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We study the supercontinuum process in optical fibers numerically for a variety of dispersion profiles to
investigate how a specific dispersion profile controls the emission of dispersive waves. We conclude that the
number of zero-dispersion points in the dispersion profile of a fiber is an excellent predictor of the
dispersive-wave peaks when it is pumped with femtosecond pulses in the anomalous dispersion regime. Our
study reveals that two or more such peaks can form on the same side of the input wavelength in specially
designed and practically achievable dispersion profiles. We show that dispersive waves are emitted even in
the case of normal dispersion where soliton fission does not occur. We suggest that a phenomenon related to
soliton spectral tunneling is responsible for this radiation. Distinct dispersive peaks may also appear when an
optical pulse, launched in the normal dispersion region, later begins to propagate in the anomalous
dispersion regime because of its spectral broadening. Several dispersion profiles are numerically employed to
show how the soliton fission process creates non-solitonic radiation even under normal dispersion pumping.
A time-domain picture clearly shows this radiation when the conventional phase matching condition is
satisfied. We also propose a realistic photonic crystal fiber with a dispersion profile that supports dispersive-
wave generation in the normal-dispersion region. Our study should prove useful for experiments designed to
control the generation of blue light by launching femtosecond pulses into optical fibers.
l rights reserved.
© 2010 Elsevier B.V. All rights reserved.
1. Introduction

Soliton dynamics play a pivotal role in the process of super-
continuum generation occurring when an ultrashort optical pulse is
launched in the anomalous-dispersion regime of a nonlinear
waveguide such as an optical photonic crystal fiber [1]. In particular,
the ideal periodic evolution of a higher-order soliton is perturbed by
third- and higher-order dispersions (HOD) to the extent that it breaks
into its fundamental components, a phenomenon known as soliton
fission [2]. During the fission process, the HOD terms lead to transfer
of energy from the soliton to a narrowband resonant dispersive wave
(DW), also called non-solitonic radiation [3–5]. This DW is emitted on
the blue side of the original pulse spectrum for positive values of
third-order dispersion and is of practical importance for generating
blue-shifted radiation. The frequency of the DW is accurately
determined by a phase-matching condition [4] in the form of a
polynomial whose coefficients depend on the numerical values of
third, fourth, and other HOD terms. Such a phase-matching condition
clearly indicates that dispersion profile plays a dominant role in
controlling DWs.
In a recent paper [6] we studied how the individual dispersion
coefficients and their numerical signs affect dramatically the
formation of DWs. In particular, we concluded that all odd-order
dispersion terms produce a single DW, whereas positive even-order
dispersion terms produce two DWs. More than two DWs can also be
generated for a suitable choice of the individual dispersion coeffi-
cients. We also predicted that no DW is created for negative values of
the even-order dispersion terms because the phase-matching condi-
tion is then never satisfied.

However, such a study is incomplete because it does not answer
the question how a specific set of values for various dispersion
coefficients can be realized. In practice, the design details of a specific
fiber produce a dispersion profile β2(ω) that shows how the second-
order dispersion β2 changes with frequency ω (or wavelength). All
HOD parameters are determined by this profile as various derivatives
of β2(ω). In this paper we identify specific dispersion profiles and
correlate them with generated DWs. Our numerical simulations
indicate that the number of zero-dispersion points (ZDPs) present in a
specific dispersion profile is an excellent predictor of the number of
DW peaks created in the supercontinuum produced at the fiber
output.

Another interesting feature we find is that, if the frequency of the
ZDP is larger (smaller) compare to the operating frequency, DWs always
fall on the higher (lower) frequency side of the carrier frequency.
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Therefore there is a possibility to generate two DW peaks on same side
(blue or red side) of the output pulse spectrum by tailoring the
dispersion curve suitably such that two ZDPs fall on the same side of
input frequency. We study a variety of dispersion profiles and their
impact on DW generation in detail. Finally we show that DWs can be
generated for specific dispersion profiles even when input pulse is
launched in the normal-dispersion region of a fiber. Soliton spectral
tunneling is an essential phenomenon that takes places simultaneously
during the generation of DW in the case of normal dispersion. We
propose a specific design of a photonic crystal fiber (PCF) that supports
the generation of dispersive waves even when the input pulse is
launched in the normal dispersion regime.

2. Theoretical details

Generally a dispersive wave is not phased-matched with a soliton
because the soliton's wave number lies in a range forbidden for a
linear DW. The presence of HOD terms, however, leads to a phase-
matching situation in which energy is transferred from the soliton to a
DW at specific frequencies. In the supercontinuum process, HOD
terms act as perturbations that split a Nth order soliton into N
fundamental solitons of different widths and amplitudes. The kth
order soliton has a width Tk that is (2N−2 k+1) times smaller than
the input pulse width T0 and its peak power is larger by a factor of
(2 N−2 k+1)2/N2 [5]. In a dimensionless notation, the frequencies of
DWs can be calculated by using a relatively simple phase-matching
condition [6]

∑
∞

m=2
δmx

m =
1
2

2N−1ð Þ2; ð1Þ

where δm=βm/(m!|β2|T0m−2), x=2π(νd−νs)T0, and νs and νd are the
carrier frequencies associated with the soliton and the DW,
respectively. Here, themth-order dispersion coefficient is represented
by βm.

The real-valued solutions of the polynomial in Eq. (1) can readily
predict the exact frequencies of all DWs. The number of real roots and
their frequencies depend critically on the values of dimensionless
parameters δm and their algebraic signs. It should be mentioned that
the Eq. (1) applies only for the shortest soliton with the maximum
peak power (k=1), which is primarily responsible for generating
DWs. Other much wider solitons may produce DWs with negligible
energies but these are not considered in this paper.

As mentioned earlier, the group-velocity dispersion (GVD) profile
β2(ω) of a fiber determines the dimensionless parameters δm and
their algebraic signs. The expansion of the β2(ω) in a Taylor series
around the carrier frequency νs can be represented in the following
dimensionless form:
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where x=2π(ν−νs)T0. This expression governs the GVD profile for a
given set of HOD coefficients.

Dispersion slope is another important parameter that is related to
the third-order (3OD) dispersion β3 and is proportional to the
dimensionless quantity δ3. In our simulations we capture the effect of
δ3 by using a nonzero value of it together with δ2 and visualise its
effect on the spectral evolution. The frequency dependence of δ3(x)
can be obtained by taking a derivative of the expression in Eq. (2) and
is given by

δ3 xð Þ = δ3 0ð Þ + 1
3!
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where δ3(0)is its value at the carrier frequency of the input pulse.
To capture the impact of higher-order dispersive effects on the DW
generation under realistic conditions, we employ a generalized
nonlinear Schrödinger equation (GNLSE) written in a normalized
form as follows [7]:

∂U
∂ξ =

i
2

∂2U
∂τ2

+ ∑
∞

m≥3
im + 1δm

∂mU
∂τm

+ iN2 1 + is
∂
∂τ

� �
U ξ; τð Þ ∫

τ

−∝
R τ−τ

0� �jU ξ; τ
0� �j 2dτ0

 !
;

ð4Þ

where the field amplitude U(ξ, τ) is normalized such that U(0, 0)=1
and the other dimensionless variables are defined as
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z
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; N =
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p
:

Here, P0 is the peak power of the ultrashort pulse launched into the
fiber, LD=T0

2/|β2|is the dispersion length, γ is the nonlinear parameter
of the fiber, and s=(2πνsT0)−1 is the self-steepening parameter. The
nonlinear response function of the optical fiber has the form [7]

R τð Þ = 1−fRð Þδ τð Þ + fRhR τð Þ; ð5Þ

where the first and the second terms correspond to the electronic and
Raman responses, respectively, with fR=0.245. As discussed in Ref.
[8], the Raman response function can be expressed in the following
form
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where the functions ha(τ) and hb(τ) are defined as
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and the coefficients fa=0.75, fb=0.21, and fc=0.04 quantify the
relative contributions of the isotropic and anisotropic parts of the
Raman response. In Eq. (5),τ1, τ2 and τb have values of 12, 32 and 96 fs,
respectively. In our notation, they are normalized by the input pulse
width T0.

3. Numerical results

We employ the standard split-step Fourier method [7] to solve the
GNLSE numerically and include up to eighth-order dispersion terms
(m=8) in our numerical simulations. The input pulse U(0, t)=sech(t/
T0) is assumed to have T0=50 fs (full width at half maximum of
about 88 fs) at a carrier wavelength of 835 nm. Its peak power is
chosen such that the soliton order N takes the value 2 ( 3 in case of
normal GVD pumping), and the fiber length corresponds to two
dispersion lengths (ξ varies from 0 to 2). The physical fiber length
depends on the value of β2 and would be 5m for β2=−1 ps2/km.
Self-steepening effects are negligible in our simulations because
sb0.01 for T0=50 fs. Thus, intrapulse Raman scattering is the major
higher-order nonlinear process affecting the launched pulse. In
order to get a desired dispersion profile, the values of HOD
coefficients are chosen judiciously.

3.1. Pumping in the anomalous-dispersion regime

Fig. 1 shows the spectra at the fiber output for four different
dispersion profiles, along with the corresponding phase-matching
condition in Eq. (1). A noteworthy feature of this figure is that the
number of ZDPs predicts the number of DW peaks quite accurately.
In Fig. 1(a), no DW is generated because the GVD curve never crosses



Fig. 1. Formation of DW peaks for four different GVD profiles with (a) no ZDP, (b) single ZDP, (c) two ZDPs, and (d) three ZDPs. In all cases, we show the output spectrum (top), GVD
(red line) and dispersion slope (blue line) profiles (middle), and the phase-matching condition (bottom) for a 88-fs pulse propagating as a second-order Soliton (N=2).
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the horizontal frequency axis, and the fiber exhibits anomalous
dispersion in the entire wavelength range of the output spectrum.
We find that this specific situation can only be realized by making
the fourth-order and other even-order dispersion coefficients
negative. In this case, there is no solution for the phase-matching
condition as well.

In Fig. 1(b) we have a dispersion profile with a single ZDP on the
high-frequency side of the carrier frequency; we observe a single
blue DW peak, as also predicted by the phase-matching condition in
Eq. (1). Fig. 1(c) and (d) exhibit two and three ZDPs in the
corresponding dispersion profiles, respectively. In both cases, the
number of DW peaks matches with the number of ZDPs. A practically
useful conclusion that can be drawn from Fig. 1(c) is that, if a
microstructured fiber exhibits two zero-dispersion wavelengths,
then it will always produce two DW peaks during supercontinuum
generation. We verified this conclusion for several combinations of
dispersion coefficients that produce two ZDPs and we observed two
DWpeaks in all cases. It should bementioned that dispersion profiles
with two ZDPs can be realized by using nonzero positive values of
even-order dispersion coefficients in the Taylor series expansion in
Eq. (2). Also, the results given in Fig. 1(a) and (c) agree well with the
experimental observations in Ref [9]. In that paper, dual radiation
peaks could only be observed for one specific polarization for which
the dispersion profile exhibited two ZDPs. On the other hand, no
radiation was observed experimentally for a polarization state for
which the dispersion profile did not have any ZDP.

In Fig. 2(a) we create a critical dispersion profile that has four
ZDPs, and the corresponding output spectrum exhibits 4 radiation
peaks whose location agrees quite well with the phase-matching
condition (also plotted in that figure). This special kind of dispersion
profile having four ZDPs has recently been proposed by Kibler et al. for
studying the soliton-tunneling effect [10]. The proposed structure
consists of an air hole of sub-wavelength diameter (about 0.5 μm) in
the center of the solid silica core which is surrounded by a standard
hexagonal air-hole cladding. Another structure with two sets of
different size air-holes has been realized by Poletti et.al. [11] for
creating a dispersion profile with three ZDPs. The controlling
parameter for such a structure is the inner hole diameter which can
be used to tailor the dispersion profile as per the design requirements,
while the outer rings reduce the confinement losses. However, the
PCF as proposed in Ref. [10] is easier to fabricate because of its
structural simplicity.



Fig. 2.DWgeneration under the conditions of Fig. 1 for four specific GVD profiles. Plots (c) and (d) show the cases inwhich twoDWpeaks formon the same side of the supercontiunnum.

3084 S. Roy et al. / Optics Communications 283 (2010) 3081–3088
In all cases of anomalous GVD pumping, the DW frequency follows
the frequency of the ZDP in the following sense: if a ZDP falls on the
blue (or red) side of the carrier frequency of the input pulse, then the
corresponding DW peak also falls on the same side. The expanded
polynomial form of Eqs. (1) and (2) can explain this feature mathe-
matically. For a given set of HOD coefficients, the real roots of the two
polynomials always maintain the same pattern in terms of their
numeric signs. The number of positive and negative roots for both the
polynomials are identical, that is, a positive (negative) root of Eq. (1)
corresponds to a positive (negative) root of Eq. (2). To verify that this
feature is of universal nature, we display in Fig. 2(b) a dispersion
profile for which the single ZDP falls on the red side of the input beam.
As seen there, the DW peak flips to the red side in this case. The
situation in Fig. 2(b) is exactly opposite of what we observe in Fig. 1
(b). To produce such a dispersion profile, we had to use negative
values for the odd-order dispersion coefficients in the Taylor series
expansion of δ2(x) in Eq. (2).

To extrapolate this idea further, we design a special dispersion
profile for which two consecutive ZDPs fall on the same side of the
carrier frequency. In this case our numerical simulations show that both
DW peaks are also generated on the same side. Fig. 2(c) represents the
case when the two DW peaks fall on the red side of the input pulse
spectrum, whereas Fig. 2(d) shows the opposite case in which two DW
peaks fall on the blue side. In both cases, the DW frequencies are
accurately identified by the phase-matching condition. To our knowl-
edge, this is the first time that we have shown the possibility of two DW
peaks forming on the same side of the input pulse spectrum.

3.2. Pumping in the normal-dispersion regime

Next, we investigate the case when the carrier frequency of the
input pulse falls in the normal-dispersion region of the fiber. We
consider this situation because solitons normally form only in the
anomalous-dispersion regime [2,7], and the phenomenon of soliton
fission that plays an important role in the generation of DWs should
not occur in the case of normal GVD. In this sense, the investigation of
the formation of DWs in case of normal GVD pumping is to some
extent unorthodox. In what follows we show that DWs can form in
two situations.

Soliton spectral tunneling (SST) is an important mechanism that
can generate a DW-type radiation when a soliton tunnels from one
anomalous-dispersion region to another one that is separated by an
intermediate region of normal dispersion [11,12]. A localized
inhomogeneity of GVD is responsible for SST to occur. In our case,
the situation is different because we launch a pulse in the normal-
dispersion regime. However, the pulse experiences considerable
spectral broadening, primarily through self-phase modulation
(SPM) which broadens the pulse spectrum symmetrically on both
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sides of the input spectrum. At some point, a part of the pulse energy
enters the anomalous-dispersion region where a soliton can form. The
question one may ask is whether the formation of this soliton is
accompanied with the emission of some radiation. Our numerical
results indicate that this is the case. In Fig. 3 (a) we plot the output
spectrum of a femtosecond pulse launched in the normal-dispersion
regime of a fiber with δ3=0.05, δ4=0.01 and δ5=0.005 (all other
higher-order coefficients set to zero). The spectrum indicates a
distinct peak around 1.65 (in normalized unit) that is generated
roughly at the same distance into the fiber where a soliton forms with
spectrum on the red side. During the SPM process, the pulse spectrum
broadens on both sides, but the two sides experience different
dispersion regime. The slope of the dispersion (or third-order
dispersion) also varies with frequency and influences the spectral
behavior as well as the group delay of the pulse. For example, in Fig. 3
(a) the dispersion slope goes from positive to negative roughly at the
same point where radiation begins. To ensure the general nature of
this observation, we have verified that the same holds true for several
different dispersion profiles. This behavior is clearly seen in the
middle part of Fig. 3(a). Physically speaking, an abrupt change in the
Fig. 3. Spectral tunneling effect under the conditions of Fig. 1 except that the input pulse is laun
evolution (middle) and finally GVD profile (red), dispersion slope (green) and PM expressio
δ5=0.0005. (b) Output pulse shapes and temporal evolution inside the fiber are depicted whe
parameters (δ3=0.01, δ4=−0.01 and δ5=0.0005) for which DW peak forms on the blue sid
sign of dispersion slope (δ3 shown by the green curve) perturbs the
monotonous broadening of the spectrum and creates a distinct
spectral peak on the blue side. This behavior is similar to the soliton
tunneling effect but we cannot call it soliton tunneling because most
of the pulse energy lies in the normal-dispersion region. It should be
noted that the phase-matching condition (shown by a blue curve)
does not accurately predict the frequency of this radiation.

After the DW has been generated, a part of the pulse spectrum lies
in the anomalous region and can form a soliton. The temporal
evolution shown in Fig. 3(b) shows the soliton formation clearly
where a part of pulse energy is delayed by a large amount (as much as
by 120 T0). This delay can be understood by noting that the soliton
spectrum is shifted towards the red side and that longer wavelengths
travel slower in the anomalous-dispersion region.

We have discovered a second mechanism of DW generation. An
extensive numerical study, covering a wide range of operating
conditions, reveals that DWs can still be generated for a few specific
dispersion profiles chosen such that a narrow normal-dispersion
region is surrounded on both sides by anomalous regions. In this
case, SPM-induced spectral broadening forces most of the pulse
ched in the normal-GVD region of thefiberwithN=3. (a) Output spectrum (top), spectral
n (blue) of the fiber (bottom) are shown for the parameters δ3=0.05, δ4=−0.01 and
n the fiber is pumped at normal GVD domain. Plots (c) and (d) correspond to the different
e of the input spectrum. In both the cases third order soliton is used as input.
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energy to travel in the anomalous regions as a soliton after some
distance along the fiber. After that, a DW can be generated through
soliton fission. This situation is illustrated in Fig. 3(c) by changing
the dispersion parameters (δ3=0.01, δ4=0.01, δ5=0.0005) from
those used for Fig. 3(a) in such a manner that normal-GVD region is
surrounded on both sides by anomalous domains (red curve). We
now find two distinct spectral peaks at frequencies 1.8 and 2.25 (in
normalized units). The peak at 1.8 is due to the tunneling phe-
nomenon discussed earlier. The new peak at 2.25 is due to a DW
emitted through soliton fission and satisfies the phase matching
condition in Eq. (1). The time domain evolution shown in Fig. 3(d)
shows clearly how a DW is emitted near ξ=10 with a large blue
shift. Because its frequency falls in the normal-dispersion region
where blue-shifted components travel slower than the red-shifted
ones, this DW is delayed and appears at τ≈140 at the output end of
the fiber.

The blue-shifted DW peak vanishes when the dispersion para-
meters of the fiber are changed slightly to δ3=0.01, δ4=0.01 and
δ5=0.000325. This case is shown in Fig. 4 (a). For this set of
parameters, even though most of the pulse energy eventually enters
the anomalous dispersion region, there is no solution of the phase-
matching condition that can create a DW (see the blue curve). The
Fig. 4. More different dispersion values are used in order to understand the spectral evoluti
δ3=0.01, δ4=−0.01and δ5=0.000325. No PM solution can be obtained for those paramete
does not exhibit any radiation. (c) The formation of DW in red side is shown for the followin
this case the time domain evolution exhibits the radiation as a pedestal around τ≈−100 i
time-domain evolution shown in Fig. 4 (b) also supports this
argument by exhibiting no trace of a DW radiation. The peak due to
the tunneling effect is still observed but its position is now shifted
around 1.4 (in normalized units).

In Fig. 4 (c) wemanipulate the dispersion curve (red line) in such a
manner that it exhibits 3 ZDPs with a narrow anomalous dispersion
zone falling on the lower frequency side surrounded by two normal-
dispersion zone. For this configuration, we calculate δ3 (green line) as
well as the phase-matching condition (blue line). The phase-matching
condition exhibits a DW solution around the normalized frequency of
−2.25. The spectral evolution indeed shows such a red-shifted DW
peak. The time-domain evolution also shows a DW peak of low
amplitude around τ=−100, i.e., DW travels faster than other parts of
the pulse. This is understood by noting that the GVD is normal at the
DW frequency where red components travel faster than the blue
components.

We must emphasize that the traditional phase-matching expres-
sion generally fails when optical pulse propagates entirely in normal
GVD domain, however, if most of the pulse energy enters the
anomalous GVD regime, it can be used to predict the formation of
DWs. The tunneling effect, on the other hand, takes place in a
concurrent manner that exhibits additional fringes. It can be shown
on under normal GVD pumping with soliton order N=3. (a) The used parameters are,
rs and because of that the generation of DW ceases to exist. (b) Time domain evolution
g normalized dispersion coefficients, δ3=−0.01, δ4=−0.01and δ5=−0.0005. (d) For
n time domain.



Fig. 5. (a) Dispersion profile of the proposed defect-core PCF having two zero dispersion
at 1.531 and 1.760 μm respectively. In the inset the fundamental field distribution at
operating wavelength 1.520 μm is depicted for the proposed structure. (b) In panel (b)
the dispersive wave radiation is shown around −2.5 normalised frequency which is
originated due to the solitonic propagation (for N=6) supported by the anomalous
dispersion regime as shown by the red line in the bottom figure. The PM condition and
evolution of δ3 is also represented by blue and green curves respectively.
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that no such radiation is possible if the GVD profile grows
monotonically without any sign change.

In this last part of our study we try to realize a specific dispersion
profile with realistic configuration parameters of a PCF that supports
the generation of DWs in the normal GVD region of the PCF. We
consider a PCF with a sub-wavelength air hole of 0.6 μm in diameter
and an air-filling fraction of 0.75 in its cladding containing air holes
of 1.5 μm in diameter. It has already been shown that an ultra-
flattened dispersion profile can be achieved with such a configura-
tion only by adjusting the size of the central air hole [13]. Fig. 5(a)
shows the GVD calculated as a function of wavelength for our
proposed structure. As shown in there, we have a reasonable flat
dispersion profile having two ZDPs at the wavelengths of 1.531 and
1.760 μm. The dispersion profile is calculated by using the commer-
cial software COMSOL Multiphysics based on the finite-element
method. The fundamental modal distribution of the specified
structure is given in the inset of Fig. 5 (a).
We next simulate numerically, by solving GNLSE with this
dispersion profile, the evolution of the spectrum of a 50-fs pulse
launched at 1.52 μm , a wavelength that falls in the normal dispersion
regime. Fig. 5(b) shows the output spectrum (top), spectral evolution
(middle), and the frequency dependence of dispersion and its slope
(red and green curves in the bottom panel). Since the anomalous-
dispersion regime is located in the wavelength range of 1.531 to
1.760 μm, the pulse quickly enters the anomalous dispersion zone. A
soliton-like propagation can be realized under such conditions and
eventually a DW is generated. Interestingly, the phase-matching
condition, shown by the blue curve in Fig. 5(b), also predicts a DW
around the normalized frequency of−2.5 ( inwavelength 2.027 μm), in
reasonable agreement with the solution of GNLSE. With further
propagation, the red-shifted Raman soliton eventually meets the
second ZDP at 1.760 μm and exhibits soliton spectral tunneling
phenomenon at that point. The previous studies [4,14] have estimated
quantitatively the radiation amplitude as a function of β3 and soliton
order N and concluded that radiation amplitude saturates with
increasing values of those two parameters. In the present case, β3 is
the fixed parameter for the given dispersion profile, and we have
provided the amplitude of the corresponding DW radiation for a fixed
soliton order N=6. Since the soliton order is the other important
parameter that influences the radiation amplitude, it is expected that
radiation efficiency will increase for higher-order solitons with NN6
(but not indefinitely).

4. Conclusions

In this paper we have studied numerically the generation of DWs in
optical fibers during the supercontinuum process for a variety of
dispersion profiles to investigate how a specific dispersion profile
controls the emission of DWs.We designed dispersion profiles by using
suitable values of the third- and higher-order dispersion coefficients.
The most important conclusion is that the number of ZDPs in the
dispersion profile of a fiber is an excellent predictor of the DW peaks
when an optical pulse is pumped in anomalous GVD regime. We show
that a fiberwith a single ZDP leads to oneDWpeak, and a fiberwith two
ZDPs always produces two DW peaks. Moreover, no DW can be
expected in a fiber that has no zero-dispersion crossings over the entire
range of wavelengths created during the supercontinuum process. We
have examinednumerically dispersion profileswith asmanyas six ZDPs
and found that this criterion always holds.

Our study also reveals that two DW peaks can form on the blue
or red side of the input carrier frequency through specially
designed dispersion profiles with two ZDPs on the same side. The
phase-matching condition predicts the DW frequencies accurately
when the input pulse is launched in the anomalous-GVD regime of
the fiber, but it fails in the case of normal GVD. It is shown that DW
peaks are generated even in the case of normal GVD if the pulse
enters the anomalous dispersion regime at some distance into the
fiber and forms a soliton. We find that a spectral peak can also be
generated by a phenomenon related to soliton spectral tunneling.
Finally, we propose a realistic design of a PCF that would allow the
observation of non-solitonic radiation when pumped with femto-
second pulses in the normal-dispersion region. Our study should
prove useful for experiments that are specifically targeted to
enhance generation of DWs near the two edges of the super-
continuum spectrum generated by launching femtosecond pulses
into optical fibers.
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