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Abstract: Thenonlinear process of stimulated Raman scattering is impor-
tant for silicon photonics as it enables optical amplification and lasing. To
understand the dynamics of silicon Raman amplifiers (SRAs), a numerical
approach is generally employed, even though it provides little insight into
the contribution of different SRA parameters to the signal amplification
process. In this paper, we solve the coupled pump–signal equations an-
alytically under realistic conditions, and derive an exact formula for the
envelope of a signal pulse when picosecond optical pulses are amplified
inside a SRA pumped by a continuous-wave laser beam. Our solution
is valid for an arbitrary pulse shape and fully accounts for the Raman
gain-dispersion effects, including temporal broadening and group-velocity
reduction (a slow-light effect). It can be applied to any pumping scenario
and leads to a simple analytic expression for the maximum optical delay
produced by the Raman dispersion in a unidirectionally pumped SRA.
We employ our analytical formulation to study the evolution of optical
pulses with Gaussian, exponential, and Lorentzian shapes. The ability
of a Gaussian pulse to maintain its shape through the amplifier makes
it possible to realize soliton-like propagation of chirped Gaussian pulses
in SRAs. We obtain analytical expressions for the required linear chirp
and temporal width of a soliton-like pulse in terms of the net signal gain
and the Raman-dispersion parameter. Our results are useful for optimiz-
ing the performance of SRAs and for engineering controllable signal delays.
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1. Introduction

Despiteinherent nonlinear losses, which at high optical powers can diminish the advantages
offered by silicon-on-insulator (SOI) technology, SOI waveguides hold strong potential for
applications in future telecommunication industry [1–3]. The high refractive index of silicon
(3.5 versus 1.5 in fused silica) and its large third-order nonlinearities are the main reasons
behind the SOI platform being a promising candidate for on-chip optoelectronic integration
[4–6]. An important point is that the strong localization of the optical field reduces the power
required for manifestation of the nonlinear effects inside an SOI waveguide. Indeed, only a
few centimeters of propagation through a silicon waveguide are required for two optical beams
to change their spectra, energy, phase, and polarization owing to stimulated Raman scattering
(SRS), self-phase modulation (SPM), cross-phase modulation (XPM), and free-carrier effects
[7–14]. To better understand the advantages of silicon over fused silica for all-optical signal
processing, it is worth comparing the efficiency of the Kerr and Raman effects in these two
media.

The relative efficiency of the third-order nonlinear processes in silicon waveguides and opti-
cal fibers can be estimated by multiplying the ratio of the corresponding nonlinear coefficients
by a nonlinear reduction factor (NRF), which characterizes the attenuation of nonlinear effects
in silicon as compared to silica glass. We define the NRF as the ratio of the intensity integrals for
two beams of equal powers propagating through a silicon waveguide and an optical fiber [15],
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Fig. 1. Nonlinear reduction factor (NRF) as a function of input power for typical silicon
waveguides compared to optical fibers. As the free-carrier lifetime is reduced, NRF in-
creases and approaches the limit determined by TPA (top curve). The right scale shows the
enhancement of SRS efficiency in silicon waveguides over silica fibers, obtained by multi-
plying NRF with the ratio of the Raman gain coefficients for silicon and silica (taken to be
2000).

i.e., NRF= ISi/If , where ‘f’ stands for fiber,

I j = lim
L≫α−1

j

∫ L

0
I j(z)dz ( j = Si or f),

α j is the linear loss coefficient, andL is the propagation distance. Since the optical intensity
decays exponentially inside fibers,If is proportional to the incident intensity,If = P/(Afαf),
whereP is the input power andAf is the mode area [15].

A more complex picture occurs in silicon waveguides, where the dominant mechanism of
optical losses depends on the local field intensity. At high incident powers, free-carrier absorp-
tion (FCA) is stronger than two-photon absorption (TPA) and linear losses, near the waveguide
input. As the signal intensity decays with propagation, FCA weakens and either TPA or lin-
ear loss starts to dominate. Assuming that nonlinear losses are higher than the linear ones, the
results of Refs. [16–18] yield the following functional form forISi:

ISi =























(

4πh̄c

στβλαSi

)1/2

tan−1

[( στβλ
4πh̄cαSi

)1/2 P

ASi

]

in the weak TPA regime,

1

β
ln

(

1+
β

αSi

P

ASi

)

in the weak FCA regime,

whereASi is the effective mode area,τ is the effective free-carrier lifetime,β is the TPA coeffi-
cient,λ is the wavelength, andσ = 1.45×10−21m2. Figure 1 shows NRF for the typical values
αf = 1 dB/km,Af = 100µm2, αSi = 1 dB/cm,ASi = 0.1 µm2, andλ = 1.55 µm. One can see
that nonlinear effects in an optical fiber would be much more intense compared with a silicon
waveguide if their nonlinear coefficients were the same. This is a consequence of the absence
of nonlinear absorption in silica fibers. In the case of silicon waveguides, NRF decreases ow-
ing to a sharp rise in TPA and FCA as the input power is increased. Fortunately, the Kerr and
Raman coefficients in silicon are, respectively, more than 100 and 2000 times larger than those
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in optical fibers. Therefore, at power levels below 1 W, the Kerr-related phenomena are almost
equallypronounced in cm-long SOI waveguides and km-long optical fibers. The situation is
even better for SRS in SOI waveguides (see the right scale in Fig. 1).

SRS in silicon has been studied extensively in recent years [19–25], after it was found to be
capable of producing a net optical gain [26–30]. Continuous-wave (CW) Raman amplification
and lasing have received considerable theoretical attention [31–37], because of their relatively
simpler description compared with nonstationary problems. In the case of pulses, the over-
whelming majority of studies rely on numerical methods, which hinder comprehension of the
underlying processes and also make it difficult to generalize the results. A remarkable exception
to this statement is the work of Royet al. [38], who used an elegant semi-analytical method to
analyze the amplification of signal pulses by a CW pump, and with this were able to reach a
number of valuable general conclusions.

In this paper we derive, for the first time to the best of our knowledge, an analytical solution
that describes Raman amplification of anarbitrary optical pulse in silicon waveguides under
CW pumping. The solution takes into consideration the finite width of the Raman gain spectrum
and accounts for the related slow down of the pulse resulting from the SRS-induced changes in
its group velocity. The structure of the solution allows one to easily analyze the amplification
process under different pumping geometries, including the situation of bidirectional pumping.
For pulses of specific shapes, analytical expressions describing the evolution of their envelopes
can be obtained from the general solution. We derive such expressions for optical pulses with
Gaussian, exponential, and Lorentzian profiles. It is well known that, due to large optical losses,
silicon waveguides do not support temporal solitons in the ordinary sense [39–43]. We show
in this paper how a chirped Gaussian pulse can completely restore its intensity profile after
passing through a silicon Raman amplifier.

2. Exact analytical solution of pulse propagation in silicon Raman amplifiers

2.1. Propagation equation for the signal pulse being amplified

Consider amplification of a signal pulse with carrier frequencyωs, passing through a silicon
waveguide, pumped by a CW laser beam at frequencyωp. In many practical situations, the
pump is not depleted much by the signal pulse, and we can assume its intensityIp to remain
time-independent. In this approximation, the equation for the Fourier-transformed signal enve-
lopeÃs(z,ω −ωs) has the form [38,44]

1

Ãs

∂ Ãs

∂z
− iβ1sω − iβ2s

ω2

2
= − αs

2
− (βs+2iγs)Ip(z)−

(

ξr

2
+ iξi

)

I2
p(z)+GR(ω)Ip(z), (1)

whereβ1s andβ2s are the first-order and second-order dispersion parameters;αs andβs are the
linear-loss and TPA coefficients;γs = (ωs/c)n2, n2 = 6×10−5 cm2/GW is the nonlinear Kerr
parameter, andc is the speed of light in vacuum. The FCA parameterξr and the free-carrier
dispersion (FCD) parameterξi are related to the effective free-carrier lifetimeτc and the TPA
coefficientβp at the pump frequency as

ξr = σr(ω0/ωs)
2τcβp/(2h̄ωp), ξi = (σi/σr)(ωs/c)ξr , ω0 = 2πc/(1.55µm),

σr = 1.45×10−21m2, σi = 5.3×10−27m3.

The first three terms on the right side of Eq. (1) represent linear absorption, non-resonant
third-order effects of cross-TPA and cross-phase modulation (XPM), and the free-carrier ef-
fects. The last term accounts for SRS characterized by the gain spectrum [18]

GR(ω) =
gR

2
ωs

ωp

ΩR

Ω0

[

γR

γR− i(ω −Ωps+Ω0)
− γR

γR− i(ω −Ωps−Ω0)

]

, (2)
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wheregR = 20 cm/GW is the Raman gain coefficient,ΩR = 15.6 THz is the Raman shift,
Ω0 = (Ω2

R− γ2
R)1/2, 2γR ≈ 106 GHz is the full width at half maximum (FWHM) of the Raman

gain spectrum, andΩps = ωp−ωs > 0.
In practice, the difference between the pump and signal frequencies is so close toΩR ≈

Ω0 that the first term in the square brackets in Eq. (2) dominates, and the second term can
be neglected. In this case, propagation of the signal is governed by the effective dispersion
parameters

β eff
1s (Ip,ωp) = β1s− iI p(z)

dGR

dω

∣

∣

∣

∣

ω=0
≈ β1s+

ĝR

2
γR

[γR+ i(Ωps−ΩR)]2
Ip(z),

β eff
2s (Ip,ωp) = β2s− iI p(z)

d2GR

dω2

∣

∣

∣

∣

ω=0
≈ β2s− iĝR

γR

[γR+ i(Ωps−ΩR)]3
Ip(z),

whereĝR = (ωs/ωp)gR. These expressions show that, when|Ωps−ΩR| . γR, the inclusion
of Raman dispersion leads to a reduction in the group velocity of the signal and a decrease
in Raman gain. The extent of these changes is proportional to the intensity of the pump and
depends on the pump frequency. This feature allows one to tune the frequency of the maximal
group delay within the signal bandwidth by changingωp, and to control the delay time by
varying pump intensity [45].

The amplification of sufficiently long optical pulses with maximum efficiency occurring at
Ωps = ΩR deserves further consideration. Assuming that the temporal width of the signal pulse
is larger than the gain-dispersion parameterTR = γ−1

R ≈ 3 ps, we can approximate gain profile
by the function

GR(ω) ≈ ĝR

2
γR

γR− iω
≈ ĝR

2

(

1+
iω
γR

− ω2

γ2
R

)

.

Using this result to convert Eq. (1) into the time domain, we arrive at the following equation
for signal envelopeAs(z,t):

∂As

∂z
+

[

β1s+
1
2

ĝRTRIp(z)

]

∂As

∂ t
+

1
2

[

iβ2s+ ĝRT2
R Ip(z)

]∂ 2As

∂ t2

=

[

− αs

2
+

(

ĝR−2βs

2
+2iγs

)

Ip(z)−
(

ξr

2
+ iξi

)

I2
p(z)

]

As. (3)

This equation should be solved together with boundary conditionAs(0,t) = f (t), where f (t)
is the input pulse profile. Once the solution is found, the evolution of signal power inside
the silicon Raman amplifier (SRA) of a given effective mode areaAeff is given byPs(z,t) =
|As(z,t)|2Aeff.

2.2. Propagation equation for the CW pump and its solution

We start by considering the simplest situation in which a single-pass SRA of lengthL is pumped
using a CW pump of intensityI0. In the undepleted-pump approximation, the attenuation of
pump can be found from the equation

± 1
Ip(z)

dIp(z)

dz
= −αp−βpIp(z)−ξpI2

p(z), (4)

whereαp is the linear-loss coefficient at pump wavelength andξp = (ωs/ωp)
2ξr . The plus

(minus) sign applies to forward-pumped (backward-pumped) SRA.
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Equation (4) has an explicit solution in the regime of weak TPA, applicable whenβ 2
p ≪αpξp

[16,46]. Assuming this to be the case, we obtain the pump intensity in the form

I±p (z) =
I0exp[∓αp(z−δ±)]

√

1+ I2
0(ξp/αp){1−exp[∓2αp(z−δ±)]}

, (5)

whereδ± = L(1∓1)/2 specifies the location of pump launching. Notice thatI+
p (z) =I−p (L−z);

that is, the intensity profiles of two pumps propagating in opposite directions are the mirror
image of each other around the amplifier’s center. For compactness, we omit the superscripts±
in all the functions of propagation distance in the rest of this paper, unless necessary for clarity.

Using Eq. (5), we can introduce an effective propagation length as [32,44]

Leff(z) =
1
I0

∫ z

0
Ip(z

′)dz′ = ± tan−1[Ip(0)
√

ξp/αp]− tan−1[Ip(z)
√

ξp/αp]

I0
√

αpξp
. (6)

Equations (5) and (6) show that the effective propagation length in a forward-pumped SRA
exceeds that in a backward-pumped SRA forz< L, all other factors being equal. However, the
effective length of SRA,Leff(L), is the same for both pumping configurations.

The situation becomes more complex in the case of bidirectional pumping. This pumping
geometry may be preferable to the unidirectional pumping in long SRAs, if it is required to
get the maximal gain, and in short SRAs, if the object is to have the longest pulse delay. The
intensities of forward- and backward-traveling waves inside the SRA pumped from both ends
obey the equations

± 1
I±

dI±
dz

≈−αp−ξp
(

I2
+ + I2

− +4I+I−
)

.

These equations are readily integrated to obtain [46]

I+(z) =
√

a coth(qz+C2)−b, I−(z) =C1/I+(z),

wherea = q/(2ξp), b = 2C1 + αp/(2ξp), andq =
√

(αp +2ξpC1)(αp +6ξpC1). Ignoring, as
before, the reflections of pumps from amplifier facets, we can find the integration constantsC1

andC2 from the system
I+(0) = η I0, I−(L) = (1−η)I0,

whereη determines the amount of the total pump intensity launched atz= 0.
The effective propagation length in the bidirectionally pumped SRA is defined as

Leff(η ,z) =
1
I0

∫ z

0
[I+(z′)+ I−(z′)]dz′ =

T(0)−T(z)

I0
(√

b+a+
√

b−a
)

ξp
,

where

T(z) = tan−1
(

I+(z)√
b+a

)

+ tan−1
(

I+(z)√
b−a

)

.

It is easy to see that, since the pump is undepleted, the effective length exhibits the property
Leff(η ,L) = Leff(1−η ,L). Thus, values ofη ’s in the range 0.5≤ η ≤ 1 provide all possible
signal gains.

Figure 2 shows the effective length of a typical, 1-cm-long SRA with 100, 85, and 50%
of forward pumping (left panel). One can see that bidirectional pumping may increase the
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Fig. 2. Effective length of bidirectionally pumped, 1-cm-long SRA (left panel) and integral
intensity (left and right panels) for different contributions of the forward pumping. The
green curve on the left panel shows, for comparison, the case of a SRA without nonlinear
losses. In the calculations, we usedλp = 1434 nm,αp = 1 dB/cm, andτc = 1 ns.

effective length of the amplifier by reducing nonlinear losses at high input intensities, but it can
also reduce it by introducing cross-TPA when pump intensities are low. The variations in the
effective length withI0 andη result in similar variations of the intensity integral,I0Leff(η ,L),
shown in both panels of Fig. 2. As we shall see later, the intensity integral of the pump is crucial
for the Raman delay experienced by the signal from Raman-gain dispersion (see right panel in
Fig. 2).

2.3. Analytic solution of the propagation equation for signal pulses

The linear partial differential equation (3) can be solved in quadratures for an arbitrary inten-
sity profile of a CW pump and arbitrary signal envelopef (t). We first consider unidirectional
pumping and obtain a general closed-form solution in this case by using Eqs. (5) and (6).

Introducing the generalized retarded time,

ζ (z,t) = t −β1sz−
1
2

ĝRTR

∫ z

0
Ip(z

′)dz′ = τ(z,t)− 1
2

ĝRTRI0Leff(z), (7)

whereτ(z,t) = t −β1sz, we can rewrite Eq. (3) in the form

∂As

∂z
+

B(z)

2
∂ 2As

∂ζ 2 =
G (z)

2
As, (8)

whereB(z) andG (z)are the functions ofzonly.
The solution of Eq. (8) can be factorized in the form

As(z,ζ ) = a[χ(z),ζ ]exp[ψ(z)/2], (9)

where

χ(z) =
∫ z

0
B(z′)dz′ = ĝRT2

R I0Leff(z)+iβ2sz, (10)

ψ(z) =
∫ z

0
G (z′)dz′ = −αsz+(ĝR−2βs+4iγs)I0Leff(z)− (1+2iξi/ξr)Q(z), (11)

Q(z) =ξr

∫ z

0
I2
p(z

′)dz′ =
ω2

p

ω2
s

(

± ln
Ip(0)

Ip(z)
−αpz

)

.
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Substituting Eq. (9) in Eq. (8), the functiona(χ,ζ ) is found to obey the diffusion equation

2
∂a
∂ χ

=
∂ 2a
∂ζ 2 ,

whose solution with the boundary conditiona(0,τ) = f (τ) is given by [47]

a(χ,τ) =
1√
2πχ

+∞
∫

−∞

f (τ +u)exp

(

− u2

2χ

)

du. (12)

Since Reχ > 0, this integral converges for all physically admissible pulse profilesf (τ). Equa-
tions (7) and (9)–(12) allows one to find the evolution of signal envelopeAs(z,t) for an arbitrary
input profile f (t); they constitute one of the major results of our paper.

The situation of bidirectional pumping can be described in a similar fashion. To apply the
above solution in this case, one needs to replaceLeff(z)by Leff(η ,z)and use

Q(z) =ξr

[

C1

2q

(

K+ ln
G+(z)
G+(0)

−K− ln
G−(z)

G−(0)

)

+
a
q

ln

(

sinh(qz+C2)

sinhC2

η2I2
0

I2
+(z)

)

−bz

]

with K± = 4−
√

(b∓a)/(b±a) andG±(z) =coth(qz+C2)±1.

3. Raman amplification in SRAs based on our analytic solution

3.1. General features of Raman amplification for picosecond pulses

Several general conclusions can be drawn by examining the structure of our analytic solution,
even without specifying a particular shape of the signal pulse. First, since the values of the
functionsζ , χ , andψ at the amplifier outputz = L are the same for forward-traveling and
backward-traveling pumps,the gain provided by a unidirectionally pumped SRA does not de-
pend on the pumping direction in the undepleted-pump regime.In other words, even though the
dynamics of a signal pulse inside a SRA differ for the forward- and backward-pumping config-
urations, the output signal pulse profiles do not. The backward-pumping geometry is preferable
though, as it enables better noise performance by lowering noise transfer from the pump to the
signal [48].

Second, Eq. (12) shows that a signal pulse with initially symmetric envelope[ f (t) = f (−t)]
preserves its temporal symmetry as it propagates through the amplifier. The spatial symmetry
of the pulse still breaks inside the waveguide, in the sense that the pulse profile is not symmetric
around the point of its peak intensity.

Third, the delay of signal pulse—accumulated over amplifier length owing to the effect of
Raman dispersion—is proportional to the integral of the pump intensity,

∫ L
0 Ip(z)dz. In the

case of unidirectional pumping, this slow-light contribution is given by the remarkably simple
expression

∆ζ =
1
2

ĝRTRI0Leff(L).

The delays calculated when a 1.434-µm pump is used to amplify a 1.55-µm signal pulse are
shown on the right scale in Fig. 2. Since, according to Eq. (6), the productI0Leff(L) saturates
with both incident pump intensity and amplifier length, the maximum delay produced by a CW
pump of intensityI0 is given by

∆ζmax(I0) =
1
2

ĝRTR
tan−1

(

I0
√

ξp/αp
)

√

αpξp
.
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Since the maximum value of tan−1x is π/2 in the limit x→ ∞, it is evident that FCA imposes
a fundamental upper limit on the Raman delay time given by

∆T =
π
4

ĝRTR
√

αpξp
.

For example, ifαpξp = 20β 2
p = 5 (cm/GW)2 andgR = 20 cm/GW, then∆T ≈ 7TR ≈ 21 ps.

Hence, a relatively narrow bandwidth of the Raman gain spectrum allows one to create substan-
tial tunable delays, even for 10-ps signal pulses [38,45]. It is important to note that∆T increases
with decreasing values of the free-carrier lifetime and linear-loss coefficient as(αpτc)

−1/2. In
the absence of FCA(τc = 0), the intensity integral does not saturate (see Section 1), and pulse
delays can grow unrestrictedly with increasing pump power.

Fourth, the evolution of pulse energy is governed only by the real parts of the functionsχ(z)
andψ(z),

χ ′(z) = ĝRT2
R I0Leff(z), ψ ′(z) =−αsz+(ĝR−2βs)I0Leff(z)−Q(z).

In particular, for real-valued envelopesf (τ), the total energy of the pulse is given by (see the
Appendix)

W(z) =Aeff exp[ψ ′(z)]

+∞
∫

−∞

a[2χ ′(z),τ] f (τ)dτ. (13)

This integral allows for a finite Raman response time; ifTR formally tends to zero, the integral
approaches its maximum valueW0/Aeff, W0 being the energy of the input pulse. For this reason,
the quantityG = exp[ψ ′(L)] can be identified as the maximum signal gain provided by SRA
in the limit of the instantaneous Raman response. The dependance ofG on the incident pump
intensity and its fraction launched in the forward direction, is shown in Fig. 3. It can be seen
that, at moderate pump powers, the maximum signal gain begins to decrease as the effective
length increases (see left panels in Figs. 2 and 3), thereby restricting the possibility of achieving
long delays and strong amplification simultaneously.

It is worthwhile to note that, if∆ζ ≪ L/c and the slow-light effects can be ignored, Eq. (3)
reduces to Eq. (1) from Ref. [38], with|Ep|2 ≫ |Es|2. Thus, our solution not only covers and
extends the results of Ref. [38], but it also has the form that is much more favorable for the
analysis.
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3.2. Evolution of pulse energy and envelope for three specific pulse shapes

To illustrate the application of the general solution (9)–(12), we consider three unchirped input
pulses with energyW0 and FWHMτ0,

f1(τ) =
ϖ1

π1/4
exp

(

− τ2

2τ2
1

)

, f2(τ) =
ϖ2√

2
exp

(

− |τ|
2τ2

)

, f3(τ) = ϖ3

√

2
π

τ2
3

τ2 + τ2
3

,

whereϖ j =
√

W0/(τ jAeff), τ1 = τ0/(2
√

ln2), τ2 = τ0/(2ln2), andτ3 = τ0/
(

2
√

21/2−1
)

. For
these pulses, the integral in Eq. (12) has the following closed forms:

a1(χ,τ) =
ϖ1

π1/4

τ1
√

τ2
1 + χ

exp

(

− τ2

2(τ2
1 + χ)

)

,

a2(χ,τ) =
ϖ2

2
√

2

[

erfc

(

χ +2τ2τ
2τ2

√
2χ

)

eτ/(2τ2) +erfc

(

χ −2τ2τ
2τ2

√
2χ

)

e−τ/(2τ2)

]

eχ/(8τ2
2),

a3(χ,τ) = ϖ3
τ3

2
√χ

[

erfc

(

τ3 + iτ√
2χ

)

e(τ3+iτ)2/(2χ) +erfc

(

τ3− iτ√
2χ

)

e(τ3−iτ)2/(2χ)

]

,

where erfcx is the complementary error function. Using Eq. (13), it is easy to show that the
energies of the three pulses evolve along the SRA length as

W1(z) =W0
τ1

√

τ2
1 + χ ′

expψ ′, W2(z) =W0erfc

(

√

χ ′

2τ2

)

exp

(

χ ′

4τ2
2

+ψ ′
)

,

W3(z) =W0
τ2

3
√

πχ ′ expψ ′
+∞
∫

−∞

erfc

(

τ3 + iτ
2
√

χ ′

)

exp[(τ3 + iτ)2/(4χ ′)]

τ2 + τ2
3

dτ.

We note that the SRS-induced energy enhancement for two of these pulses depends on a single
dimensionless parameter

√

χ ′/(2τ0).
Our analytic solution shows that while a Gaussian pulse preserves its temporal profile

throughout the amplifier length, the exponential and Lorentzian pulses do not. This is a well
known feature of linear systems, which in our case holds owing to the adopted approximation
for the Raman gain profile. As a result, the intensity and nonlinear phase shift can be expressed
using elementary functions only for a Gaussian pulse and are given by

I(z,ζ ) = |As(z,ζ )|2 =
ϖ2

1√
π

τ2
1

√

(τ2
1 + χ ′)2 +(χ ′′)2

exp

(

− (τ2
1 + χ ′)ζ 2

(τ2
1 + χ ′)2 +(χ ′′)2

+ψ ′
)

, (14)

φNL(z,ζ ) = Arg[As(z,ζ )] = S

{

1
2

[

χ ′′ζ 2

(τ2
1 + χ ′)2 +(χ ′′)2

− tan−1
(

χ ′′

τ2
1 + χ ′

)

+ψ ′′
]}

, (15)

whereχ ′′ = Im χ andψ ′′ = Imψ. The operatorS(x) = x−2π〈x/(2π)〉, where〈a〉 denotes the
integer closest toa, shifts the phase into the interval−π ≤ φNL(z,ζ )≤ π. Since the propagation
of a Gaussian pulse is of practical interest, we consider it in more detail.

3.3. Soliton-like propagation of chirped Gaussian pulses in SRAs

Equation (14) shows that an unchirped Gaussian pulse always spreads, due to both group-
velocity dispersion and Raman dispersion. However, if the input pulse has a sufficiently large
linear chirpσ , it may undergo a compression stage due to its increased spectral bandwidth [38].
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This interesting phenomena can be used to realize gain-assisted soliton-like propagation, such
thatboth the amplitude and width of the signal pulse are restored to their initial values at the
end of the amplifier.

To find the parameters of the soliton-like pulse, we first use our analytic solution to find the
temporal width and the peak intensity of a chirped Gaussian pulse at the output end of the SRA:

Tσ =

(

(τ2
1 + χ ′ +σ χ ′′)2 +(χ ′′−σ χ ′)2

τ2
1 +(1+σ2)χ ′

)1/2

, Iσ ∝
τ2

1 exp(ψ ′)

Tσ

√

τ2
1 +(1+σ2)χ ′

.

The first equation shows that it is always possible to find a chirp that results inTσ = τ1 at the
end of the amplifier. The required chirp obeys the equation

(σ2−1)χ ′τ2
1 −2σ χ ′′τ2

1 = (1+σ2)|χ|2. (16)

At the same time, since equal amplitudes for the input and output pulses are also required,
another condition should be satisfied,

τ2
1(G2−1) = (1+σ2)χ ′. (17)

As the chirp results in additional losses, the soliton-like propagation is only possible in the
presence of a net gain(G > 1).

Solving Eqs. (16) and (17), where all the functions are considered atz= L, we obtain

σ =
χ ′′±|χ|G

χ ′ ≈±G, (18)

τ1 =
|χ|

√

χ ′

(

G2±2(χ ′′/|χ|)G+1
G2−1

)1/2

≈
√

χ ′ cothψ ′, (19)

where we took into account thatχ ′ ≈ |χ| ≫ χ ′′ for typical operation conditions of SRAs. The
values of the chirp enabling soliton-like propagation for 1- and 5-cm-long SRAs can be inferred
from Fig. 3, whereG is plotted as a function of pump intensityI0. Usingσ from Eq. (18) and
τ1 from Eq. (19), the energy of the soliton-like pulse is found to evolve along the SRA length
as

Ws(z) =
W0exp[ψ ′(z)]

√

1+(G2−1)χ ′(z)/χ ′(L)
.

4. Numerical examples and discussion

For a numerical example illustrating the analytic results obtained in the previous section, we
consider the pump at 1.434 µm and assume that a signal pulse at 1.55 µm propagates in the
form of a TE mode with the effective areaAeff = 0.18µm2. Assuming propagation in the regime
of normal dispersion characterized by the parameterD = −1ps/(m×nm), we findβ2s using
β2s =−(2πc/ω2

s )D. We also use parameter valuesαs = αp = 1 dB/cm,βp = βs = 0.5 cm/GW,
andgR = 20 cm/GW.

Figure 4 shows how the intensity profiles of (1) Gaussian, (2) exponential, and (3) Lorentzian
pulses change in a forward-pumped SRA. The initial energy (1 pJ) and initial width (τ0 = 10 ps)
are the same for all three pulses. One can see that the pulses exhibit substantial broadening,
dominated by the Raman dispersion. Specifically, the FWHM of the Gaussian pulse increases

according to the equationTG(z)≈ τ0
[

1+2TR∆ζ (z)/τ2
1

]1/2
, which givesTG(L)/τ0 ≈ 1.5. Since
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both panels. Other parameters are given in the text.

the exponential and Lorentzian pulses have wider spectra than that of a Gaussian pulse(τ1 >
τ2 > τ3), they broaden faster. The other effect of Raman dispersion is the delay of all three
pulses by∆ζ ≈ 6.8 ps (see Fig. 2) at the output of SRA. The delay is proportional to the
Raman gain coefficient and can be several times higher, if the largest reported value ofgR is
used for numerical simulations [49]. The right panel in Fig. 4 shows the energy enhancement
of exponential and Lorentzian pulses at the end of 1-cm-long amplifier. As seen from this
panel, the Lorentzian pulse always gains more energy than a Gaussian pulse of the same width,
irrespective of the pump intensity. The energy of exponential pulse is smaller than that of a
Gaussian pulse forτ0 > 10 ps, but may exceed it at high pump powers, whenτ0 . 5 ps. Recall
that the analytical solution becomes less accurate as the width of pulse approaches the gain-
dispersion parameterTR ≈ 3 ps.

The dynamics of a soliton-like, chirped Gaussian pulse is presented in Figs. 5(a) and 5(b) for
forward and backward pumping, respectively. When the pulse enters the SRA, it experiences
strong absorption [see Fig. 5(d)] and temporal compression, regardless of the pumping con-
figuration. The difference in profile evolution for the two pumping directions is related to the
different rates of FCA. In the case of forward pumping, losses caused by an increased signal
bandwidth and a large FCA act together near the front end, leading to a considerable decay in
the peak intensity. In a backward-pumped SRA, FCA induces net loss just near the output, and
the compression is accompanied with a growth in the peak power. After the absorption stage,
signal starts accumulating energy and broadens until it acquires its initial peak intensity and
width at the end of the amplifier. The value of chirp in Figs. 5(a) and 5(b) is approximately
equal to 7.1 (see Fig. 3). The width of the pulse,τ0 ≈ 10.9 ps, can be found from Fig. 5(c).
As seen from this figure, FWHM of the soliton-like pulse is larger in bidirectionally pumped
amplifiers and strongly depends on the pump intensity.
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Fig. 5. Soliton-like evolution of a Gaussian pulse in (a) forward- and (b) backward-pumped,
1-cm-long SRA. (c) Input FWHM of the soliton-like pulse for 0.2-, 1-, and 5-cm-long
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100% to zero.I0 = 1 GW/cm2 in panels (a), (b), and (d);W0 = 1 fJ andτc = 1 ns for all
panels. Other parameters are given in the text.

5. Conclusions

In this work, we presented—for the first time to the best of our knowledge—an exact analytical
solution for the amplification of picosecond pulses (with an arbitrary shape) in a CW-pumped
SRA. The solution is applicable in a wide range of practical situations in which the undepleted-
pump approximation and the parabolic fit for the Raman gain profile remain valid. With the
obtained solution, we analyzed the specific features of pulse amplification in unidirectionally
and bidirectionally pumped SRAs. In particular, we found an analytic expression for the max-
imum Raman-dispersion-induced group delay (a slow-light effect) that can be achieved for a
given pump intensity. We also analyzed how the envelopes and energies of Gaussian, expo-
nential, and Lorentzian pulses evolve during the amplification process. The analysis reveals
that a Gaussian pulse—which preserves its shape during Raman amplification—can demon-
strate a soliton-type behavior if it is appropriately chirped at the input end. The linear chirp
and temporal width, required to realize such soliton-like propagation, are derived analytically.
Our solution provides a clear insight into the Raman amplification process of optical pulses in
silicon waveguides, and offers a simple analytical tool that may prove essential for optimization
of the amplifier performance.
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Appendix

According to Eqs. (9) and (12), the energy of signal pulse,W(z) = Aeff
∫ +∞
−∞ |As(z,τ)|2dτ, is

proportional to the integral

I (χ) =
1

2π|χ|

+∞
∫

−∞

dτ
+∞
∫

−∞

du

+∞
∫

−∞

du′ f (τ +u)[ f (τ +u′)]∗exp

(

− u2

2χ
− u′2

2χ∗

)

,

where an asterisk denotes complex conjugation. Introducing new variables,q = τ +u andN =
u−u′, we can evaluate this integral as

I (χ) =
1

2π|χ|

+∞
∫

−∞

dq f(q)

+∞
∫

−∞

dN[ f (q−N)]∗exp

(

− N2

2χ

) +∞
∫

−∞

du′ exp

(

− χ ′u′2

|χ|2 − Nu′

χ

)

=
1

√

4πχ ′

+∞
∫

−∞

dq f(q)

+∞
∫

−∞

dN[ f (q−N)]∗exp

(

− N2

4χ ′

)

=

+∞
∫

−∞

dq f(q)[a(2χ ′,q)]∗.

For f (τ) = f ∗(τ), the last integral coincides with the integral in Eq. (13).
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