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Vectorial nonlinear propagation in silicon
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A comprehensive theory is developed for describing the nonlinear propagation of optical pulses through silicon
waveguides with nanoscale dimensions. Our theory includes not only the vectorial nature of optical modes but
also the coupling between the transverse electric and magnetic modes occurring for arbitrarily polarized opti-
cal fields. We have studied the dependence of relevant nonlinear parameters on waveguide dimensions and
found a class of waveguide geometries for which self-phase modulation can have a dramatic impact on the
polarization state of the optical field. Self-induced polarization changes are studied for both the continuous and
pulsed optical fields propagating in silicon waveguides. We also discuss the possibility of using these effects for
intensity discrimination and pulse compression. © 2010 Optical Society of America

OCIS codes: 130.4310, 190.4390, 190.5940, 230.4320.
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. INTRODUCTION
ilicon-on-insulator (SOI) waveguides are attracting con-
iderable attention because monolithic integration of such
evices is likely to produce photonic integrated circuits
elevant for future computing and communications tech-
ologies. The existing infrastructure for the SOI technol-
gy will allow such circuits to be fabricated at low cost.
onlinear optical effects in SOI waveguides have also
een studied in recent years [1–3] because an intrinsically
arge material nonlinearity of silicon, combined with the
onfinement of optical fields to nanoscale areas, allows
hem to be observed at modest power levels. All-optical
witches, Raman lasers and amplifiers, parametric ampli-
ers, and a host of other devices have all been demon-
trated in silicon waveguides [4–13].

Despite the considerable recent theoretical and experi-
ental progress in the field of nonlinear silicon photonics,

ne area that has remained largely unexplored is the role
hat the state of polarization (SOP) of an optical field
lays in nonlinear interactions. Part of the reason is re-
ated to use of the scalar approximation made commonly
y assuming that the incident optical pulses excite either
transverse electric (TE) or a transverse magnetic (TM)
ode of the waveguide but not both. In this paper we de-

elop a theoretical framework for describing nonlinear
henomena in silicon nanowire waveguides which takes
nto account the full vectorial nature of the electromag-
etic field. In Section 2 we present a rigorous derivation
f the coupled-mode equations which describe the nonlin-
ar interaction between the TE and TM modes. We quan-
ify these effects in Section 3 through numerical calcula-
ions of the relevant nonlinear parameters and study
heir dependence on waveguide dimensions. In Section 4
e apply our vectorial theory to study the influence of

elf-phase modulation (SPM) on a continuous-wave (CW)
eld and show that the polarization state at the wave-
uide output becomes dependent on the optical power at
0740-3224/10/050956-10/$15.00 © 2
he waveguide input. We then consider the propagation of
ulsed optical fields and show that in this case the SPM
esults in a temporally varying polarization state at the
aveguide output. The main results are summarized in
ection 5.

. THEORETICAL FRAMEWORK
s is well known [1], several linear and nonlinear pro-

esses affect the evolution of an optical pulse inside sili-
on nanowires. Two different yet related processes act to
odify the phase of an optical field in silicon. The Kerr

ffect modifies the refractive index (and therefore the op-
ical phase) in a quasi-instantaneous way. Coinciding
ith the Kerr effect is the process of two-photon absorp-

ion (TPA) which not only produces loss but also generates
lectron-hole pairs which build up the density of free car-
iers. These free carriers produce additional loss because
hey absorb light but they also modify the optical phase
hrough changes in the refractive index. The generation
nd recombination of free carriers is characterized by a
elatively slow response time ��1 ns�. The Kerr and free-
arrier processes lead to qualitatively different SPM ef-
ects that have been the subject of a number of theoretical
nd experimental studies [14–21]. However, these studies
ave considered the case in which the input pulse coupled

nto the waveguide is polarized linearly so that only a
ingle spatial mode is excited.

. Coupled Amplitude Equations
n this work we assume that an arbitrarily polarized op-
ical field is launched such that it excites both the funda-
ental TE and TM modes of a silicon waveguide. The

lectric field E�r , t� at a point r inside the waveguide sat-
sfies Maxwell’s equations. Introducing the Fourier trans-
orm of a function f�t� as
010 Optical Society of America
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f̃��� =�
−�

�

f�t�ei�tdt, �1�

he electric and magnetic fields in the frequency domain
atisfy

� � Ẽ = i��0H̃, �2�

� � H̃ = − i��0n2�x,y�Ẽ − i�P̃NL, �3�

here n�x ,y� is the refractive index profile of the wave-
uide assumed to be uniform in the z direction. The ma-
erial’s nonlinear polarization P̃NL should not be confused
ith the SOP which is a property of the electric field and
ot the medium.
A common technique for solving Maxwell’s equations
akes use of optical modes supported by the waveguide

n the absence of the nonlinear material polarization. The
uided modes of Eqs. (2) and (3) can be found numerically
or any waveguide geometry and are of the form

Ẽ�k��r,�� = e�k��x,y,��exp�i��k����z�,

H̃�k��r,�� = h�k��x,y,��exp�i��k����z�, �4�

here ��k� is the propagation constant of the kth mode
nd the superscript k takes integer values 1 to M if the
aveguide supports M guided modes. In general, the vec-

orial mode profile e�k��x ,y ,�� has nonzero ex, ey, and ez
omponents. In waveguides with core dimensions larger
han the optical wavelength and a relatively low index
ontrast (such as optical fibers), the ez component of a
ode is negligible compared to either the ex or ey compo-

ent. In the case of waveguides with sub-wavelength core
imensions and a high index contrast, this is no longer
rue and the complete vectorial nature of the optical mode
ust be retained for an accurate description [22–25]. SOI

echnology has a very high index contrast and it is also
ommon to fabricate waveguides with nanometer-scale di-
ensions (dubbed “photonic nanowires”). For these rea-

ons, we retain fully the vectorial nature of the optical
odes in the following analysis.
We now consider the impact of the nonlinear term P̃NL

n Eq. (2). Taking the curl of Eq. (2) and using the identity
���Ẽ=��� ·Ẽ�−�2Ẽ, we obtain

− ��� · Ẽ� + �2Ẽ + �2�0�0n2�x,y�Ẽ + �2�0P̃NL = 0. �5�

lthough it is often assumed that ��� ·Ẽ��0, this ap-
roximation cannot be made for silicon nanowires as it
mounts to neglecting the longitudinal field component
z, which can be significant in such waveguides. We thus

nclude this term in our theoretical description.
To solve Eq. (5), we assume that the input field excites

nly the fundamental quasi-TE and quasi-TM modes of
he waveguide corresponding to k=1 and 2 in Eq. (4). In
ur notation, the quasi-TE mode �k=1� has a dominant ex
omponent, and the quasi-TM mode �k=2� has a domi-
ant ey component, where the y-axis is normal to the
aveguide substrate. We now adopt the well-known
oupled-mode approach in which the solution of Eq. (5) is
xpanded in terms of these two modes as

Ẽ�r,�� � a1�z,��e�1��x,y,�0�ei��1����z

+ a2�z,��e�2��x,y,�0�ei��2����z, �6�

here �0 is the carrier frequency and we approximate the
ransverse mode profiles (e�1� and e�2�) to be independent
f frequency over the bandwidth of the optical field. The z
ependence of the mode amplitudes, a1 and a2, results
rom the mode coupling induced by the nonlinear polar-
zation P̃NL.

Using the preceding expansion in Eq. (5) and making
he slowly varying envelope approximation, the mode
mplitudes are found to satisfy (see the Appendix for its
erivation)

dak

dz
=

i�

2Nk
�� e��k��x,y� · P̃NL�x,y,z�e−i��k����zdxdy, �7�

here the integrals extend over the entire x-y plane and
k, representing the power flow in the z direction, is de-
ned as

Nk = Re�� � �e�k� � h��k�� · ẑdxdy	 . �8�

his result is equivalent to the one in [26], where it is de-
ived from the Lorentz reciprocity theorem.

We need to convert Eq. (7) to the time domain. For this
urpose, it is useful to introduce a slowly varying mode
mplitude as

Ãk�z,� − �0� =
Nk

2
ak�z,��exp�i���k���� − �0

�k��z�, �9�

here �0
�k�=��k���0�. Using Eq. (9) in Eq. (7), expanding

�k���� in a Taylor series around �0, and converting to the
ime domain by replacing �−�0 with i� /�t, we find the
ollowing time-domain amplitude equation:

�Ak

�z
= �


n=1

�

in+1
�n

�k�

n!

�n

�tn	Ak + exp�− i��0
�k�z − �0t��

�
i�0

2
2Nk
�� e��k��x,y� · PNL�x,y,z,t�dxdy,

�10�

here �n
�k�=�n��k� /��n is the nth-order dispersion param-

ter of the waveguide at the frequency �0. Similarly using
q. (9) in Eq. (6) and converting to the time domain re-
ults in the following expression for the electric field:

E�r,t� �
 2

N1
A1�z,t�e�1��x,y�exp�i��0

�1�z − �0t��

+
 2

N2
A2�z,t�e�2��x,y�exp�i��0

�2�z − �0t��.

�11�

t can be shown that �Ak�2 is the optical power in the kth
ode. The evaluation of the integrals in Eq. (10) requires
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nowledge of the nonlinear polarization.

. Third-Order Nonlinear Polarization
he nonlinear polarization PNL�r , t� in Eq. (10) has two

ndependent contributions resulting from the third-order
usceptibility and from free carriers generated by TPA,
.e.,

PNL�r,t� = P�3��r,t� + P�fc��r,t�. �12�

onsider the contribution from the third-order polariza-
ion. If the bandwidth of the optical field is much less
han the Raman shift in silicon (about 15.6 THz), the
ominant contribution to the third-order susceptibility
�3� is due to electrons bound to silicon atoms in the crys-
al lattice. This electronic response is extremely fast and
an be taken to be instantaneous. With this approxima-
ion, the �th component of the third-order polarization
an be written as [27]

P�
�3��r,t� =

3�0

4 

�,�,	

����	
�3� ��0;�0,− �0,�0�

�E��r,t�E�
��r,t�E	�r,t�. �13�

e use the Greek subscripts in this section for denoting
he Cartesian components of a vector.

The third-order susceptibility of a silicon crystal de-
ends on the orientation of the coordinate system relative
o the crystallographic axes and can be written in the fol-
owing general form [1]:

����	
�3� = �c� 


3
������	 + �����	 + ��	����

+ �1 − 
�

q

Rq�Rq�Rq�Rq		 , �14�

here R�� are the elements of a rotation matrix which
aps the crystallographic coordinate system into one

sed to describe the waveguide modes and �c is the short-
and for the component �1111

�3� in the crystallographic coor-
inate system. It is common to fabricate SOI waveguides
long the �1̄1̄0� direction. In this case the rotation matrix
n Eq. (14) is given by

�
R11 R12 R13

R21 R22 R23

R31 R32 R33
� =

1


2�
1 0 − 1

− 1 0 − 1

0 
2 0
� . �15�

n this paper we only consider waveguides fabricated in
he �1̄1̄0� direction.

In Eq. (14), 
 is a parameter characterizing the aniso-
ropic nature of the third-order susceptibility. At wave-
engths near 1550 nm, 
�1.27 [1,28]. The quantity �c is
elated to the Kerr coefficient n2 and the TPA coefficient
TPA of an optical field polarized along a crystallographic
xes as
�c =
4

3
�0cn0

2n2�1 + ir�, r =
�TPA

2k0n2
, �16�

here k0=�0 /c=2
 /�, n0 is the refractive index of bulk
ilicon, and r is a measure of the relative strength of the
PA process compared to the Kerr effect. Measurements
f n2 and �TPA have been reported by a number of re-
earch groups [14–16,19,28,29], but they vary over a con-
iderable range. In this paper, we use values from [29]
here n2�2.5�10−5 cm2/GW and �TPA=0.5 cm/GW at
avelengths near 1550 nm. Using these values, r�0.25.
We now consider the contribution of free carriers to the

onlinear polarization. As mentioned earlier, the TPA pro-
ess generates electron-hole pairs, which in turn change
he refractive index and the absorption coefficient within
he silicon core of the waveguide. A commonly used semi-
mpirical model assumes that the carrier-induced
hanges in the absorption coefficient and the refractive in-
ex at a wavelength of 1550 nm are of the form [1,30]

��fc = �aN, �17�

�nfc = − �n
e N − ��n

hN�4/5, �18�

here N is the number density of electron-hole pairs, �a
14.5�10−18 cm2, �n

e =8.8�10−22 cm3, and �n
h=4.6

10−22 cm3. The material polarization, induced by the in-
eraction of free carriers with the electric field, is then
iven by

P�fc��r,t� = 2�0n0��nfc + �i/2k0���fc�E�r,t�. �19�

. Coupled-Mode Equations
e are now in a position to derive the coupled-mode equa-

ions. Using Eqs. (11), (10), and (13), the amplitude of the
th mode changes as

�Ak

�z
= �


n=1

�

in+1
�n

�k�

n!

�n

�tn	Ak + T3o
k + Tfc

k , �20�

here the three contributions are given by

T3o
k = 


lmn

3i�0�0

4�NkNlNmNn�1/2AlAm
� An exp�i��klmnz�

� 

���	

�� ����	
�3� e�

��k�e�
�l�e�

��m�e	
�n�dxdy, �21�

Tfc
k = 


l
i

�0�0n0

�NkNl�1/2Al exp�i��0
�l� − �0

�k��z�

��� ��nfc + �i/2k0���fc�e��k� · e�l�dxdy, �22�

here ��klmn=−�0
�k�+�0

�l�−�0
�m�+�0

�n� represents a phase
ismatch. The indices k , l ,m ,n take values 1 and 2 cor-

esponding to the TE and TM modes, respectively.
Equation (20) describes the evolution of the mode am-

litudes under very general conditions. Although it ap-
ears quite complicated, it can be simplified considerably
n specific situations. For example, if one considers a
ighly birefringent waveguide, many of the terms can be
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eglected because they oscillate rapidly in z (in the ab-
ence of phase matching). Alternatively, if we consider a
ilicon waveguide that exhibits reflection symmetry in the
and y directions (e.g., a rectangular silicon core sur-

ounded on all sides by silica), then only four of the eight
erms in the triple sum over l ,m ,n in Eq. (21) are non-
anishing and only the term for which l=k is nonzero in
q. (22). Because such silicon waveguides are commonly
sed and because their analysis is considerably simplified
e focus on them in this paper. After considerable alge-
ra, Eq. (20) leads to the following two coupled-mode
quations for k=1 and 2:

�A1

�z
= �


n=1

�

in+1
�n

�1�

n!

�n

�tn	A1 + i	11�1 + ir��A1�2A1 + i	12�1 + ir�

��A2�2A1 + i	12� �1 + ir�A2
2A1

�e−2ik0�nz + ik0�1

n0

n̄1

���n1
fc +

i

2k0
��1

fc�A1 −
�1

2
A1, �23�

�A2

�z
= �


n=1

�

in+1
�n

�2�

n!

�n

�tn	A2 + i	22�1 + ir��A2�2A2 + i	12�1 + ir�

��A1�2A2 + i	12� �1 + ir�A1
2A2

�e2ik0�nz + ik0�2

n0

n̄2

���n2
fc +

i

2k0
��2

fc�A2 −
�2

2
A2, �24�

here n̄j=�0
�j� /k0 is the mode index and �n= n̄1− n̄2 is the

aveguide birefringence. The �k terms have been added
euristically to account for internal waveguide losses.
The preceding coupled-mode equations introduce many

ew parameters that involve integration over the wave-
uide cross section. The most important are the four non-
inear parameters defined as

	11 =
n0

2�1
2

n̄1
2ā1

�11k0n2, 	22 =
n0

2�2
2

n̄2
2ā2

�22k0n2,

	12 =
2n0

2�1�2�12k0n2

n̄1n̄2�ā1ā2�1/2
, 	12� =

n0
2�1�2�12� k0n2

n̄1n̄2�ā1ā2�1/2
, �25�

here the effective mode area (EMA) of the mode with k
1,2 is defined as

āk = �� � �e�k��2dxdy�2���� ��e�k��2�2dxdy� .

�26�

The real dimensionless parameter �k measures the
elative contribution of the longitudinal component of the
lectric fields associated with the two modes and is de-
ned as
�k =
���e�k��2dxdy

���eT
�k��2 + ���k��−1Im�eT

�k� · �Tez
k��dxdy

. �27�

umerically, �k�1 and reduces to 1 only for a purely
ransverse mode field. We refer to it as the longitudinal
nhancement factor (LEF) because it enhances the non-
inear effects in silicon nanowires [2].

The parameters �lm are also real dimensionless param-
ters defined as

�lm = 

���	

�c
−1������	

�3� e�
��l�e�

�l�e�
��m�e	

�m�dxdy

�����e�l��2�2dxdy����e�m��2�2dxdy�1/2 , �28�

�12� = 

���	

�c
−1������	

�3� e�
��1�e�

�2�e�
��1�e	

�2�dxdy

�����e�l��2�2dxdy����e�m��2�2dxdy�1/2 . �29�

hey are a measure of the way in which the TE and TM
ectorial modes interact through the anisotropic third-
rder susceptibility. We refer to these terms as the non-
inear overlap factors (NOFs). Finally, the subscript k in
nk

fc and ��k
fc in the free-carrier terms in the coupled-

ode equations indicate that these quantities are evalu-
ted as overlap integrals with the transverse mode pro-
les, i.e.,

�nk
fc =�� �nfc�x,y��e�k��2dxdy���� �e�k��2dxdy� ,

��k
fc =�� ��fc�x,y��e�k��2dxdy���� �e�k��2dxdy� .

Coupled-mode equations (23) and (24) describe the evo-
ution of the fundamental TE and TM modes inside a sili-
on nanowire. We use them in this paper to discuss inter-
sting polarization effects. However, before doing that, we
ompare our formalism with two other studies that also
onsider the vectorial nature of optical modes. Chen et al.
31] presented a theory for nonlinear propagation in sili-
on nanowires and include the Kerr nonlinearity, TPA,
aman interaction, and free-carrier effects. Afshar and
onro [23] developed a similar vectorial theory but they

o not include the free-carrier effects as their emphasis is
n glass waveguides. The expressions we derive for the
oupled-mode equations and the nonlinear parameters in
q. (25) can be compared with their results in certain lim-

ts.
In Chen et al. a theory is developed to describe the

ropagation of linearly polarized pump and Stokes pulses
nteracting through Raman amplification. In the case that
he Stokes field is absent their theory is comparable to
urs when we consider only a single spatial mode being
xcited [i.e., A2=0 in Eqs. (23) and (24)]. In this case our
heories agree. A demonstration of this agreement re-
uires the use of theorems concerning waveguide modes
rom [26].

In the case of an isotropic medium �
=1�, our expres-
ions for the 	 parameters in Eq. (25) reduce to those in
23]. In this case, Eqs. (23) and (24) can be further simpli-
ed to describe the TE and TM modes of a single-mode op-
ical fiber if we approximate the modes as being trans-
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erse �ez
�k��0�. In this approximation, they reduce to the

ell-known expressions for optical fibers [32].

. GEOMETRIC DEPENDENCE OF
ONLINEAR PARAMETERS
s seen from Eqs. (25)–(28), the effective nonlinear pa-
ameters that govern the pulse propagation in silicon
anowires depend on waveguide dimensions through the
MAs āk, the LEFs �k, and the NOFs �kl, where k=1 and
for the TE and TM modes, respectively. In this section
e study the geometric dependence of these quantities by

ocusing on waveguides whose rectangular silicon core is
urrounded on all sides by silica, as shown schematically
n Fig. 1. Since no exact analytic solution exists for the
ectorial modes of Eq. (4) for such waveguides, we employ

numerical technique based on the full-vector finite-
ifference method described in [33] to calculate the propa-
ation constants ��k� and the vectorial mode profiles
�k��x ,y� of the fundamental TE and TM modes of the
aveguide. In the following numerical calculations, we
ssume that the incident optical pulse has a carrier wave-
ength of 1550 nm.

The nonlinear parameter of a mode depends strongly
n the dimension of the waveguide that is orthogonal to
he mode’s polarization direction. For example, the non-
inear parameter of the TE mode, 	11, depends strongly on
he height of a waveguide, but only weakly on its width.
his is evident from Fig. 2 which shows 	11 as a function
f waveguide dimensions. As a result of the inherent sym-
etry of our waveguide in Fig. 1, the dependence of the
onlinear parameter of the TM mode �	22� on the wave-
uide width is qualitatively similar to the dependence of
11 on the waveguide height. In fact, if silicon were an iso-
ropic medium (i.e., if 
=1), this would also hold quanti-
atively. Since silicon is anisotropic (
�1.27 near 1550
m), there are quantitative differences between the TE
nd TM modes.
The underlying reason for why 	11 depends primarily

n the waveguide height is the polarization dependence of
odal confinement. Conceptually, the confinement of a
ode to the waveguide core is very sensitive to the dimen-

ion of the waveguide along which it is polarized. As this
imension decreases the degree of modal confinement
oes as well. As a result, the effective area ak of the mode
efined in Eq. (26) depends only weakly on the dimension
long which it is polarized. However, the EMA is strongly
ependent on the dimension orthogonal to the mode’s po-

ig. 1. (Color online) Schematic of the waveguide geometry
mployed.
arization direction and any change in this dimension re-
ults in a proportional change in the effective area. This is
vident from Fig. 3 where we plot the EMAs of the funda-
ental TE and TM modes against the waveguide height

or a fixed width of 500 nm. As the waveguide height
eaches the effective optical wavelength in silicon �� /n
440 nm� the EMA of the TM mode reaches a minimum.
further decrease in the waveguide height results in an

ncrease in ā2 rather than a decrease. The EMA of the TE
ode, however, decreases monotonically with the wave-

uide height down to dimensions at which the TM mode
o longer exists [when the height h�� / �2n�]. Clearly,
anowire waveguides will exhibit strong polarization de-
endence in their nonlinear behavior because of this fea-
ure.

The EMA is not the only quantity in Eq. (25) related to
odal confinement. The NOFs (�11, �22, and �12) measure

ow effectively the vectorial modes overlap with the
hird-order susceptibility, which is confined to the silicon
ore (we ignore the silica nonlinearity in the cladding as it
s �100 times smaller). A waveguide mode with a longer
ail into the cladding region will have a smaller � param-
ter. Indeed, we see in Fig. 4 that �22 and �12 depend
trongly on the waveguide height. As the TM mode begins
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o lose its confinement for h�� /n, both of these quanti-
ies become smaller. The nonlinear parameter 	22 is
herefore reduced not only by an increase in its effective
rea but also by a reduction in �22. The NOF for the TE
ode ��11�, however, is relatively independent of the
aveguide height. Notice that even for relatively large
aveguides �11 exceeds �22 by about 15% as a result of

he anisotropy of silicon’s third-order susceptibility. If sili-
on were an isotropic medium, we would find �22=�11 and
12=�11/3 in this situation, similar to the case of optical
bers.
While the modal confinement can be understood as the

nderlying reason why the nonlinear parameters depend
n waveguide dimensions as they do, we also need to con-
ider the geometric dependence of the LEFs �k and the ef-
ective mode indices n̄k. These quantities are plotted in
ig. 5 as a function of the waveguide height and they act
o enhance the effective nonlinear parameters for nano-
ire waveguides with dimensions �� /n. As the wave-
uide height decreases below � /n, the LEF �2 for the TM
ode becomes larger by as much as 60%. This enhance-
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ig. 5. (Color online) LEFs and effective mode indices as a func-
ion of waveguide height for a fixed waveguide width of 500 nm
t �=1550 nm.
ent is related to the increasing magnitude of the longi-
udinal field component ez for narrower waveguides. Fig-
re 5 also shows that the effective index of the TM mode
n̄2� become notably smaller for nanowire waveguides
ith subwavelength heights. For such geometries the
vanescence of the TM mode into the silica cladding
here the material index is much lower results in smaller
ffective indices. Since the nonlinear parameter 	22 is in-
ersely proportional to n̄2

2, and directly proportional to �2,
oth of these parameters act to enhance it.
Since the TM mode’s EMA and NOF reduce 	22 while

ts LEF and n̄2 increase it for narrow waveguides, their
umulative behavior determines the overall impact of the
aveguide geometry. Figure 6 shows the dependence of

he 	 parameters on the waveguide height. As seen there,
11 (corresponding to the TE mode) increases with a re-
uction in the waveguide height. In contrast, 	22 in-
reases initially because of an enhanced LEF and a lower
ffective mode index but is ultimately reduced for
aveguides with subwavelength heights as a result of
eak modal confinement. The same behavior would occur
s the waveguide width is reduced for 	11.
The influence of free carriers on the optical field is also

ffected by waveguide geometry. As was seen in Section 2,
hen the refractive index of the silicon material changes
y �nfc, the resulting change in the effective index of a
aveguide mode is modified by a number of geometrical
arameters. It follows from the last term in Eqs. (23) and
24) that the effective free-carrier change in the mode in-
ex is given by

�n̄k
fc =

n0

n̄k
�k�nk

fc �
n0

n̄k
�k�k�nfc = Bk�nk

fc, �30�

here we approximated �nfc as being independent of x
nd y within the core region of the waveguide and intro-
uced �k as the confinement factor for the kth mode as

�k =� �
Si

�e�k��2dxdy���� �e�k��2dxdy� . �31�

he quantity Bk is the index overlap factor for the kth
ode. Figure 7 shows the dependence of B1 and B2 on the
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aveguide height. For heights �300 nm B2 becomes
maller because of the weaker modal confinement of the
M mode.
There are waveguide geometries for which free carriers

hange not only the refractive index but also the birefrin-
ence of the waveguide. Equation (30) indicates that this
irefringence change is given by �B1−B2��nfc. Figure 7
hows that the modal birefringence introduced by free
arriers can be as much as 30% of the free-carrier-induced
hange in the material’s refractive index. The implication
s that for certain waveguide geometries the presence of
ree carriers will have a significant impact on the polar-
zation state of the optical field. This issue is explored fur-
her in the next section.

. SELF-PHASE MODULATION AND STATE
F POLARIZATION
hen an intense optical pulse or a CW beam propagates

hrough a silicon waveguide, its phase is modified by the
err effect as well as by index changes resulting from
PA-generated free carriers [1]. In the case of an asym-
etric waveguide whose width or height is smaller than

he optical wavelength �� /n�, both the Kerr and free-
arrier effects can lead to a significant change in wave-
uide birefringence. The SOP of the optical field at the
utput of the waveguide can then be quite different from
he SOP of the input field itself. In this section we con-
ider these SPM-induced changes in the SOP of an optical
eld.
The SOP of a plane wave is determined by the relative

hase between the two transverse field components Ex
nd Ey and their relative magnitudes [34]. The SOP in-
ide the waveguide is more complicated than the SOP of a
lane wave for two reasons. First, as we have already
hown, there can be a significant longitudinal field com-
onent Ez inside a silicon nanowire. Second, the mode
rofiles of the TE and TM modes have different depen-
ence on the transverse dimensions x and y so that the
elative magnitude of the field components Ex and Ey var-
es with these dimensions. In order to simplify the situa-
ion we describe the SOP in the waveguide in a manner
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ig. 7. (Color online) Factors B1 and B2 as a function of wave-
uide height for a fixed waveguide width of 500 nm at
=1550 nm.
nalogous to a plane wave. We use the relation Ak

Pkei�k, where Pk is the optical power in the kth mode
nd �k contributes to its phase. The SOP is determined by
he power in each mode and the relative phase � between
he two modes. According to Eq. (11) this relative phase
as two distinct contributions,

� = �L + �NL, �32�

here the linear and nonlinear contributions for a wave-
uide of length L are given by

�L = ��0
�1� − �0

�2��L, �33�

�NL = �1�L� − �2�L�. �34�

he linear contribution �L results solely from waveguide
irefringence. The nonlinear contribution �NL results
rom nonlinear effects inside the waveguide as well as
rom walk off, dispersion, and the SOP of the field at the
aveguide input. For low-power optical waves, � will not
e influenced by the Kerr effect or by TPA-generated free
arriers, and the output SOP is different from the input
OP only because of the linear effects occurring in the
aveguide. As the optical power increases �NL begins to

hange as a result of the nonlinear effects resulting in
ower-dependent changes in the output SOP of the optical
eld.
We characterize the SOP through Stokes parameters

efined as [32,34]

S0 = �A1�2 + �A2�2, S1 = �A1�2 − �A2�2,

S2 = Re�2A1A2
�ei�L�, S3 = Im�2A1A2

�ei�L�. �35�

otice that the nonlinear contribution to the differential
hase shift is included automatically through the complex
eld amplitudes. The linear contribution is extremely
ensitive to the waveguide length L and differs from
aveguide to waveguide. To isolate the nonlinear effects,
e assume that �L=2m
 for some integer m in the follow-

ng analysis.
We calculate the Stokes parameters by solving coupled-
ode equations (23) and (24) numerically for a nanowire
aveguide with 500 nm width, 240 nm height, and 2 cm

ength. All of the relevant nonlinear parameters can be
btained from the figures presented in Section 3. We as-
ume linear losses of 3 dB/cm for both the TE and TM
odes. Because the waveguide under consideration is
ighly birefringent, the terms containing exp�±2ik0�nz�

n Eqs. (23) and (24) can be neglected as they oscillate
apidly in z. However, their solution requires a rate equa-
ion describing the
ynamics of carrier density N. This equation is of the
orm [1]

dN

dt
= G −

N

�fc
, �36�

here �fc is the free-carrier lifetime taken to be 1 ns in
his study. If the electron-hole pairs are created by TPA
lone, their generation rate is given by [1]
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G =
r

Ac��0
�	11�A1�4 + 	22�A2�4 + 2	12�A1A2�2�, �37�

here Ac is the cross-section area of the silicon core.

. Case of a CW Input Beam
n the case of a CW beam, carrier density N is given by
he steady-state solution of Eq. (36). Moreover, all the
ime derivatives in Eqs. (23) and (24) vanish since the en-
elopes A1 and A2 do not vary with time. After dropping
hese terms, we can write these equations in terms of the
ode powers and the nonlinear differential phase shift as

ollows:

dP1

dz
= − 2	11rP1

2 − 2	12rP1P2 − B1��fcP1 − �1P1, �38�

dP2

dz
= − 2	22rP2

2 − 2	12rP1P2 − B2��fcP2 − �2P2, �39�

d�NL

dz
= �	11 − 	12�P1 + �	12 − 	22�P2 + k0�B1 − B2��nfc.

�40�

t is clear from phase equation (40) that both the SPM
nd free carriers affect the differential phase shift. In
eneral, the Kerr effect acts to increase the waveguide bi-
efringence, whereas free carriers reduce it because of the
egative value of �nfc. In the case of CW light, free-
arrier effects dominate because of the buildup of a steady
opulation of free carriers [1].
Figure 8 shows how the Stokes parameters at the out-

ut of the waveguide depend on the power for an input
eld polarized at 45° from the x axis so that both the TE
nd TM modes are equally excited. The output field re-
ains linearly polarized at +45° at lower powers �S2 /S0
1� but becomes left-circularly polarized at an input
ower of 200 mW after passing through elliptical SOPs.
ith a further increase in power, it becomes again ellip-

ically polarized and acquires a �45° linear SOP when
he input power reaches 400 mW. A right-circularly polar-
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ig. 8. (Color online) Stokes parameters as a function of the in-
ut power of a CW beam propagating through a 2-cm-long wave-
uide at �=1550 nm.
zed state occurs at a power level of 700 mW. These polar-
zation changes result mostly from the presence of free
arriers.

From a practical standpoint, the nonlinear rotation of
he field’s SOP can be used to make an intensity discrimi-
ator if a linear polarizer acting as an analyzer is placed
t the waveguide output. Such a device would work for
oth CW beams and quasi-CW pulses whose temporal
idths are much longer than the free-carrier lifetime.
his lifetime is typically �1 ns but it can be reduced by
lectrically biasing a waveguide built in a p-i-n structure.
s an example, consider nanosecond pulses that have
oise imposed on them by an amplifier (or some other
eans). When such a pulse is sent through a silicon nano-
ire, the noise will not experience any change in its SOP
ecause of its relatively low power, but the SOP of the
entral part of the pulse can be rotated by 90°. An ana-
yzer at the output end will let the pulse pass but will
lock the noise.

. Case of Picosecond Input Pulses
he case of an optical pulse differs from the CW case in

hat the density of electron-hole pairs N (and therefore
he resulting index changes) change dynamically along
he pulse. The SPM induced by the Kerr effect also
hanges with time and leads to considerable chirping of
he pulse. As a result, one expects that the SOP of a pulse,
lthough uniform initially along the entire pulse dura-
ion, will become nonuniform, and different parts of the
ulse would exhibit different SOPs.
The main difference in the pulsed case is that we now

ave to keep the time derivatives in Eqs. (23) and (24) as
ell as in carrier-density equation (36). To simplify

oupled-mode equations (23) and (24), we retain only the
rst- and second-order time derivatives and neglect all
igher-order dispersion terms. We find the group indices
f the TE and TM modes numerically to be 4.199 and
.270, respectively. We also calculate �2 for the TE and
M modes to be �0.857 and 16.431 ps2/m, respectively.
We solve Eqs. (23) and (24) with the symmetric split-

tep Fourier method. We consider a waveguide with the
ame parameters as in the CW case. Figure 9 shows the
tokes parameters as a function of time at the output of
he waveguide for a 15-ps input Gaussian pulse polarized
inearly at 45° and launched with 6.75 W peak power. The
arrier density N is initially zero but it builds up after the
ront end of the pulse enters the waveguide and takes its
aximum value after the trailing edge has passed away.
uch temporal changes in N cause a time-dependent bi-
efringence through the index changes induced by free
arriers which, in turn, causes temporal oscillations in
he Stokes parameters seen in Fig. 9. In particular, there
s a temporal region of the pulse where the polarization
tate switches completely from a +45° linear SOP to a
45° one.
One implication of the observed polarization dynamics

s the possibility for pulse compression. Also shown in Fig.
is the optical power of the output pulse after it has been
assed through a linear analyzer oriented orthogonal to
he input SOP of the pulse (dashed curve). The original
5-ps pulse is compressed down to a width of around 4 ps
eading to a compression factor of about 3.75. At higher
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owers, the SOP at the waveguide output will oscillate
ore rapidly due to enhanced free-carrier index changes

nd results at the output of the analyzer in a splitting of a
ingle pulse into multiple distinct pulses of shorter tem-
oral width.

. CONCLUSIONS
e have developed a comprehensive theory for describing

he nonlinear propagation of optical pulses through sili-
on waveguides with nanoscale dimensions. Our theory
ncludes not only the vectorial nature of optical modes but
lso the coupling between the TE and TM modes that oc-
urs for arbitrarily polarized optical fields. We have stud-
ed the dependence of relevant nonlinear parameters on
aveguide dimensions and found a class of waveguide ge-
metries for which self-phase modulation can have a dra-
atic impact on the polarization state of the optical field.
elf-induced changes in the polarization state have been
tudied for both CW and pulsed fields propagating in sili-
on nanowire waveguides. We also discussed the possibil-
ty of using these effects for intensity discrimination and
ulse compression. Our theoretical formalism should be
seful for novel device applications making use of nonlin-
ar polarization effects in silicon nanowire waveguides.

PPENDIX A: DERIVATION OF THE
ODE-AMPLITUDE PERTURBATION

QUATION
o derive Eq. (7) from Eq. (5), it is useful to separate the
ransverse and longitudinal parts of the optical field by
riting the electric and magnetic fields in the form

E�k� = ET
�k� + Ez

�k�ẑ, H�k� = HT
�k� + Hz

�k�ẑ, �A1�

here ET
�k�=Ex

�k�x̂+Ey
�k�ŷ. Inserting Eq. (6) into Eq. (5),

aking the slowly varying envelope approximation by ne-
lecting the second derivative of ak, and using the fact
hat E�k� is a solution of Eq. (5) when P̃NL=0, we obtain
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ig. 9. (Color online) Stokes parameters versus time at the out-
ut of a 2-cm-long waveguide for a 15-ps input Gaussian pulse,
olarized linearly at 45° and launched with 6.75 W peak power.
he bottom plot shows optical power after the output pulse
asses through a �45° linear analyzer. The center wavelength of
he input pulse is 1550 nm.


k=1

M dak

dz
�2i��k�ET

�k� − �TEz
�k� − ��T · ET

�k��ẑ� = − �2�0P̃NL,

�A2�

here M is the total number of modes in the general case
f a multimode waveguide.

If we multiply Eq. (A2) with E��m� and integrate over
he transverse dimensions, we obtain



l

dal

dz �� �2i��m�ET
��m� · ET

�l� − ET
��m� · �TElz

− �T · �ET
��m�ET

�l�� + ET
��l� · �TEz

��m��dxdy

= − �2�0�� E��m� · P̃NLdxdy, �A3�

here we used the product rule

��T · ET
�l��Ez

��m� = �T · �Ez
��m�ET

�l�� − ET
�l� · �TEz

��m�.

odes with propagation constants ��k����m� have been
ropped from the sum as they are not phase-matched
ith the mth mode and introduce terms oscillating rap-

dly with z.
Consider the term ���T · �Ez

��m�ET
�l��dxdy. From Gauss’s

heorem, the integral over a finite transverse region R is
qual to a line integral around the boundary of R:

� �
R

�T · �Ez
��m�ET

�l��dxdy =�
R

Ez
��m�ET

�l� · d��. �A4�

s the region of integration is taken to extend the entire
ransverse plane, the right side of this equation vanishes
ecause all guided modes decay exponentially in the clad-
ing. Thus, Eq. (A3) simplifies to



l

dal

dz �� �2i��m�ET
��m� · ET

�l� − ET
��m� · �TEz

�l�

+ ET
�l� · �TEz

�m���dxdy = − �2�0�� E��m� · P̃NLdxdy.

�A5�

We now use the following expression from [23]:

2i��m�ET
��m� · ET

�l� − ET
��m� · �TEz

�l� + ET
�l� · �TEz

��m�

= i��0�E�l� � H��m� + E��m� � H�l�� · ẑ. �A6�

ith this identity and Eq. (4), Eq. (A5) becomes



l

dal

dz �� �e�l� � h��m� + e��m� � h�l�� · ẑdxdy

= i��� e��m� · P̃NL exp�− i��m�z�dxdy. �A7�

Assuming that all modes are orthogonal to each other,
r they have been made orthogonal using the well-known
ram–Schmidt process, we can use the relation
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�� �e�l� � h��m� + e��m� � h�l�� · ẑdxdy = 2Nm�lm,

here Nm is defined in Eq. (8). Using it, we finally obtain

dam

dz
=

i�

2Nm
�� e��m� · P̃NL exp�− i��m�z�dxdy. �A8�
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