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A comprehensive theory is developed for describing the nonlinear propagation of optical pulses through silicon
waveguides with nanoscale dimensions. Our theory includes not only the vectorial nature of optical modes but
also the coupling between the transverse electric and magnetic modes occurring for arbitrarily polarized opti-
cal fields. We have studied the dependence of relevant nonlinear parameters on waveguide dimensions and
found a class of waveguide geometries for which self-phase modulation can have a dramatic impact on the
polarization state of the optical field. Self-induced polarization changes are studied for both the continuous and
pulsed optical fields propagating in silicon waveguides. We also discuss the possibility of using these effects for
intensity discrimination and pulse compression. © 2010 Optical Society of America
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1. INTRODUCTION

Silicon-on-insulator (SOI) waveguides are attracting con-
siderable attention because monolithic integration of such
devices is likely to produce photonic integrated circuits
relevant for future computing and communications tech-
nologies. The existing infrastructure for the SOI technol-
ogy will allow such circuits to be fabricated at low cost.
Nonlinear optical effects in SOI waveguides have also
been studied in recent years [1-3] because an intrinsically
large material nonlinearity of silicon, combined with the
confinement of optical fields to nanoscale areas, allows
them to be observed at modest power levels. All-optical
switches, Raman lasers and amplifiers, parametric ampli-
fiers, and a host of other devices have all been demon-
strated in silicon waveguides [4-13].

Despite the considerable recent theoretical and experi-
mental progress in the field of nonlinear silicon photonics,
one area that has remained largely unexplored is the role
that the state of polarization (SOP) of an optical field
plays in nonlinear interactions. Part of the reason is re-
lated to use of the scalar approximation made commonly
by assuming that the incident optical pulses excite either
a transverse electric (TE) or a transverse magnetic (TM)
mode of the waveguide but not both. In this paper we de-
velop a theoretical framework for describing nonlinear
phenomena in silicon nanowire waveguides which takes
into account the full vectorial nature of the electromag-
netic field. In Section 2 we present a rigorous derivation
of the coupled-mode equations which describe the nonlin-
ear interaction between the TE and TM modes. We quan-
tify these effects in Section 3 through numerical calcula-
tions of the relevant nonlinear parameters and study
their dependence on waveguide dimensions. In Section 4
we apply our vectorial theory to study the influence of
self-phase modulation (SPM) on a continuous-wave (CW)
field and show that the polarization state at the wave-
guide output becomes dependent on the optical power at
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the waveguide input. We then consider the propagation of
pulsed optical fields and show that in this case the SPM
results in a temporally varying polarization state at the
waveguide output. The main results are summarized in
Section 5.

2. THEORETICAL FRAMEWORK

As is well known [1], several linear and nonlinear pro-
cesses affect the evolution of an optical pulse inside sili-
con nanowires. Two different yet related processes act to
modify the phase of an optical field in silicon. The Kerr
effect modifies the refractive index (and therefore the op-
tical phase) in a quasi-instantaneous way. Coinciding
with the Kerr effect is the process of two-photon absorp-
tion (TPA) which not only produces loss but also generates
electron-hole pairs which build up the density of free car-
riers. These free carriers produce additional loss because
they absorb light but they also modify the optical phase
through changes in the refractive index. The generation
and recombination of free carriers is characterized by a
relatively slow response time (~1 ns). The Kerr and free-
carrier processes lead to qualitatively different SPM ef-
fects that have been the subject of a number of theoretical
and experimental studies [14-21]. However, these studies
have considered the case in which the input pulse coupled
into the waveguide is polarized linearly so that only a
single spatial mode is excited.

A. Coupled Amplitude Equations

In this work we assume that an arbitrarily polarized op-
tical field is launched such that it excites both the funda-
mental TE and TM modes of a silicon waveguide. The
electric field E(r,¢) at a point r inside the waveguide sat-
isfies Maxwell’s equations. Introducing the Fourier trans-
form of a function f(¢) as
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flo) = f fit)eietdt, (1)

the electric and magnetic fields in the frequency domain
satisfy

\% XE:iw,uoﬁ, (2)

V X H = - iwegn(x,y)E — iwPN, (3)

where n(x,y) is the refractive index profile of the wave-
guide assumed to be uniform in the z direction. The ma-

terial’s nonlinear polarization PNV should not be confused
with the SOP which is a property of the electric field and
not the medium.

A common technique for solving Maxwell’s equations
makes use of optical modes supported by the waveguide
in the absence of the nonlinear material polarization. The
guided modes of Egs. (2) and (3) can be found numerically
for any waveguide geometry and are of the form

EW(r,0) = e®(x,y,0)explif¥(w)z],

H"¥(r,0) = h®(x,y, 0)exp[iB¥(w)z], 4)

where B*) is the propagation constant of the £th mode
and the superscript £ takes integer values 1 to M if the
waveguide supports M guided modes. In general, the vec-
torial mode profile e®(x,y,w) has nonzero e,, ey, and e,
components. In waveguides with core dimensions larger
than the optical wavelength and a relatively low index
contrast (such as optical fibers), the e, component of a
mode is negligible compared to either the e, or e, compo-
nent. In the case of waveguides with sub-wavelength core
dimensions and a high index contrast, this is no longer
true and the complete vectorial nature of the optical mode
must be retained for an accurate description [22-25]. SOI
technology has a very high index contrast and it is also
common to fabricate waveguides with nanometer-scale di-
mensions (dubbed “photonic nanowires”). For these rea-
sons, we retain fully the vectorial nature of the optical
modes in the following analysis.

We now consider the impact of the nonlinear term PNV
in Eq. (2). Taking the curl of Eq. (2) and using the identity

VXVXE=V(V-E)-V2E, we obtain
—V(V-E) + VZE + 0?ugeon®(x,y)E + 0> uoPY=0. (5)

Although it is often assumed that V(V-E)=~0, this ap-
proximation cannot be made for silicon nanowires as it
amounts to neglecting the longitudinal field component
E,, which can be significant in such waveguides. We thus
include this term in our theoretical description.

To solve Eq. (5), we assume that the input field excites
only the fundamental quasi-TE and quasi-TM modes of
the waveguide corresponding to 2=1 and 2 in Eq. (4). In
our notation, the quasi-TE mode (£=1) has a dominant e,
component, and the quasi-TM mode (£=2) has a domi-
nant e, component, where the y-axis is normal to the
waveguide substrate. We now adopt the well-known
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coupled-mode approach in which the solution of Eq. (5) is
expanded in terms of these two modes as

E(r,0) ~ a1z, 0)eV(x,y, 0"
+ ay(z,0)e@(x,y, wp)e? W2, (6)

where w is the carrier frequency and we approximate the
transverse mode profiles (e’ and e?) to be independent
of frequency over the bandwidth of the optical field. The z
dependence of the mode amplitudes, a; and a,, results
from the mode coupling induced by the nonlinear polar-
ization PNL,

Using the preceding expansion in Eq. (5) and making
the slowly varying envelope approximation, the mode
amplitudes are found to satisfy (see the Appendix for its
derivation)

dak iw

Ezz_zka f e ®(x,y) - PNL(x,y,2)e B @zdxdy, (7)

where the integrals extend over the entire x-y plane and
N}, representing the power flow in the z direction, is de-

fined as
N, = Re|:f f (e® x h*®)y. idxdy:| . (8)

This result is equivalent to the one in [26], where it is de-
rived from the Lorentz reciprocity theorem.

We need to convert Eq. (7) to the time domain. For this
purpose, it is useful to introduce a slowly varying mode
amplitude as

~ N
Az, 0-ap) = 4/ ;’”ak(z,w)exp{i[ﬁ@)(w) - B8P}, (9)

where B =B®)(w). Using Eq. (9) in Eq. (7), expanding
B*)(w) in a Taylor series around wy, and converting to the
time domain by replacing w—wqy with /%, we find the
following time-domain amplitude equation:

WA, | & g
i
n

n+1 .
n!l at*

Jz

}Ak +exp[—i(By'z - wot)]

=1
iwo

22N,

X f f e ®(x,y) - PNM(x,y,z,t)dxdy,

(10)

where g% =7 8"/3w" is the nth-order dispersion param-
eter of the waveguide at the frequency wgy. Similarly using
Eq. (9) in Eq. (6) and converting to the time domain re-
sults in the following expression for the electric field:

2
E(r,t) ~ 4 /]VAl(z,t)e“)(x,y)eXP[i(ﬁél)z - wot)]
1

2
+ \| A2z, )e®(x,y)expli( Bz - wot)].
N,

(11)

It can be shown that |A,|? is the optical power in the kth
mode. The evaluation of the integrals in Eq. (10) requires
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knowledge of the nonlinear polarization.

B. Third-Order Nonlinear Polarization

The nonlinear polarization PN¥(r,¢) in Eq. (10) has two
independent contributions resulting from the third-order
susceptibility and from free carriers generated by TPA,
ie.,

PNy ¢) = PO(r,¢) + PP (r,2). (12)

Consider the contribution from the third-order polariza-
tion. If the bandwidth of the optical field is much less
than the Raman shift in silicon (about 15.6 THz), the
dominant contribution to the third-order susceptibility
x® is due to electrons bound to silicon atoms in the crys-
tal lattice. This electronic response is extremely fast and
can be taken to be instantaneous. With this approxima-
tion, the uth component of the third-order polarization
can be written as [27]

P(g)(r t) = E Xﬂaﬁy(wo,wo,— W, (1)0)
4 @B,y

XE (x,t) Eyr,t)E (r,t). (13)

We use the Greek subscripts in this section for denoting
the Cartesian components of a vector.

The third-order susceptibility of a silicon crystal de-
pends on the orientation of the coordinate system relative
to the crystallographic axes and can be written in the fol-
lowing general form [1]:

® _ f(

Xuapy = o8y Bupay+ Ouyap)

+(1_P)2un qrquﬂqu]’ (14)
q

where R,, are the elements of a rotation matrix which
maps the crystallographic coordinate system into one
used to describe the waveguide modes and y, is the short-
hand for the component X(131)11 in the crystallographic coor-

dinate system. It is common to fabricate SOI waveguides

along the [110] direction. In this case the rotation matrix
in Eq. (14) is given by

Ry Ry Rys 1 1 0 -1
Ro1 Ryy Rog =T§ -1 0 -1/, (15)
Ry Ry Rg/ Y7\ 0 2 0

In this paper we only consider waveguides fabricated in
the [110] direction.

In Eq. (14), p is a parameter characterizing the aniso-
tropic nature of the third-order susceptibility. At wave-
lengths near 1550 nm, p~1.27 [1,28]. The quantity y, is
related to the Kerr coefficient ny and the TPA coefficient
Brpa of an optical field polarized along a crystallographic
axes as
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Brpa
2k0n2 ’

Xe = gsocngnz(l +ir), r= (16)

where ky=wo/c=27m/\, ny is the refractive index of bulk
silicon, and r is a measure of the relative strength of the
TPA process compared to the Kerr effect. Measurements
of ny and Brpp have been reported by a number of re-
search groups [14-16,19,28,29], but they vary over a con-
siderable range. In this paper, we use values from [29]
where 19~2.5x10"% cm2/GW and Bppa=0.5 cm/GW at
wavelengths near 1550 nm. Using these values, r=0.25.
We now consider the contribution of free carriers to the
nonlinear polarization. As mentioned earlier, the TPA pro-
cess generates electron-hole pairs, which in turn change
the refractive index and the absorption coefficient within
the silicon core of the waveguide. A commonly used semi-
empirical model assumes that the carrier-induced
changes in the absorption coefficient and the refractive in-
dex at a wavelength of 1550 nm are of the form [1,30]

Ad® =0, N, (17

Anfe = — 0* N - (o"N)*5, (18)

where N is the number density of electron-hole pairs, o,
=145%x1078 cm?, ¢°=8.8x10"2cm?, and o"=46
%X 10722 ¢cm?®. The material polarization, induced by the in-
teraction of free carriers with the electric field, is then
given by

P (r,t) = 28gno[ A + (i/12k0) A TE(r,2).  (19)

C. Coupled-Mode Equations

We are now in a position to derive the coupled-mode equa-
tions. Using Egs. (11), (10), and (13), the amplitude of the
kth mode changes as

9A - (k)
k {Zi B——]Ak+TSD T, (20)

n=1 I ag"

0z

where the three contributions are given by

Th = —AA A
30 %4(NkNleNn)1/2 F mAn exp(l Bklmnz)

ffxf; )ﬁ#(k) De *(m) (")dxdy, (21)
#aﬁy

3iw080

zl

(N N )1/2Al exp[l(ﬁ(l) (k))z]

X f f [ARf + (i/2kg)AcCle*™® - eDdxdy, (22)

where A,Bklmn=—,Bf)k>+ﬁg)—ﬁf)m)+,8§)”) represents a phase
mismatch. The indices %,l,m,n take values 1 and 2 cor-
responding to the TE and TM modes, respectively.
Equation (20) describes the evolution of the mode am-
plitudes under very general conditions. Although it ap-
pears quite complicated, it can be simplified considerably
in specific situations. For example, if one considers a
highly birefringent waveguide, many of the terms can be
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neglected because they oscillate rapidly in z (in the ab-
sence of phase matching). Alternatively, if we consider a
silicon waveguide that exhibits reflection symmetry in the
x and y directions (e.g., a rectangular silicon core sur-
rounded on all sides by silica), then only four of the eight
terms in the triple sum over [,m,n in Eq. (21) are non-
vanishing and only the term for which /=% is nonzero in
Eq. (22). Because such silicon waveguides are commonly
used and because their analysis is considerably simplified
we focus on them in this paper. After considerable alge-
bra, Eq. (20) leads to the following two coupled-mode
equations for £=1 and 2:

dA4 ” ,8(1)
- = E l e Al+l'}/11(1+lr)|A1|2A1+l'ylz(1+lr)
0z el n! at"
no
X|AgPA 1 +iviy(1 +ir)AJATe 2Rz 1 ik Fln—
1
ay
Anf”+—AafC A - —A, (23)
2k 2
Ay | S BY
- = E in+1__ A2 + 1722(1 + ir)|A2|2A2 + l'}/lz(l + lr)
dz 1 n! at"
no
X|A1| A2 + l'ylz(l + 1,7')14214'1< 2ikoAnz + lkorzn_
2
Anf ¢ ——Adk | Ay - 224
X Y+ —Adly - —A,, 24
ny 2k, 2 |A2 7 g (24)

where ﬁjzﬁg)/ko is the mode index and An=n-74 is the
waveguide birefringence. The «; terms have been added
heuristically to account for internal waveguide losses.

The preceding coupled-mode equations introduce many
new parameters that involve integration over the wave-
guide cross section. The most important are the four non-
linear parameters defined as

ngl"% n(z,l“g
Y11= 5 nikong,  Yer= —o_ Maokonz,
nia; NnoQg
2n%F1F2 Makons n%l’ﬂ“z N1okons
Yie=— - - —am > Y= - ——am (25
n175(@1as) n1719(@1@s)

where the effective mode area (EMA) of the mode with &
=1,2 is defined as

o[ o] (] o)

(26)

The real dimensionless parameter I, measures the
relative contribution of the longitudinal component of the
electric fields associated with the two modes and is de-
fined as
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I11e®?dxdy
1P + (8% Im(elf) - Vyet*)dxdy

r,= 27

Numerically, I',;=1 and reduces to 1 only for a purely
transverse mode field. We refer to it as the longitudinal
enhancement factor (LEF) because it enhances the non-
linear effects in silicon nanowires [2].

The parameters 7, are also real dimensionless param-
eters defined as

Xc_lffo(l ))e;(l)e(l)e*(m) (m)dxdy

Mim = 2 s (28)
s [11(ePP)?dxdy [ [(|e™[?) dxdy ]2
-1 (3) (1) (2) *(1) (2)
Xe ST X paprPn € y dxdy
7]i2= E : (29)

papy [J1 (1@ 2dxdyff<|e(m>|2)2dxdy]“2'

They are a measure of the way in which the TE and TM
vectorial modes interact through the anisotropic third-
order susceptibility. We refer to these terms as the non-
linear overlap factors (NOFs). Finally, the subscript £ in
Ani”’ and Aa};c in the free-carrier terms in the coupled-
mode equations indicate that these quantities are evalu-
ated as overlap integrals with the transverse mode pro-
files, i.e.,

Anf:ffAnf“(x,yHe(k)zdxdy/(ff|e(k)|2dxdy>,
=fanfc(x,y)|e(k)2dxdy/(ff|e(k)|2dxdy>.

Coupled-mode equations (23) and (24) describe the evo-
lution of the fundamental TE and TM modes inside a sili-
con nanowire. We use them in this paper to discuss inter-
esting polarization effects. However, before doing that, we
compare our formalism with two other studies that also
consider the vectorial nature of optical modes. Chen et al.
[31] presented a theory for nonlinear propagation in sili-
con nanowires and include the Kerr nonlinearity, TPA,
Raman interaction, and free-carrier effects. Afshar and
Monro [23] developed a similar vectorial theory but they
do not include the free-carrier effects as their emphasis is
on glass waveguides. The expressions we derive for the
coupled-mode equations and the nonlinear parameters in
Eq. (25) can be compared with their results in certain lim-
its.

In Chen et al. a theory is developed to describe the
propagation of linearly polarized pump and Stokes pulses
interacting through Raman amplification. In the case that
the Stokes field is absent their theory is comparable to
ours when we consider only a single spatial mode being
excited [i.e., Ay=0 in Eqgs. (23) and (24)]. In this case our
theories agree. A demonstration of this agreement re-
quires the use of theorems concerning waveguide modes
from [26].

In the case of an isotropic medium (p=1), our expres-
sions for the y parameters in Eq. (25) reduce to those in
[23]. In this case, Egs. (23) and (24) can be further simpli-
fied to describe the TE and TM modes of a single-mode op-
tical fiber if we approximate the modes as being trans-
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verse (e;k)QO). In this approximation, they reduce to the

well-known expressions for optical fibers [32].

3. GEOMETRIC DEPENDENCE OF
NONLINEAR PARAMETERS

As seen from Egs. (25)—(28), the effective nonlinear pa-
rameters that govern the pulse propagation in silicon
nanowires depend on waveguide dimensions through the
EMAs a,, the LEFs I',, and the NOFs 7,,;, where £=1 and
2 for the TE and TM modes, respectively. In this section
we study the geometric dependence of these quantities by
focusing on waveguides whose rectangular silicon core is
surrounded on all sides by silica, as shown schematically
in Fig. 1. Since no exact analytic solution exists for the
vectorial modes of Eq. (4) for such waveguides, we employ
a numerical technique based on the full-vector finite-
difference method described in [33] to calculate the propa-
gation constants A% and the vectorial mode profiles
e®(x,y) of the fundamental TE and TM modes of the
waveguide. In the following numerical calculations, we
assume that the incident optical pulse has a carrier wave-
length of 1550 nm.

The nonlinear parameter of a mode depends strongly
on the dimension of the waveguide that is orthogonal to
the mode’s polarization direction. For example, the non-
linear parameter of the TE mode, y;1, depends strongly on
the height of a waveguide, but only weakly on its width.
This is evident from Fig. 2 which shows y;; as a function
of waveguide dimensions. As a result of the inherent sym-
metry of our waveguide in Fig. 1, the dependence of the
nonlinear parameter of the TM mode (y99) on the wave-
guide width is qualitatively similar to the dependence of
11 on the waveguide height. In fact, if silicon were an iso-
tropic medium (i.e., if p=1), this would also hold quanti-
tatively. Since silicon is anisotropic (p=1.27 near 1550
nm), there are quantitative differences between the TE
and TM modes.

The underlying reason for why 7y;; depends primarily
on the waveguide height is the polarization dependence of
modal confinement. Conceptually, the confinement of a
mode to the waveguide core is very sensitive to the dimen-
sion of the waveguide along which it is polarized. As this
dimension decreases the degree of modal confinement
does as well. As a result, the effective area @, of the mode
defined in Eq. (26) depends only weakly on the dimension
along which it is polarized. However, the EMA is strongly
dependent on the dimension orthogonal to the mode’s po-

SiO e N

2

Fig. 1. (Color online) Schematic of the waveguide geometry
employed.
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Fig. 2. (Color online) y;; as a function of waveguide width and
height at the 1550 nm wavelength.
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larization direction and any change in this dimension re-
sults in a proportional change in the effective area. This is
evident from Fig. 3 where we plot the EMAs of the funda-
mental TE and TM modes against the waveguide height
for a fixed width of 500 nm. As the waveguide height
reaches the effective optical wavelength in silicon (\/n
~440 nm) the EMA of the TM mode reaches a minimum.
A further decrease in the waveguide height results in an
increase in @, rather than a decrease. The EMA of the TE
mode, however, decreases monotonically with the wave-
guide height down to dimensions at which the TM mode
no longer exists [when the height A=\/(2n)]. Clearly,
nanowire waveguides will exhibit strong polarization de-
pendence in their nonlinear behavior because of this fea-
ture.

The EMA is not the only quantity in Eq. (25) related to
modal confinement. The NOFs (7,1, 799, and 7;2) measure
how effectively the vectorial modes overlap with the
third-order susceptibility, which is confined to the silicon
core (we ignore the silica nonlinearity in the cladding as it
is >100 times smaller). A waveguide mode with a longer
tail into the cladding region will have a smaller 7 param-
eter. Indeed, we see in Fig. 4 that 7,9 and 7o depend
strongly on the waveguide height. As the TM mode begins

0.32

0.3

0.28¢

0.261

Effective Mode Area (umz)
o o
I\ o
N &

o
()

o

-

©
T

0-16 300 400 500 600 700 800

Waveguide Height (nm)

Fig. 3. (Color online) EMAs, a; and a,, as a function of wave-
guide height for a fixed waveguide width of 500 nm at
A=1550 nm.
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Fig. 4. (Color online) 71, 799, and 7,5 as a function of waveguide
height for a fixed waveguide width of 500 nm at A=1550 nm.

to lose its confinement for 2 <\/n, both of these quanti-
ties become smaller. The nonlinear parameter vy, is
therefore reduced not only by an increase in its effective
area but also by a reduction in 799. The NOF for the TE
mode (771), however, is relatively independent of the
waveguide height. Notice that even for relatively large
waveguides 7;; exceeds 799 by about 15% as a result of
the anisotropy of silicon’s third-order susceptibility. If sili-
con were an isotropic medium, we would find 799=7;; and
719=711/3 in this situation, similar to the case of optical
fibers.

While the modal confinement can be understood as the
underlying reason why the nonlinear parameters depend
on waveguide dimensions as they do, we also need to con-
sider the geometric dependence of the LEF's I';, and the ef-
fective mode indices 77;,. These quantities are plotted in
Fig. 5 as a function of the waveguide height and they act
to enhance the effective nonlinear parameters for nano-
wire waveguides with dimensions <A/n. As the wave-
guide height decreases below \/n, the LEF I'y for the TM
mode becomes larger by as much as 60%. This enhance-

16F " "~<_ T
1.4} NN
120 Iy BRI

250 300 350 400 450 500
Waveguide Height (nm)

Fig. 5. (Color online) LEFs and effective mode indices as a func-

tion of waveguide height for a fixed waveguide width of 500 nm

at A\=1550 nm.
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ment is related to the increasing magnitude of the longi-
tudinal field component e, for narrower waveguides. Fig-
ure 5 also shows that the effective index of the TM mode
(n9) become notably smaller for nanowire waveguides
with subwavelength heights. For such geometries the
evanescence of the TM mode into the silica cladding
where the material index is much lower results in smaller
effective indices. Since the nonlinear parameter yy is in-
versely proportional to 713, and directly proportional to Ty,
both of these parameters act to enhance it.

Since the TM mode’s EMA and NOF reduce vy while
its LEF and 75 increase it for narrow waveguides, their
cumulative behavior determines the overall impact of the
waveguide geometry. Figure 6 shows the dependence of
the y parameters on the waveguide height. As seen there,
v11 (corresponding to the TE mode) increases with a re-
duction in the waveguide height. In contrast, vy, in-
creases initially because of an enhanced LEF and a lower
effective mode index but is ultimately reduced for
waveguides with subwavelength heights as a result of
weak modal confinement. The same behavior would occur
as the waveguide width is reduced for ;.

The influence of free carriers on the optical field is also
affected by waveguide geometry. As was seen in Section 2,
when the refractive index of the silicon material changes
by Anft, the resulting change in the effective index of a
waveguide mode is modified by a number of geometrical
parameters. It follows from the last term in Eqgs. (23) and
(24) that the effective free-carrier change in the mode in-
dex is given by

) N
ARft = —T,Anft = —T,I1,An/* = B,Anf, (30)
ng np

where we approximated An/¢ as being independent of x
and y within the core region of the waveguide and intro-
duced II, as the confinement factor for the £th mode as

Hk:f le®2dxdy (ff|e(k)|2dxdy). (31)
si

The quantity B, is the index overlap factor for the kth
mode. Figure 7 shows the dependence of B; and B, on the
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Fig. 6. (Color online) Nonlinear parameters as a function of

waveguide height for a fixed waveguide width of 500 nm at

A=1550 nm.
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Fig. 7. (Color online) Factors B, and B, as a function of wave-
guide height for a fixed waveguide width of 500 nm at
A=1550 nm.

waveguide height. For heights <300 nm B, becomes
smaller because of the weaker modal confinement of the
TM mode.

There are waveguide geometries for which free carriers
change not only the refractive index but also the birefrin-
gence of the waveguide. Equation (30) indicates that this
birefringence change is given by (B;-Bg)Anf¢. Figure 7
shows that the modal birefringence introduced by free
carriers can be as much as 30% of the free-carrier-induced
change in the material’s refractive index. The implication
is that for certain waveguide geometries the presence of
free carriers will have a significant impact on the polar-
ization state of the optical field. This issue is explored fur-
ther in the next section.

4. SELF-PHASE MODULATION AND STATE
OF POLARIZATION

When an intense optical pulse or a CW beam propagates
through a silicon waveguide, its phase is modified by the
Kerr effect as well as by index changes resulting from
TPA-generated free carriers [1]. In the case of an asym-
metric waveguide whose width or height is smaller than
the optical wavelength (A/n), both the Kerr and free-
carrier effects can lead to a significant change in wave-
guide birefringence. The SOP of the optical field at the
output of the waveguide can then be quite different from
the SOP of the input field itself. In this section we con-
sider these SPM-induced changes in the SOP of an optical
field.

The SOP of a plane wave is determined by the relative
phase between the two transverse field components E,
and E, and their relative magnitudes [34]. The SOP in-
side the waveguide is more complicated than the SOP of a
plane wave for two reasons. First, as we have already
shown, there can be a significant longitudinal field com-
ponent E, inside a silicon nanowire. Second, the mode
profiles of the TE and TM modes have different depen-
dence on the transverse dimensions x and y so that the
relative magnitude of the field components E, and E, var-
ies with these dimensions. In order to simplify the situa-
tion we describe the SOP in the waveguide in a manner
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analogous to a plane wave. We use the relation A,
= \s“PPkeid’k, where P;, is the optical power in the 2th mode
and ¢, contributes to its phase. The SOP is determined by
the power in each mode and the relative phase & between
the two modes. According to Eq. (11) this relative phase
has two distinct contributions,

6= 4L+ ONL (32)

where the linear and nonlinear contributions for a wave-
guide of length L are given by

&=y - BPL, (33)

onL = (L) — ¢o(L). (34)

The linear contribution &, results solely from waveguide
birefringence. The nonlinear contribution &y, results
from nonlinear effects inside the waveguide as well as
from walk off, dispersion, and the SOP of the field at the
waveguide input. For low-power optical waves, § will not
be influenced by the Kerr effect or by TPA-generated free
carriers, and the output SOP is different from the input
SOP only because of the linear effects occurring in the
waveguide. As the optical power increases dyi, begins to
change as a result of the nonlinear effects resulting in
power-dependent changes in the output SOP of the optical
field.

We characterize the SOP through Stokes parameters
defined as [32,34]

So= IA1|2 + |A2|2, S;= |A1|2 - |A2|2,

Sy =Re(24,A5¢),  Sg=Im(24,A%). (35)
Notice that the nonlinear contribution to the differential
phase shift is included automatically through the complex
field amplitudes. The linear contribution is extremely
sensitive to the waveguide length L and differs from
waveguide to waveguide. To isolate the nonlinear effects,
we assume that &,=2m for some integer m in the follow-
ing analysis.

We calculate the Stokes parameters by solving coupled-
mode equations (23) and (24) numerically for a nanowire
waveguide with 500 nm width, 240 nm height, and 2 cm
length. All of the relevant nonlinear parameters can be
obtained from the figures presented in Section 3. We as-
sume linear losses of 3 dB/cm for both the TE and TM
modes. Because the waveguide under consideration is
highly birefringent, the terms containing exp(+2ikyAnz)
in Eqgs. (23) and (24) can be neglected as they oscillate
rapidly in z. However, their solution requires a rate equa-
tion describing the
dynamics of carrier density N. This equation is of the
form [1]

dN N
—=G-—, (36)
dt ch

where 74, is the free-carrier lifetime taken to be 1 ns in
this study. If the electron-hole pairs are created by TPA
alone, their generation rate is given by [1]
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G (')’11|A1|4 + 7’22|Az|4 + 2712|A1A2|2) s (37)

- Acﬁwo

where A, is the cross-section area of the silicon core.

A. Case of a CW Input Beam

In the case of a CW beam, carrier density N is given by
the steady-state solution of Eq. (36). Moreover, all the
time derivatives in Eqgs. (23) and (24) vanish since the en-
velopes A; and A, do not vary with time. After dropping
these terms, we can write these equations in terms of the
mode powers and the nonlinear differential phase shift as
follows:

dP
d_l=—27’11’"P%—2712VP1P2—BlAafCP1— a Py, (38)
z
dPy
d—=—2'}/227‘P§—2'}/12rP1P2—BzAach2— ayPy,  (39)
z
doy .
e (v11= 712)P1 + (vi2 = v22)Po + ko(B1 — By)An'®.

(40)

It is clear from phase equation (40) that both the SPM
and free carriers affect the differential phase shift. In
general, the Kerr effect acts to increase the waveguide bi-
refringence, whereas free carriers reduce it because of the
negative value of Anf®. In the case of CW light, free-
carrier effects dominate because of the buildup of a steady
population of free carriers [1].

Figure 8 shows how the Stokes parameters at the out-
put of the waveguide depend on the power for an input
field polarized at 45° from the x axis so that both the TE
and TM modes are equally excited. The output field re-
mains linearly polarized at +45° at lower powers (S,/S|
=1) but becomes left-circularly polarized at an input
power of 200 mW after passing through elliptical SOPs.
With a further increase in power, it becomes again ellip-
tically polarized and acquires a —45° linear SOP when
the input power reaches 400 mW. A right-circularly polar-
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E
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Fig. 8. (Color online) Stokes parameters as a function of the in-
put power of a CW beam propagating through a 2-cm-long wave-
guide at A=1550 nm.
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ized state occurs at a power level of 700 mW. These polar-
ization changes result mostly from the presence of free
carriers.

From a practical standpoint, the nonlinear rotation of
the field’s SOP can be used to make an intensity discrimi-
nator if a linear polarizer acting as an analyzer is placed
at the waveguide output. Such a device would work for
both CW beams and quasi-CW pulses whose temporal
widths are much longer than the free-carrier lifetime.
This lifetime is typically ~1 ns but it can be reduced by
electrically biasing a waveguide built in a p-i-n structure.
As an example, consider nanosecond pulses that have
noise imposed on them by an amplifier (or some other
means). When such a pulse is sent through a silicon nano-
wire, the noise will not experience any change in its SOP
because of its relatively low power, but the SOP of the
central part of the pulse can be rotated by 90°. An ana-
lyzer at the output end will let the pulse pass but will
block the noise.

B. Case of Picosecond Input Pulses

The case of an optical pulse differs from the CW case in
that the density of electron-hole pairs N (and therefore
the resulting index changes) change dynamically along
the pulse. The SPM induced by the Kerr effect also
changes with time and leads to considerable chirping of
the pulse. As a result, one expects that the SOP of a pulse,
although uniform initially along the entire pulse dura-
tion, will become nonuniform, and different parts of the
pulse would exhibit different SOPs.

The main difference in the pulsed case is that we now
have to keep the time derivatives in Eqgs. (23) and (24) as
well as in carrier-density equation (36). To simplify
coupled-mode equations (23) and (24), we retain only the
first- and second-order time derivatives and neglect all
higher-order dispersion terms. We find the group indices
of the TE and TM modes numerically to be 4.199 and
4.270, respectively. We also calculate B, for the TE and
TM modes to be —0.857 and 16.431 ps2/m, respectively.

We solve Eqgs. (23) and (24) with the symmetric split-
step Fourier method. We consider a waveguide with the
same parameters as in the CW case. Figure 9 shows the
Stokes parameters as a function of time at the output of
the waveguide for a 15-ps input Gaussian pulse polarized
linearly at 45° and launched with 6.75 W peak power. The
carrier density N is initially zero but it builds up after the
front end of the pulse enters the waveguide and takes its
maximum value after the trailing edge has passed away.
Such temporal changes in N cause a time-dependent bi-
refringence through the index changes induced by free
carriers which, in turn, causes temporal oscillations in
the Stokes parameters seen in Fig. 9. In particular, there
is a temporal region of the pulse where the polarization
state switches completely from a +45° linear SOP to a
—45° one.

One implication of the observed polarization dynamics
is the possibility for pulse compression. Also shown in Fig.
9 is the optical power of the output pulse after it has been
passed through a linear analyzer oriented orthogonal to
the input SOP of the pulse (dashed curve). The original
15-ps pulse is compressed down to a width of around 4 ps
leading to a compression factor of about 3.75. At higher
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Fig. 9. (Color online) Stokes parameters versus time at the out-
put of a 2-cm-long waveguide for a 15-ps input Gaussian pulse,
polarized linearly at 45° and launched with 6.75 W peak power.
The bottom plot shows optical power after the output pulse
passes through a —45° linear analyzer. The center wavelength of
the input pulse is 1550 nm.

powers, the SOP at the waveguide output will oscillate
more rapidly due to enhanced free-carrier index changes
and results at the output of the analyzer in a splitting of a
single pulse into multiple distinct pulses of shorter tem-
poral width.

5. CONCLUSIONS

We have developed a comprehensive theory for describing
the nonlinear propagation of optical pulses through sili-
con waveguides with nanoscale dimensions. Our theory
includes not only the vectorial nature of optical modes but
also the coupling between the TE and TM modes that oc-
curs for arbitrarily polarized optical fields. We have stud-
ied the dependence of relevant nonlinear parameters on
waveguide dimensions and found a class of waveguide ge-
ometries for which self-phase modulation can have a dra-
matic impact on the polarization state of the optical field.
Self-induced changes in the polarization state have been
studied for both CW and pulsed fields propagating in sili-
con nanowire waveguides. We also discussed the possibil-
ity of using these effects for intensity discrimination and
pulse compression. Our theoretical formalism should be
useful for novel device applications making use of nonlin-
ear polarization effects in silicon nanowire waveguides.

APPENDIX A: DERIVATION OF THE
MODE-AMPLITUDE PERTURBATION
EQUATION

To derive Eq. (7) from Eq. (5), it is useful to separate the
transverse and longitudinal parts of the optical field by
writing the electric and magnetic fields in the form

E(k) _ E(Tl‘e) + Egk)i, H(k) - H(Ylf) + Hik)i, (A].)

where E$)=Eik)ﬁ+E§k)$'. Inserting Eq. (6) into Eq. (5),
making the slowly varying envelope approximation by ne-

glecting the second derivative of a;, and using the fact
that E® is a solution of Eq. (5) when PNL=0, we obtain
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M
dak ~
> — [2IBVEY - VEY - (Vo Bf)2] = - o,
k=1

(A2)

where M is the total number of modes in the general case
of a multimode waveguide.

If we multiply Eq. (A2) with E* and integrate over
the transverse dimensions, we obtain

day « w(m) (D) _ ge(m)
> . [2ip™E;™ - Eyf) - Ef™ - ViE,,
i y4

- Vp- (EFVED) + BV - VoE. "™ dxdy
=— wzﬂof f Em) . ISNdedy, (A3)

where we used the product rule
(Vp- EPE.™ =V (E;"E}) - Ef - V7E,™.

Modes with propagation constants B% # g™ have been
dropped from the sum as they are not phase-matched
with the mth mode and introduce terms oscillating rap-
idly with z.

Consider the term [[ VT~(E:(m)E¥))dxdy. From Gauss’s
theorem, the integral over a finite transverse region R is
equal to a line integral around the boundary of R:

J f VT-(E;“(m)E%))dxdy:jg EX™ED . -de,. (A4)
R R

As the region of integration is taken to extend the entire
transverse plane, the right side of this equation vanishes
because all guided modes decay exponentially in the clad-
ding. Thus, Eq. (A3) simplifies to

da
>— f f [2i™E;™ - By ~E™ - V,EY
1 dZ

+ E(Tl,) . VTELm)*]dxdy __ wzﬂof f £ . ﬁNdedy.

(A5)
We now use the following expression from [23]:
2ip™E;™ - EY -E;{™ - V,EY + EY - VE™
=iwu[EY x H'™ + B x HVT. 7, (A6)

With this identity and Eq. (4), Eq. (A5) becomes

dal
>

d—f f [e® x h*™ + e x h®]. zdxdy
1 z

= iwf J e ™ . PNL exp[— i 8z]dxdy . (A7)

Assuming that all modes are orthogonal to each other,
or they have been made orthogonal using the well-known
Gram—Schmidt process, we can use the relation
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J f [e¥ X h*™ + "™ x h¥]- zdxdy = 2N,, 5,

where N,, is defined in Eq. (8). Using it, we finally obtain

da

lw
_m = #(m) | pDNL - (m)
dz 2Nmffe P exp[-if™z]dxdy. (A8)
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