 THz. The in-
tensity of the CW beam is assumed to be 1 GW/cm2 so that it produces almost no nonlinear
effects. Figures 8(a)–8(c) show the analyzer transmittance or switching efficiency defined as the
ratio of the output signal energy (per unit area near the mode center) to the energy of a 350-fs
Gaussian pulse with a peak intensity of 1 GW/cm2. The analyzer is aligned perpendicular to
the linear SOP of the input CW beam, since modal birefringence is absent and signal intensity
is too low to cause significant NPR in the absence of the pump. It is evident that switching effi-
ciency depends strongly on polarizations of the pump and signal. For example, when the pump
excites either the TE or TM mode, the maximum switching efficiency is achieved for the signal
that excites both of them equally (i.e., forϕ = π/4); if the pump is initially polarized along the
directionϕ = π/4 (TE-TM case), maximum transmittance occurs forϕ = 0 andϕ = π/2 [see
Fig. 8(a)].

Large values of signal transmittance in Fig. 8 are a consequence of using subpicosecond
pump pulses and short waveguides. For a given free-carrier lifetime, the transmittance can be
maximized by varying the waveguide lengthL and the pump intensityIp0 [36]. The existence
of optimal values forL andIp0 is evidenced by the maxima seen in Figs. 8(b) and 8(c). Signal
profiles at the output of 0.1-, 0.2-, and 0.4-mm-long waveguides are shown in Fig. 8(d). It is
seen that the signal is similar in shape to the pump (although slightly asymmetric) in the case
of short waveguides. The asymmetry is produced by FCA, which predominantly attenuates the
trailing edge of the pump pulse and reduces the NPR that it causes. In longer waveguides, the
signal profile changes dramatically. For example, the profile exhibits a local minimum near the
point where the pump intensity peaks forL = 0.4 mm. This minimum in signal transmittance
is due to excessive NPR leading to partial restoration of the initial signal SOP.

5.5. Polarization dependence of Raman amplification

As a final example, we use our FDTD simulator to illustrate how the SOPs of two pulses,
separated in their carrier frequencies by the Raman shift, affect the efficiency of the SRS process
that is responsible for Raman amplification. Both the signal and pump pulses are assumed to
be 1.4-ps Gaussian pulses with peak intensities of 1 and 100 GW/cm2, respectively. Figure 9
shows the evolution of the peak intensity of the signal pulse along the waveguide length for
different SOPs of the input pulses. As can be seen there, no SRS occurs, if both the pump and
signal pulses propagate in the form of TM modes, a well-known result for silicon waveguides
fabricated along the[110]direction [53,54,75].

The different evolutions of the signal peak intensity along the waveguide length for three
other polarization combinations (the blue, green, and red curves) are due to the anisotropy of
the TPA and SRS phenomena. The Raman amplification is considerably stronger when the
pump and signal are launched with orthogonal SOPs, a result that does not appear to have been
fully appreciated in the literature on silicon Raman amplifiers. It should also be noted that the
reduction of peak signal intensity with increasing waveguide length is caused not only by the
cumulative nature of FCA, but also by FWM and CARS [19, 63]. Calculation of the output
signal intensity for other possible polarizations of the pump and signal is required to optimize
the performance of silicon Raman amplifiers.
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Fig. 9. Peak intensity of TM- and TE-polarized signals amplified via SRS by TM-and
TE-polarized pumps. Both input signal and input pump are assumed to be 1.4-ps Gaussian
pulses with peak intensities of 1 and 100 GW/cm2, respectively; carrier frequencies are
200 and 215.6 THz;gR = 76 cm/GW; other parameters are given in the text.

6. Conclusions

We have presented a comprehensive three-dimensional FDTD model for studying nonlinear op-
tical phenomena in silicon waveguides, which allows—for the first time to our knowledge—for
anisotropy of the Kerr effect, two-photon absorption, and stimulated Raman scattering. Based
on our model, we developed a computationally efficient FDTD algorithm suitable for simulating
polarization-dependent propagation of optical pulses through silicon waveguides. We applied
this algorithm to examine several polarization effects that are most favorable for applications.
In particular, we demonstrated that the developed algorithm can be used for the optimization of
Kerr shutters and silicon Raman amplifiers. Wherever possible, we compared our findings with
available experimental data and theoretical results obtained within the framework of the slowly
varying envelope approximation. The comparison revealed a high accuracy of our FDTD sim-
ulator within its applicability domain. Owing to its generality in handling complex waveguide
geometries and short optical pulses, our FDTD simulator is very useful for testing the suitabil-
ity of anisotropic nonlinearities for different silicon-based photonic devices. Also, we envision
using it as a testing vehicle for nonlinear differential equations that describe specific anisotropic
phenomena in silicon waveguides.
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