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Abstract—Increasing the amplifying efficiency in silicon-on-
insulator waveguides plays a crucial role in future adaptation of
this technology for integrated optics applications. Such improve-
ments not only lead to a reduced overall footprint size but also
the overall reduction in the operating energy consumption of the
device. In this paper, we address the design optimization of sili-
con optical amplifiers working in the continuous wave domain. We
seek to optimize the efficiency of a silicon optical amplifier by vary-
ing the cross-section area along the waveguide length that coerces
judicious minimization of the pernicious influence of free-carrier
absorption and two-photon absorption on Raman amplification.
Using a recently proposed semi-analytical technique, we recasted
the above problem as a boundary-value problem that contains
eight coupled nonlinear differential equations for four waves’ pow-
ers and four auxiliary functions. The numerical solution of these
equations allows one to find the axial profile of the effective mode
area (EMA), providing the largest output signal power for given
waveguide length, input pump power and a preset, input-facet
EMA. We have illustrated utility of our method by applying it to
several practically realizable amplification scenarios. In particular,
optimizing the EMA profiles with different input-facet EMAs, we
calculated the optimum signal gain of a silicon optical amplifier
with a given (i.e., preset) amplifier length.

Index Terms—Integrated optics, nonlinear optics, Raman effect,
silicon photonics, silicon Raman amplifiers, silicon waveguides,
waveguide tapering.

I. INTRODUCTION

THE UNIQUE nonlinear optical properties of silicon pro-
vide a large number of promising applications for silicon-

on-insulator (SOI) waveguides (also called photonic nanowires)
in optoelectronic-integrated circuits [1]–[4]. These properties
owe their existence to the pronounced Kerr effect, stimulated Ra-
man scattering (SRS), two-photon absorption (TPA), and free-
carrier absorption (FCA), which are intrinsic to the crystalline
silicon within the 1.55-µm telecommunications window [4]–[6].
Among a plethora of silicon-based device functionalities that
have been demonstrated during the last decade, the Raman am-
plification in SOI waveguides is one of the most versatile and
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remarkable effect making this technology attractive for practical
applications [7]–[9].

It is well known that the Raman gain coefficient for SRS is
about four orders of magnitude higher in silicon than that for
fused silica [5], [10], [11]. This feature made it possible for
several experimental groups to demonstrate a net positive gain
for both pulsed [8], [12]–[16] and continuous-wave (CW) [17],
[18] silicon Raman amplifiers. However, the operating intensity
levels of such amplifiers are severely limited by the free carriers
generated via the TPA mechanism. This happens because TPA-
generated carriers give rise to strong FCA, which is cumulative
in nature and grows as square of the optical intensity. Thus, FCA
is the main detrimental effect that hinders a net positive Raman
gain in silicon and directly affects the performance of Raman
amplifiers [19]–[22].

In the case of CW-pumped Raman amplifiers, the problem of
FCA is tackled by removing the free carriers from the modal
area using a reverse-biased p-n junction [22]–[25]. In amplifiers
operating in the pulsed regime, the negative impact of FCA
can also be alleviated by reducing the pulse repetition rate [15]
(such that most of carriers generated by one pulse vanish through
recombination before the next pulse arrives) or by making the
width of pump pulses narrower than the effective carrier lifetime
[12]. Even after implementing these very effective remedies,
there still remains scope to further improve the performance of
CW Raman amplifiers by tapering the waveguide appropriately
[26]–[29]. One can easily understand the physics behind this
strategy by noting that the efficiency of SRS is proportional
to the first power of intensity and thus changes slower than
that of FCA. As a result, by varying the cross-section area of
a silicon waveguide, one may attain a balance between Raman
amplification, TPA, and FCA, and thus achieve maximum signal
gain for a given carrier lifetime, waveguide length, and input
powers.

We, recently, proposed a semi-analytical method that allows
one to find the optimal axial profile of the effective mode area
(EMA) along the length of a single-pass Raman amplifier [29].
It was shown there that the gain optimization can be performed
by solving a boundary-value problem associated with pump and
signal powers that are linked to each other through some ju-
diciously introduced auxiliary functions. However, reflections
from the input and output facets of the SOI waveguide were
ignored to avoid backward propagation of the pump and signal
waves. In the present paper, we extend this method to a more
realistic scenario where backward-propagating pump and signal
waves exist within the amplifier because of finite facet reflec-
tivities at the waveguide ends. We show that, in this case, a set
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Fig. 1. Scheme of the SOI waveguide with variable cross section and the
propagating waves considered in this paper. The input pump and signal powers
are denoted by Pp0 and Ps0 , respectively; Rp0 , Rs0 , RpL , and RsL are the
reflectivities for pump and signal wavelengths at the input (z = 0) and output
(z = L) ends of the waveguide; Pout is the output signal power. The effective
mode area, Aeff (z), is proportional to the waveguide cross-section area shown
by dotted lines.

of eight nonlinear differential equations need to be solved to
obtain the optimal EMA profile. Within the validity region of
undepleted pump approximation, the solution of these equations
reduces to the well-known analytical result of Renner et al. [26].
We further illustrate the effectiveness of our method by consid-
ering the depleted-pump scenario and discuss the possibility of
linear tapering instead of optimized tapering.

II. OPTIMIZATION PROCEDURE

Consider the process of Raman amplification of a CW sig-
nal at the Stokes frequency ωs = 2πc/λs by a CW pump at
frequency ωp = 2πc/λp inside the SOI waveguide of variable
cross section (see Fig. 1). Owing to the nonzero reflectivities
at facets of the waveguide, both forward (+) and backward (−)
propagating waves coexist within the amplifier. The evolution of
the powers associated with these four waves, P±

p (z) and P±
s (z),

inside the waveguide is governed by the following set of cou-
pled differential equations used frequently for modeling silicon
Raman lasers [26], [27], [30]:

± 1
P±

p

dP±
p

dz
= −α − β

P±
p + 2P∓

p
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Here α and β are, respectively, the linear loss and TPA coeffi-
cients, assumed to be equal at the pump and Stokes frequencies,
Aeff (z) is the z-dependent EMA of the waveguide mode excited
by the pump and signal waves, and P2 accounts for different
channels through which free carriers are generated inside the
waveguide,

P2 = (P+
p )2 + (P−

p )2 + (P+
s )2 + (P−

s )2

+ 4
[
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p P−
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s P−
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]
.

The FCA is included in (1) through the last term and is de-
termined by the coefficients κp(s) = τcσp(s)β/(2h̄ωp), where
τc is the effective carrier lifetime, σp(s) = σ0(λp(s)/λ0)2 , σ0 =
1.45 × 10−21m2 , and λ0 = 1550 nm. The coefficients

ζps = 2β + gRL(Ωps) and ζsp = (ωs/ωp)[2β − gRL(Ωps)]

are responsible for cross-TPA through the β-term and for SRS
through the Raman gain coefficient gR . The Lorentzian function

L(Ωps) =
4γ2

RΩRΩps

(Ω2
R − Ω2

ps)2 + 4γ2
RΩ2

ps

takes into account the shape of the Raman-gain spectrum. Here
Ωps = ωp − ωs , ΩR = 15.6 THz is the Stokes shift, and γR =
105 GHz is the Raman-gain bandwidth at room temperature. It
is significant that β � gR in silicon. Therefore, near the Raman-
gain peak (Ωps ≈ ΩR ), ζsp < 0, and the third term in the right-
hand side of (1b) is positive.

The boundary conditions for powers entering system (1) are
determined by the reflectivities, Rp(s)0 and Rp(s)L , for the pump
and signal at the input and output ends of the waveguide as well
as by the input powers, Pp0 and Ps0 , launched into the waveguide
(see Fig. 1). In particular, Rp0 and Rs0 determine what fraction
of the input powers is reflected from the waveguide and not
involved in the amplification process. It is easy to see that the
forward- and backward-propagating waves at the two waveguide
ends are related by the following boundary conditions:

P+
p (0) = (1 − Rp0)Pp0 + Rp0P

−
p (0), (2a)

P+
s (0) = (1 − Rs0)Ps0 + Rs0P

−
s (0), (2b)

P−
p (L) = RpLP+

p (L), (2c)

P−
s (L) = RsLP+

s (L). (2d)

Notice that, in the case Rp0 = Rs0 = RpL = RsL = 0, the
boundary-value problem given by (1) and (2) describes a single-
pass Raman amplifier, whereas the case Ps0 = 0 corresponds to
the Raman laser. Thus, our general analysis covers these two
important devices as special cases.

It follows from (1) that the signal gain depends drastically
on the EMA profile. If the waveguide has a very large area all
along its length, the nonlinear terms in (1b) are negligible, and
the signal experiences only the linear absorption. By contrast, in
a very small cross-section waveguide, strong nonlinear absorp-
tion occurs, and Raman amplification becomes quite inefficient.
Therefore, one can reasonably expect to find an optimal EMA
profile that maximizes the output signal power

Pout ≡ P+
s (L) − P−

s (L) = (1 − RsL )P+
s (L). (3)

Such a profile indeed exists. We now show that it can be found
by employing the method proposed earlier for maximization of
the net optical gain in single-pass silicon Raman amplifiers [29].
Since EMA is proportional to the amplifier cross-section area,
it can be altered in practice by tapering the waveguide width or
thickness (or both) appropriately.

According to the variations calculus [31], the optimal EMA
profile, Aeff (z), makes the output signal power stationary with
respect to small variations δAeff (z). Mathematically, the first
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variation of Pout should vanish, i.e., δPout = 0, or, what is the
same through relation (3)

δP+
s (L) = 0.

We provide details of the mathematical process that we use to
satisfy this condition in the Appendix. Utilizing (A2b) and (2d),
it is straightforward to show that the preceding equation can be
represented in the form

δG+
s = Rs0

P−
s (0)

P+
s (0)

δG−
s , (4)

where G±
s represents the net Raman amplification (on a log

scale) of the signal in the forward and backward directions,
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∫ L

0

1
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s
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s

dz
dz

assuming that Ps0 �= 0 and Rs0 �= 1. At this point, it should
be emphasized that the present optimization problem is
significantly more difficult than that for a single-pass silicon
Raman amplifier because (4) contains unknown functions at the
waveguide input end.

Using (1b), we can rewrite (4) as an integral equation con-
taining small variations of pump and signal powers correspond-
ing to δAeff (z). The optimal EMA profile can be expressed
from this equation by introducing four auxiliary functions and
employing the integro-variational consequences of the propa-
gation equations (1) as well as variational consequences of the
boundary conditions (2) in the same manner as was done in [29].
The details are given in the Appendix and lead to the following
final result:
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, (5)

where
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and ϑ = Rs0P
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The auxiliary functions ϕ± and ψ± satisfy four coupled non-

linear differential equations,

dϕ±
dz
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p ϕ+ − ã±

p ϕ− + b±p ψ+ − b̃±p ψ− − A±, (6a)

dψ±
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= a±
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that should be solved with the boundary conditions

ϕ+(L) = −RpLϕ−(L), (7a)

ϕ−(0) = −Rp0ϕ+(0), (7b)

ψ−(0) = −Rs0ψ+(0). (7c)

The fourth boundary condition involves the EMA at the input
(or output) end of the waveguide, i.e.,

Aeff (0) = A0 [or Aeff (L) = AL ]. (8)

All coefficients appearing in (6) vary with z and are given by
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The coefficients a±
s are obtained from a±

p by interchanging
the subscripts p and s, whereas the coefficients ã±

p(s) are

obtained from a∓
p(s) by interchanging the superscripts “+”

and “−”. Finally, b±s and b̃±s are obtained, respectively, using
b±p = A±P+

s /(1 + ϑ) and b̃±p = (P−
s /P+

s ) b±p .
Thus, the procedure for finding the EMA profile consists of

solving a set of eight equations in (1) and (6) subject to the
boundary conditions in (2), (7), and (8). The optimum EMA
profile Aeff (z) is then found from (5). Following the same ar-
guments as in the case of a single-pass Raman amplifier [29], it
can be proved that this choice leads to the maximal value for the
amplified signal power Pout in (3). We note that, if all reflec-
tivities were zero, the backward-propagating waves are absent
and ϑ = 0. In this case, (1), (5), and (6) reduce to those derived
earlier in [29] for a single-pass Raman amplifier.

At the end of this section, it should be emphasized that
the above gain optimization scheme is only applicable to the
idealized situation where both the pump and the signal are con-
tinuous waves. In real silicon Raman amplifiers, finite band-
widths of interacting waves and the limited bandwidth of the
Raman response result in the signal receiving uneven gain across
its spectral profile. The problem of simultaneous gain maximiza-
tion and gain profile flattening is more complicated and requires
full-blown numerical simulations. The study of this interesting
problem is now in progress.
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Fig. 2. Evolution of powers for the forward-(solid curves) and backward-
(dashed curves) propagating pump and signal when input pump power is so
large that the undepleted-pump approximation is valid (upper panel). Four aux-
iliary functions (broken curves, left scale) and the optimized EMA axial profile
(solid curve, right scale) (lower panel). The reflectivities at pump and signal
wavelength are assumed to be equal to 0.3 at both facets of the waveguide. The
simulation parameters are: L = 45.6 mm, Pp0 = 4 W, Ps0 = 0.004 W, and
A0 = 4 µm2 . For other parameters see the text.

III. NUMERICAL RESULTS AND DISCUSSION

As an example, we consider in this section the optimiza-
tion problem when a 1542-nm CW signal is amplified through
SRS by a 1427-nm pump inside a silicon waveguide of fixed
length L = 45.6 mm. In our numerical simulations, we em-
ploy the following typical parameter values for a silicon
waveguide: Rp0 = Rs0 = RpL = RsL = 0.3, α = 1 dB/cm,
β = 0.7 cm/GW, gR = 20 cm/GW, and τc = 4.5 ns.

Let us start by examining the special situation in which the
depletion of forward-propagating pump is negligibly small. As
is well-known [26], the optimal tapering profile in this case
has a simple exponential shape along the amplifier length. The
undepleted-pump scenario is realized numerically, for example,
when a 4-mW signal and a 4-W pump are launched inside the
SOI waveguide with A0 = 4µm2 . The solution of the boundary-
value problem specified by (1), (2), (6)–(8) in this case, is pre-
sented in Fig. 2. The upper panel shows the four power levels,

Fig. 3. Solution of coupled equations in (1) and (6) when Pp0 = 4 W, Ps0 =
0.4 W, and A0 = 5 µm2 . Powers of forward-(solid curves) and backward-
(dashed curves) traveling waves as functions of propagation distance (upper
panel). Optimized EMA profile (solid curve, right scale) and the auxiliary func-
tions (broken curves, left scale) (lower panel). All other parameters are the same
as employed in Fig. 2.

P±
p and P±

s , while the lower panel shows the four auxiliary
functions, ϕ± and ψ±. The optimum EMA profile calculated
by using (5) is shown by the solid curve in the lower panel. It
is readily seen that EMA decreases exponentially towards the
waveguide output, in agreement with the prediction of [26].

The consistency of our method with the prediction of [26]
can also be proved analytically. To do this, we notice that, in the
undepleted pump approximation, P+

p � P−
p , P±

s and ϕ± → 0.
As a consequence, all the terms proportional to these small
quantities can be omitted in (5), and we recover the analytic
result

Aeff (z) =
2κs

|ζsp |
P+

p (z) = A0 exp(−qz),

where A0 = 2κsPp0/|ζsp | and q = α + βPp0/A0 + κp(Pp0/
A0)2 . In this case, the exponential dependence of P+

p (z) on z
follows from (1a) after noting that P+

p (z) ∝ Aeff (z).
The more interesting case is the one in which pump de-

pletion cannot be ignored. Fig. 3 shows the numerical results
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in this case using incident powers Pp0 = 4 W and Ps0 = 0.4
W. The upper and lower panels show again the evolution of
pump and signal powers and the four auxiliary functions. The
corresponding optimum EMA profile is shown by the solid curve
in the lower panel. In contrast to the undepleted-pump case, the
optimized EMA profile is no longer a monotonous function of
the distance from the input facet. Instead, it first decreases, in-
creases between z = 0.4 and 1.5 cm, and then decreases again.
The EMA increase in the middle reduces the nonlinear interac-
tions governed by the last three terms in (1), and thus conserves
pump’s energy for the second half of the waveguide. The result
is that the net power transfer from the pump exchange to the
signal is enhanced.

The EMA profile, shown in Fig. 3, depends critically on the
initial EMA, A0 , at the input end of the waveguide. This de-
pendence is shown in the upper panel of Fig. 4 under the same
operating conditions as those used in Fig. 3. In particular, we
choose Pp0 = 4 W and Ps0 = 0.4 W. When the input EMA,
A0 , is relatively small and the input intensities are high, pump
depletion plays an important role, and the EMA profile has an
irregular shape. However, for large values of the A0 , the Ra-
man interaction becomes relatively weak, and the EMA profile
tends to exponentially decrease along the waveguide. Clearly,
there is only one amplifier that will provide the largest Pout for
given waveguide length and input powers. The initial EMA of
this amplifier can be found from the lower panel of Fig. 4. In
this panel, solid curve shows the dependence of output signal
power on the initial EMA for Pp0 = 4 W and Ps0 = 0.4 W.
One can see that the absolute maximal output signal power
of Pmax ≈ 174 mW is realized inside an EMA-optimized
waveguide with A0 ≈ 10 µm2 . For comparison, in the same
panel we show the corresponding behavior for untapered
waveguides (dotted curve) and for waveguides optimized by
employing linear tapering (dashed curve). The solid vertical
line shows the point where the case of linear tapering concurs
with a waveguide of constant EMA Ac ≈ 5.9 µm2 .

The physics behind linear tapering can be easily understood.
In the case of A0 < Ac , the TPA and FCA phenomena dominate
over the SRS near the input end of the Raman amplifier but an
expansion of the waveguide reduces the impact of FCA and
increases the signal gain. The situation is different when A0 >
Ac . In this case, the nonlinear processes are weak at the input
end, and a narrowing of the waveguide is needed to increase the
efficiency of SRS and Pout . It should be noted that, for A0 < Ac ,
silicon waveguides with constant EMAs all along their lengths
provide almost the same signal gain as optimized linear-tapered
waveguides. The difference between signal gains in these two
types of the waveguides becomes considerable only if A0 > Ac .

The proximity of the solid and dashed curves in the lower
panel of Fig. 4 allows one to conclude that, for each opti-
mized amplifier, there exist a linearly-tapered waveguide that
gives nearly the same signal gain. Thus, similar to the case of a
single-pass amplifier, we can formulate the following practically
important design rule for silicon Raman amplifiers. Instead of
reproducing the optimal EMA profile, which typically has an
irregular shape, it may be more practical to look for an optimal
linear tapering profile of the amplifier. Even though the output

Fig. 4. Optimized EMA profiles for different values of Aeff (0) under oper-
ating conditions identical to those used for Fig. 3 (upper panel). Output signal
powers in EMA-optimized waveguides (solid curve), optimized linear-tapered
waveguides (dashed curve), and constant-EMA waveguides (dotted curve)
for different input EMAs (lower panel). The vertical line shows the location
where dashed and dotted curves coincide. The shaded quadrangles represent
schematically the longitudinal profile of a waveguide assuming that its input is
on the left.

signal power is somewhat reduced in the later case, the fabri-
cation of a linearly-tapered waveguide is often much simpler in
practice.

IV. CONCLUSION

A new numerical algorithm for optimizing the axial EMA pro-
file of continuously-pumped silicon Raman amplifiers has been
developed in the most general case in which the reflections at the
end facets of the SOI waveguide are not negligible. Such reflec-
tions lead to the simultaneous existence of both the forward- and
backward-propagating signal and pump waves within the am-
plifier. Surpassing our previous paper in this area, we account
for all these waves and reformulate the optimization problem
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as a variational problem with several auxiliary functions. The
method, we used, is very instructive in the sense that it shows
an application of modern variational analysis to design silicon
Raman amplifiers that provides maximum signal amplification
at a given pump power by solving the underlying nonlinear
propagation problem. The implementation of the algorithm re-
quires the numerical solution of a boundary-value problem
involving eight first-order coupled differential equations, but
it allows one to find the optimum EMA profile along the
waveguide length. This profile balances the effects of nonlinear
absorption (TPA and FCA) and Raman amplification inside the
silicon waveguide such that the output signal power attains its
maximum possible value. Since the EMA is proportional to the
waveguide cross-section area, the optimum EMA profile can be
realized in practice by tapering the waveguide along its length
appropriately. Numerical examples have revealed that the opti-
mized linear tapering of the waveguide is able to provide almost
the same output signal power as the optimal tapering with an
irregular shape. This peculiarity can be used to substantially
simplify the fabrication of practical optimized devices.

APPENDIX

DETAILS OF THE VARIATIONAL PROCEDURE

To show that the condition (4) leads to the EMA profile given
in (5), provided that (6) and (7) are satisfied, we rewrite (4)
using (1b) in the form

∫ L

0

A+δP+
p + A−δP−

p + B+δP+
s + B−δP−

s

Aeff
dz

=
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A2
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+
2(1 + ϑ)κsP2

A3
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]
dz. (A1)

Taking the variations of (1a) and (1b), multiplying the result-
ing equations by auxiliary functions ϕ+(z), ϕ−(z), ψ+(z), and
ψ−(z), and integrating them with respect to z from 0 to L, we
obtain the following four equations:

ϕ+(L)δP+
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s δP+
s + b−s δP−

s ) dz

+
∫ L

0

ϕ+P+
p Qps

A2
eff

δAeff dz,

ϕ−(L)δP−
p (L) − ϕ−(0)δP−

p (0) −
∫ L

0

dϕ−
dz

δP−
p dz

=
∫ L

0
ϕ−(ã+

p δP+
p + ã−

p δP−
p + b̃+

s δP+
s + b̃−s δP−

s ) dz

−
∫ L

0

ϕ−P−
p Qps

A2
eff

δAeff dz,

ψ+(L)δP+
s (L) − ψ+(0)δP+

s (0) −
∫ L

0

dψ+

dz
δP+

s dz

= −
∫ L

0
ψ+(b+

p δP+
p + b−p δP−

p + a+
s δP+

s + a−
s δP−

s ) dz

+
∫ L

0

ψ+P+
s Qsp

A2
eff

δAeff dz,

ψ−(L)δP−
s (L) − ψ−(0)δP−

s (0) −
∫ L

0

dψ−
dz

δP−
s dz

=
∫ L

0
ψ−(̃b+

p δP+
p + b̃−p δP−

p + ã+
s δP+

s + ã−
s δP−

s ) dz

−
∫ L

0

ψ−P−
s Qsp

A2
eff

δAeff dz,

where the left-hand sides (LHSs) are obtained after integrating
by parts, and we have introduced

Quv = β(P+
u + 2P−

u ) + ζuv (P+
v + P−

v ) + 2κu
P2

Aeff
.

Adding these equations termwise and utilizing the boundary
conditions

δP+
p (0) = Rp0δP

−
p (0), (A2a)

δP+
s (0) = Rs0δP

−
s (0), (A2b)

δP−
p (L) = RpLδP+

p (L), (A2c)

δP−
s (L) = RsLδP+

s (L) = 0, (A2d)

which follow from (2), we can represent the LHS of the resulting
equation in the form

LHS = [ϕ+(L) + RpLϕ−(L)] δP+
p (L)

− [ϕ−(0) + Rp0ϕ+(0)] δP−
p (0)

− [ψ−(0) + Rs0ψ+(0)] δP−
s (0)

−
∫ L

0

(
δP+

p

dϕ+

dz
+δP−

p

dϕ−
dz

+δP+
s

dψ+

dz
+δP−

s

dψ−
dz

)
dz.

If now we impose on auxiliary functions the conditions (7),
only the integral term survives in this expression. The right-hand
side (RHS) of the resulting equation is given by

RHS = −
∫ L

0

[
(a+

p ϕ+ − ã+
p ϕ− + b+

p ψ+ − b̃+
p ψ−) δP+

p

+ (a−
p ϕ+ − ã−

p ϕ− + b−p ψ+ − b̃−p ψ−) δP−
p

+ (b+
s ϕ+ − b̃+

s ϕ− + a+
s ψ+ − ã+

s ψ−) δP+
s

+ (b−s ϕ+ − b̃−s ϕ− + a−
s ψ+ − ã−

s ψ−) δP−
s

]
dz

+
∫ L

0

δAeff

A2
eff

{
ϕ+P+

p [β(P+
p + 2P−

p ) + ζps(P+
s + P−

s )]

− ϕ−P−
p [β(P−

p + 2P+
p ) + ζps(P+

s + P−
s )]

+ ψ+P+
s [β(P+

s + 2P−
s ) + ζsp(P+

p + P−
p )]

− ψ−P−
s [β(P−

s + 2P+
s ) + ζsp(P+

p + P−
p )]

}
dz
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+
∫ L

0

δAeff

A3
eff

2P2[κp(ϕ+P+
p − ϕ−P−

p )

+ κs(ψ+P+
s − ψ−P−

s )
]
dz.

The comparison of LHS and RHS with the corresponding parts
of (A1) shows that Aeff (z) is given by (5), if (6) and conditions
given in (7) are satisfied.
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