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Abstract—Since the recent demonstration of chip-scale, silicon-
based, photonic devices, silicon photonics provides a viable and
promising platform for modern nonlinear optics. The development
and improvement of such devices are helped considerably by theo-
retical predictions based on the solution of the underlying nonlinear
propagation equations. In this paper, we review the approximate
analytical tools that have been developed for analyzing active and
passive silicon waveguides. These analytical tools provide the much
needed physical insight that is often lost during numerical simula-
tions. Our starting point is the coupled-amplitude equations that
govern the nonlinear dynamics of two optical waves interacting in-
side a silicon-on-insulator waveguide. In their most general form,
these equations take into account not only linear losses, disper-
sion, and the free-carrier and Raman effects, but also allow for the
tapering of the waveguide. Employing approximations based on
physical insights, we simplify the equations in a number of situa-
tions of practical interest and outline techniques that can be used
to examine the influence of intricate nonlinear phenomena as light
propagates through a silicon waveguide. In particular, propaga-
tion of single pulse through a waveguide of constant cross section
is described with a perturbation approach. The process of Ra-
man amplification is analyzed using both purely analytical and
semianalytical methods. The former avoids the undepleted-pump
approximation and provides approximate expressions that can be
used to discuss intensity noise transfer from the pump to the sig-
nal in silicon Raman amplifiers. The latter utilizes a variational
formalism that leads to a system of nonlinear equations that gov-
erns the evolution of signal parameters under the continuous-wave
pumping. It can also be used to find an optimum tapering profile
of a silicon Raman amplifier that provides the highest net gain for
a given pump power.

Index Terms—Free-carrier absorption (FCA), integrated optics,
Kerr effect, nonlinear optics, optical pulse propagation, Raman
effect, silicon photonics, silicon Raman amplifiers, silicon waveg-
uides, two-photon absorption (TPA), waveguide tapering.

I. INTRODUCTION

THE problem of light propagation through silicon waveg-
uides with characteristic lateral dimensions of the order

of 1 µm has been extensively studied in recent years, both ex-
perimentally [1]–[11] and theoretically [12]–[22], because of
its immense practical applications [23]–[27]. The main reason
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why silicon is considered a promising photonics material stems
from its relatively strong nonlinear interaction with external
electromagnetic fields whose wavelengths lie in the transparent
infrared region beyond 1.1 µm. Since this region includes the
telecommunication window near 1.55 µm, a multitude of non-
linear optical effects inside silicon waveguides can be used for
diverse beneficial applications. Moreover, these nonlinear in-
teractions can be further enhanced by employing silicon-on-
insulator (SOI) waveguides in which a tight-mode confinement
provides large optical intensities even at moderate input power
levels. Therefore, it is not surprising that, to date, almost all
physical properties of silicon have found applications in differ-
ent nonlinear SOI-based photonic devices [26], [28]–[30]. For
example, stimulated Raman scattering (SRS), which is particu-
larly strong in silicon [31]–[33], is employed to make optical am-
plifiers [34]–[42], modulators [43], and Raman lasers [44]–[52].
The Kerr effect is successfully applied for optical phase mod-
ulation [53], [54], soliton formation [6], and supercontinuum
generation [29], [55]–[57]. The phenomenon of four-wave mix-
ing by itself, or in combination with SRS, has been used to
make broadband frequency converters [58]–[66]. Although two-
photon absorption (TPA) by itself is undesirable, it has been
demonstrated that TPA-induced free-carrier generation and ther-
mooptic effects are suitable for all-optical switching [67]–[71],
modulation [72], and pulse compression [73], [74]; they can
also be used for autocorrelation measurements [75], [76]. The
natural compatibility of SOI technology with the existing silicon
manufacturing process opens up wide possibilities for utilizing
these and other useful functionalities in fabricating photonic
integrated circuits.

To date, nonlinear propagation of optical pulses through sil-
icon waveguides has been studied mostly numerically by us-
ing the well-known, split-step Fourier method [77]. It makes
use of the widely deployed slowly varying envelope approx-
imation to separate a rapidly varying waveform (the carrier)
from the signal (the envelope) [12], [13], [77]. Another nu-
merical method, which is often used for a direct solution of
the Maxwell’s equations, is the finite-difference time-domain
(FDTD) method [78]–[80]. Since it does not make use of the
slowly varying envelope approximation, the FDTD scheme is
well suited for studying the propagation of pulses as short
as a single optical cycle. In principle, these two numerical
methods can provide comprehensive information and model
all types of nonlinear phenomena inside silicon waveguides.
In spite of this, simple analytical solutions and semianalytical
tools are of considerable value in practice because they offer a
clearer view of nonlinear processes in silicon waveguides and
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may open up nontrivial paths for device optimization. Over the
past few years, a number of such methods have been proposed
in literature on nonlinear silicon photonics. In this paper, we
outline the basic ideas that underlie these methods and review
the results with the purpose of stimulating further progress in
this direction.

This review is organized as follows. In Section II, we briefly
discuss the origin of the well-known coupled-amplitude equa-
tions that describe nonlinear interaction between two waves
of different carrier frequencies. These equations are written in
their most general form and include not only the dispersive,
free-carrier, and Raman effects, but also changes in the effec-
tive mode area (EMA) along a tapered silicon waveguide. In
the case of a single wave launched into the waveguide such
that SRS does not occur, a single integro-differential equation
is sufficient to describe the nonlinear nature of wave propaga-
tion. An approximate analytical solution of this equation is pre-
sented in Section III. In Section IV, we discuss an approximate
analytical solution for a continuous-wave (CW) Raman ampli-
fier with constant lateral cross section. This solution avoids the
undepleted-pump approximation and leads to the generalized
definition of the effective length with regard to nonlinear ab-
sorption. We use this solution to analyze the peculiarities of
relative intensity noise (RIN) transfer in silicon Raman ampli-
fiers. Sections V and VI are devoted to semi-analytical methods
that show the usefulness of the variational approach for tackling
complicated nonlinear problems. In Section V, we describe a
method for analyzing the dynamics of pulse parameters under
CW-pumped Raman amplification. Section VI focuses on the
variational problem of gain optimization by appropriate waveg-
uide tapering. First, we consider the undepleted-pump approxi-
mation that admits analytical solution. After that, we recast it as
a boundary-value problem that is solved to obtain the optimal
waveguide profile that maximizes the net gain of the amplifier
for a given pump power. We summarize our study in Section VII
and conclude the review.

II. GENERALIZED PROPAGATION EQUATIONS FOR ACTIVE

SILICON WAVEGUIDES

Let us consider the nonlinear interaction of two optical waves
of different carrier wavelengths (called the pump and the sig-
nal) inside a silicon crystal waveguide. To make the applicability
domain of the following analysis as wide as possible, we con-
sider a silicon waveguide whose cross-section area may vary
along its length because of tapering of its width. During their
propagation, the two optical fields induce material polarization
P(r, t). This polarization drives the evolution of total electric
field E(r, t) according to the Maxwell wave equation [77], [81]

∇2E − 1
c2

∂2E
∂t2

=
1

ε0c2

∂2P
∂t2

(1)

where ε0 is the free-space permittivity and c is the speed of light
in vacuum.

The polarization of silicon can be represented as a sum
of linear and nonlinear parts P(r, t) = PL(r, t) + PNL(r, t).
The nonlinear contribution originates from SRS, polarization

of bound electrons, and refractive index changes induced by
the photogenerated free carriers [12]. These effects complicate
substantially not only theoretical but even numerical investi-
gation of nonlinear interactions governed by (1). To simplify
the analysis, several physically reasonable assumptions need to
be introduced. First, we assume that both incident waves are
linearly polarized such that they excite either the fundamental
TE or the TM mode of the waveguide. We also suppose that the
nonlinear part of polarization does not affect the lateral mode
profiles associated with the pump and signal waves Fp(r) and
Fs(r), but it influences their z-dependent envelopes Ap(z, t)
and As(z, t). At the same time, the dependence of mode pro-
files on propagation distance z, caused by the nonuniform cross
section of the waveguide, is assumed to be much weaker than
the corresponding dependence of envelopes. Finally, we assume
that both optical waves propagate only in the forward, +z, di-
rection. It amounts to assuming that any reflections are so weak
that backward propagating waves can be safely discarded. This
assumption, together with the slowly varying envelope approx-
imation, allows one to reduce the order of z derivative in (1)
from 2 to 1.

To proceed further, we write the total electric field at a point
r = (x, y, z) inside silicon waveguide in the following form:

E(r, t) = sp(z)Fp(r)Ap(z, t) exp[i(β0pz − ωpt)]

+ss(z)Fs(r)As(z, t) exp[i(β0sz − ωst)] + c.c.

where ωu = 2πc/λu (u = p or s for the pump and signal waves,
respectively) is the carrier frequency, β0u = n0uku is the prop-
agation constant, ku = ωu/c is the free-space wavenumber,
and n0u is the effective refractive index. To account for the
waveguide tapering, we have also introduced su (z) as the shape
function.

By means of a standard procedure (see, e.g. [12] or [13]), the
wave equation (1) can be reduced to the system of the following
two coupled-amplitude equations that govern the evolution of
the pump and signal envelopes inside the SOI waveguide:

∂Ap

∂z
+ β1p

∂Ap

∂t
+

iβ2p

2
∂2Ap

∂t2
= − αp

2
Ap

+ i(γpp |Ap |2 + 2γps |As |2)Ap − σp

2
(1 + iµp)NAp

+ iγpAs

∫ t

−∞
h(t − t′)A∗

s(z, t′)Ap(z, t′) eiΩp s (t−t ′)dt′

(2a)

∂As

∂z
+ β1s

∂As

∂t
+

iβ2s

2
∂2As

∂t2
= − αs

2
As

+ i(γss |As |2 + 2γsp |Ap |2)As −
σs

2
(1 + iµs)NAs

+ iγsAp

∫ t

−∞
h(t − t′)A∗

p(z, t′)As(z, t′) eiΩs p (t−t ′)dt′.

(2b)

Here, the two time-derivative terms represent the linear disper-
sion and group velocity dispersion (GVD) characterized by the
constants β1u and β2u , respectively.
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The notation and physical meaning of different terms on the
right-hand side of (2) are as follows. The first term accounts for
linear losses through the parameter αu (u = p, s). The second
term is responsible for both the Kerr and TPA processes through
the nonlinear parameters

γuv = kuvn2(1 + iruv ) (u, v = p or s)

ruu =
βTPAu

2kun2
ruv =

βTPAuv

2kuvn2

where n2 is the nonlinear Kerr coefficient, βTPAu is the TPA co-
efficient at frequency ωu , and βTPAps = (ωp/ωs)βTPAsp is the
cross-TPA coefficient. Also, kuu = ku and the parameter kuv

(u �= v) is related to the real part of the third-order electronic
susceptibility χ(3)(−ωu ;ωv ,−ωu , ωv ) [12]. The third term in
(2) represents the contribution from TPA-generated free carri-
ers through σu = σr (λu/λr )2 . Here, σr = 1.45 × 10−21 m2 is
the free-carrier absorption (FCA) coefficient at the reference
wavelength λr = 1550 nm. Finally, the dimensionless parame-
ter µu = 2kuσn/σr accounts for free-carrier-induced changes
in the refractive index with σn = 5.3 × 10−27 m3 . The form of
the TPA terms implies that electrons and holes are not injected
into the waveguide but generated optically with equal densities
N(z, t).

The integrals in (2) account for SRS whose magnitude de-
pends on the pump-signal frequency detuning Ωps = −Ωsp =
ωp − ωs . When the waveguide cross-section area varies along
the waveguide length, the Raman nonlinear parameter γu be-
comes a function of the propagation distance such that

γp(z) =
gRγR/ΩR√

Aeff p(z)Aeff s(z)
γs(z) =

ωs

ωp
γp(z)

where gR is the Raman gain coefficient, γR is the full-width
at half-maximum (FWHM) of the Raman gain spectrum (about
105 GHz for silicon), ΩR is the Raman shift (about 15.6 THz for
silicon), and Aeff u (z) is the effective mode area (EMA) defined
as

Aeff u (z) =

(∫∫
|Fu (r)|2dxdy

)2

(∫∫
|Fu (r)|4dxdy

) .

In the classical oscillator model of SRS [81], the Raman
response function h(t) is given by the expression

h(t) =
Ω2

R

Ω0
sin(Ω0t) exp(− γRt)

where Ω0 = (Ω2
R − γ2

R )1/2 .
Equations (2) can be solved if we add another equation de-

scribing the evolution of the TPA-induced free carrier density.
This equation should include all mechanisms through which
free carriers can be generated and all channels through which
they can recombine, including radiative recombination, thermal
diffusion, and drift of electrons and holes to the waveguide pe-
riphery stimulated by an external field. It is common to lump
the impact of all recombination channels in a single parameter
τc , which is called the effective carrier lifetime [12]–[14]. With
this simplification, the carrier rate equation becomes

∂N

∂t
= − N

τc
+ ρp |Ap |4 + ρs |As |4 + ρps |ApAs |2 (3)

where

ρu (z) =
βTPAu

2�ωuA2
eff u (z)

ρps(z) =
2βTPAps

�ωpAeff p(z)Aeff s(z)
.

We should also note that the field envelopes in (2) are expressed
in units of the square root of power. The corresponding mapping
functions are

su (z) =
[

(µ0/ε0)1/2

2n0Aeff u (z)

]1/2

where µ0 is the intrinsic permeability of vacuum.
Due to the presence of intricate cross-coupling terms, it is

evident that the system of equations (2) and (3) cannot be solved
analytically. Nevertheless, several approximate solutions that
could shed light on the nonlinear optics of silicon waveguides
can be derived in several cases of immense practical interest. In
the following sections, we start with the simplest situation of a
single pulse launched into an SOI waveguide, and then, focus
on more complicated cases involving two pulses at different
wavelengths.

III. PROPAGATION OF A SINGLE SIGNAL PULSE

In the simplest scenario, only one optical pulse at the carrier
frequency ωs travels through a waveguide of constant cross
section. Then, we can set Ap = 0 in (2). If the waveguide length
L is much shorter than the dispersion length Ld = T 2

0 /|β2s |,
where T0 is the temporal pulsewidth, then the GVD term in
(2) can be ignored. The term containing β1s can be eliminated
by introducing τ = t − β1sz as the retarded time in a reference
frame moving with the pulse center. With these simplifications,
propagation through the SOI waveguide is described by the
following two equations [82]:

∂E
∂z

= − αs

2
E+

(
iksn2−

β

2

)
|E|2E−σs

2
(1+ iµs)NE (4a)

∂N

∂τ
= − N

τc
+ p |E|4 (4b)

where E(z, τ) = A(z, τ)/A1/2
eff is the electric field envelope (in

units of the square root of intensity), Aeff is the constant EMA
of the mode, and p = β/(2�ωs). For simplicity of notation, we
employ β ≡ βTPAs for the TPA parameter.

It is convenient to rewrite (4) in the terms of the auxiliary
intensity I(z, τ) = |E(z, τ)|2 exp(αsz) [note that the actual in-
tensity of signal is |E(z, τ)|2 ] and the optical phase (defined
modulo 2π) φ(z, τ) of the pulse envelope. Introducing

E(z, τ) =
√

I(z, τ) exp
[
−

(αs

2

)
z + iφ(z, τ)

]

we obtain the following set of three real first-order differential
equations:

∂I

∂z
= −β I2e−αs z − σsNI (5a)

∂φ

∂z
= −σs

µs

2
N + ksn2I e−αs z (5b)

∂N

∂τ
= − N

τc
+ p I2 e−2αs z . (5c)
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It is important to note that even though (5a) and (5c) are coupled,
(5b) does not have such dependency, and hence, can be solved
by direct integration once a solution for these coupled equations
is found.

A. Effects of TPA on Self-Phase Modulation

Before solving the full set (5), we consider a special case and
assume that the free carrier density N is sufficiently small that
its impact on the pulse is negligible. In this case, we can ignore
(5c) and set N = 0 in the remaining two equations, which can
now be easily solved with the result

I0(z, τ) =
I(τ)

1 + β I(τ)Leff (z)
(6)

where I(τ) is the intensity profile of the input pulse and Leff (z)
is the standard effective propagation length used extensively in
the literature and is defined as [12], [36], [83]

Leff (z) =
1 − exp(−αsz)

αs
. (7)

The subscript 0 in I0(z, τ) denotes that this solution of (5a) is
valid for σs = 0.

The next step is to substitute the solution (6) in the phase
equation (5b), which can be integrated easily to find the simple
solution

φ0(z, τ) =
ksn2

β
ln

[
1 + β I(τ)Leff (z)

]
. (8)

This is an important analytical result showing explicitly how
the nonlinear phase shift induced by the process of self-phase
modulation (SPM) is affected by TPA that is unavoidable in
silicon waveguides [84]. It is easy to verify from (8) that the
phase increases linearly in the absence of TPA (β = 0). As one
may expect, TPA reduces the SPM-induced phase shift, and
the reduction becomes more severe at higher input intensity
levels because of a logarithmic growth of the phase φ(z, τ) with
an increase in the input intensity. The investigation of SPM-
based regeneration in chalcogenide glass fibers suggests this
feature for flattening the transfer functions of SOI-based optical
regenerators [85].

It is now straightforward to calculate the pulse shape and
spectrum at the output of a waveguide of length L. The main
point to note is that considerable physical insight is gained by
an analytical solution obtained by making a few approximations
justifiable under suitable operating conditions.

B. Effects of Free Carriers on Self-Phase Modulation

The main limitation of the preceding analytic solution is that
the neglect of free carriers becomes questionable at high input
intensities such that β IL > 1. It turns out that we can include
the free-carrier effects using a perturbative approach. To con-
struct such an approximate solution of (5), we note that (5c) can
be solved formally in the form

N(z, τ) = p e−2αs z

∫ τ

−∞
e−(τ−τ ′)/τc I2(z, τ ′) dτ ′ (9)

where we have assumed that no free carriers exist before the
pulse enters the waveguide, which is an assumption justified
in practice for a pulse repetition rate Rp such that Rpτc � 1.
Substituting this result into (5a), we obtain a single integro-
differential equation for the pulse intensity

∂I

∂z
= −β I2 e−αs z

− σsp I(z, τ) e−2αs z

∫ τ

−∞
e−(τ−τ ′)/τc I2(z, τ ′) dτ ′.

(10)

To proceed further, we assume that TPA-generated free carri-
ers modify the temporal shape of the pulse only slightly. Then,
(10) can be replaced by

∂I

∂z
≈ −β I2 e−αs z

− σsp I(z, τ) e−2αs z

∫ τ

−∞
e−(τ−τ ′)/τc I2

0 (z, τ ′) dτ ′

(11)

where I0(z, τ) is the solution obtained earlier in (6). We have re-
cently shown that this integro-differential equation can be solved
analytically [82]. The resulting solution involves integrals and
is given by

I(z, τ) =
I0(z, τ)

1 + ε(z, τ)
(12)

where

ε(z, τ) = I0(z, τ)
∫ z

0
ev (z ,τ )−v (z ′,τ )w(z′, τ) dz′

v(z, τ) = σsp

∫ τ

−∞
e−(τ−τ ′)/τc ϕ(z, τ ′) dτ ′

w(z, τ) =
σsp

I0(z, τ)
e−2αs z

∫ τ

−∞
e−(τ−τ ′)/τc I2

0 (z, τ ′) dτ ′

ϕ(z, τ) = I0(z, τ)
[
αs

β
+ I(τ)

]
Leff (z) − αs

βksn2
φ0(z, τ).

In the last equation, φ0(z, τ) is the analytical solution obtained
earlier in (8) when free-carrier effects were ignored.

An approximate solution of the phase equation (5b) can also
be found in the same manner. Substitution of (9) into (5b) gives

∂φ

∂z
≈ ksn2

√
I e−αs z

− µs
σs

2
p e−2αs z

∫ τ

−∞
e−(τ−τ ′)/τc I2

0 (z, τ ′) dτ ′.

The solution of this equation can be written in the form

φ(z, τ) = ksn2

∫ z

0
I(z′, τ) e−αs z ′

dz′ − µs

2
v(z, τ). (13)

It is easy to verify that, in the absence of free carriers or when
σs = 0, these expressions for pulse intensity and phase reduce
to the results obtained earlier in [84] and given in (6) and (8).
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C. SPM-Induced Spectral Broadening

Equations (9), (12), and (13) provide an approximate solu-
tion of the nonlinear system (5) along the SOI waveguide. It
is applicable when the influence of free carriers on the pulse
intensity is not too strong, i.e., when max[ε(z, τ)] � 1. Several
qualitative conclusions can be drawn from the structure of the
solution. First, the effects of FCA and free-carrier dispersion
(FCD) are cumulative, and thus, appear as the integral func-
tions w(z, τ) and v(z, τ), respectively. They are responsible for
the asymmetry of the amplitude and phase profiles at the out-
put end even when the input pulse profile is symmetric around
the pulse center. Second, as one would expect, the function
ε(z, τ) represents the reduction in the pulse intensity because
of FCA. It corresponds to an energy loss experienced by the
pulse in addition to that induced by the TPA process. Third, the
function v(z, τ) represents physically the effects of FCD that
leads to time-dependent changes in the refractive index. These
changes add to the Kerr-induced index changes. Fourth, because
v(z, τ) > 0, the nonlinear phase shift due to FCD reduces the
Kerr-induced phase shift. Such a reduction can be quite large
even when the pulse shape changes slightly because of a rel-
atively large value of the parameter µs for silicon (about 7.5)
and has interesting consequences for the resulting output pulse
spectrum.

To emphasize the last point further, we perform the in-
tegral appearing in (13) numerically for three SOI waveg-
uides of different lengths. In each case, the input pulse has
the same Gaussian intensity profile I(τ) = I0 exp(− 2τ 2/T 2

0 )
with T0 = 10 ps but the peak intensity I0 changes from 0.3 to
10 GW/cm2 . The resulting temporal phase profiles are shown
in the upper panel of Fig. 1 using parameter values listed there.
The dashed curves show for comparison the phase profiles ex-
pected in the absence of free-carrier effects. One can see that the
free-carrier effects are relatively minor for pulse 3 with a peak
intensity of only 0.3 GW/cm2 , but they become very important
when peak intensity exceeds 1 GW/cm2 . Note, in particular,
that the phase becomes negative near the trailing edge of the
pulse because of FCD.

The important question is how the pulse spectrum is modified
by such nonlinear phase changes. To answer it, the solid curve
in the lower panel of Fig. 1 shows the output spectrum of the
most intense pulse with I0 = 10 GW/cm2 and compares it with
the input spectrum (dotted curve) and the one obtained without
free-carrier effects (σs = 0). As expected, SPM-induced spec-
tral broadening in the σs = 0 case leads to a symmetric pulse
spectrum. In contrast, the free-carrier effects produce a highly
asymmetric spectrum. In agreement with experiments and nu-
merical modeling, the FCD effects broaden the output pulse
spectrum and shift it toward shorter wavelengths (the so-called
free-carrier-induced blue shift).

It is worth noting that the results of this section can be easily
extended to characterize the propagation of an arbitrary pulse
train. Indeed, if the function I(τ) contains several peaks, it can
be thought of as the envelope of a pulse sequence. In this case,
applicability of the obtained solution [(9), (12), and (13)] will
also depend on the repetition rate of pulses. Particularly, when

Fig. 1. (Upper panel) Nonlinear phase shifts (solid curves) plotted as a function
of time for three input Gaussian pulses. The values of I0 and L are 10 GW/cm2

and 70 µm for pulse 1, 1 GW/cm2 and 4 mm for pulse 2, and 0.3 GW/cm2 and
8 mm for pulse 3. Dashed curves show phase shifts expected in the absence of
FCD. (Lower panel) Output spectrum of pulse 1 (solid curve) broadened by SPM
and FCD effects. Dashed curve includes the Kerr and TPA effects but ignores
the impact of free carriers. Dotted curve shows for comparison the input pulse
spectrum. Parameter values are λs = 1550 nm, n0 = 3.484, αs = 1 dB/cm,
β = 5 × 10−12 m/W, n2 = 6 × 10−18 m2 /W, τc = 1 ns, and T0 = 10 ps
(after [82]).

the pulse-to-pulse spacing becomes comparable to the carrier
lifetime, it is necessary to account for a background carrier den-
sity in (9) because it does not decay to zero before the next
pulse arrives. These residual carriers result in stronger attenua-
tion and broadening of propagating pulses, thereby reducing the
applicability domain of our solution.

IV. SINGLE-PASS CW RAMAN AMPLIFIER

One of the very promising applications of SOI waveguides
is related to the amplification of optical signals through SRS.
When both the pump and the signal are in the form of CW waves,
a valuable analytical solution can be obtained in the case of
constant cross-section waveguides. We discuss it in this section
as it provides considerable insight into the Raman amplification
process.
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A. Coupled Intensity Equations

In the CW regime, the envelopes of the pump and signal fields
are functions of propagation distance only. As a consequence,
all time derivatives in (2) vanish, and the time integrals can be
calculated explicitly by noting that

∫ t

−∞
h(t − t′) e±iΩp s (t−t ′)dt′ =

Ω2
R

Ω2
R − Ω2

ps ± 2iγRΩps
.

In addition, in the steady-state regime, the free carrier density
can be obtained from (3) by setting ∂N/∂t = 0 and is given by

N(z) = τc

(
ρp |Ap |4 + ρs |As |4 + ρps |ApAs |2

)
.

Using this result in (2) and introducing the intensities of
pump and signal (Stokes) waves, Ip(z) = |Ap(z)|2/Aeff and
Is(z) = |As(z)|2/Aeff , where we assumed that the EMA, Aeff ,
is nearly the same for the two waves, we get [86]

dIp

dz
= − αpIp − βpI

2
p − ζpsIpIs (14a)

− σpτc(ppI
2
p + psI

2
s + ppsIpIs)Ip

dIs

dz
= − αsIs − βsI

2
s − ζspIsIp

− σsτc(ppI
2
p + psI

2
s + ppsIpIs)Is (14b)

where we used the following shortened notations:

ζps = 2βps +
4gRγ2

RΩRΩps

(Ω2
R − Ω2

ps)2 + 4γ2
RΩ2

ps

ζsp =
ωs

ωp

(
2βps −

4gRγ2
RΩRΩps

(Ω2
R − Ω2

ps)2 + 4γ2
RΩ2

ps

)

βu = βTPAu , βps = βTPAps , pu = βu/(2�ωu ), and pps =
2βps/(�ωp).

In order to solve (14) analytically, we make some reasonable
simplifications. First, we assume that linear losses are equal at
the pump and signal wavelengths, i.e., αp = αs ≡ α. Second,
we discard second terms on the right side of (14) since TPA
is known to be much smaller than FCA in the case of CW
pumping [12]. Third, noting that Ωps ≈ ΩR � ωp(s) in prac-
tice, we make several rough approximations: σp ≈ σs , βp ≈
βs ≈ βps ≡ β, pp ≈ ps ≈ pps/4. Fourth, noting that gR 
 βps

for silicon with |Ωps − ΩR | � γR , we use ζps ≈ |ζsp | ≡ γ.
With these simplifications, the coupled intensity equations (14)
become

dIp

dz
≈ −α Ip − κ (I2

p + 4IpIs + I2
s )Ip − γ IsIp (15a)

dIs

dz
≈ −α Is − κ (I2

p + 4IpIs + I2
s )Is + γ IpIs (15b)

where κ ≈ τcσsps .
Finally, we make one more simplification. It con-

sists of replacing the quantity in the parenthesis of (15)
with (Ip + Is)2 and amounts to omitting the terms con-
taining 2κI2

p Is and 2κI2
s Ip . After this replacement, we

obtain

dIp

dz
≈ −α Ip − κ (Ip + Is)2Ip − γ IsIp (16a)

dIs

dz
≈ −α Is − κ (Ip + Is)2Is + γ IpIs. (16b)

An important point to note is that, even though we drastically
approximated (14) to arrive at (16), the simpler equations still
qualitatively represent the interplay between the FCA and SRS
processes and hold all the basic features of (15).

B. Simple Analytical Solution

Equations (16) can be solved analytically by noting that the to-
tal intensity I(z) = Ip(z) + Is(z) satisfies the Bernoulli equa-
tion [87] whose solution is

I(z) =
I0 exp(−αz)√
1 + κ I2

0 Leff (2z)

where I0 = Ip0 + Is0 is the total input intensity with Ip0 =
Ip(0) and Is0 = Is(0). By substituting Ip(z) = I(z) − Is(z) in
(16b), we can solve this equation as well. The resulting solution
is given by

Is(z) =
I(z)

1 + (Ip0/Is0) exp[−γI0Leff (z)]
(17a)

Ip(z) = I(z) − Is(z) (17b)

where the generalized effective length of the waveguide is de-
fined as

Leff (z) =
f(0) − f(z)√

ακ I0
, f(z) = tan−1

[√
κ

α
I(z)

]
.

For low input intensities I0 → 0, FCA becomes negligible. In
this limit (or when κ → 0), it is easy to show that

Leff (z) → Leff (z).

Equation (17a) shows that changes in the signal intensity
result from two sources with different physical origins. The
steadily decreasing function I(z) results from linear losses and
FCA, whereas the denominator of (17a) arises from SRS and
exhibits a saturable character. The structure of the denominator
shows that the generalized effective length has direct influence
on the signal gain. In the ideal situation, when this length be-
comes sufficiently large, the signal approaches the total inten-
sity I(z), thus indicating efficient transfer of pump power to the
signal.

The influence of FCA on CW Raman amplification manifests
in two ways. First, FCA leads to an overall attenuation of the
signal as indicated by the radical in the function I(z). Second,
it leads to a decrease in the effective length compared to the
linear-loss situation only and, what is more important, makes
it intensity-dependant. The influence of total input intensity on
the generalized effective length is illustrated by solid curves
in the upper panel of Fig. 2. Clearly, one can increase Leff (z)
substantially by decreasing I0 . A similar increase in the effective
length may be realized by reducing τc because κ scales linearly
with τc .
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Fig. 2. (Upper panel) Generalized effective lengthLeff (z) versus propagation
distance for different input intensities I0 (solid curves). The dashed curve shows
the linear-loss limit. The dotted line corresponds to the lossless case. (Lower
panel) Evolution of the pump and the signal intensities obtained by solving
(14) numerically (solid curves) and predicted analytically by the corrected
(dashed curves) and uncorrected (dotted curves) solutions (17). The solution
corresponding to the undepleted-pump approximation is shown by dashed-
dotted curves. The left and right panels correspond to Ip0 = 0.5 GW/cm2

and 0.05 GW/cm2 , respectively, with Is0 = 0.01Ip0 . The other parameter
values are α = 1 dB/cm, β = 0.5 cm/GW, τc = 1 ns, gR = 76 cm/GW,
λp = 1550 nm, and λs = 1686 nm (after [86]).

The approximate solution (17) contains errors resulting from
the simplifications that were used to get (15) and the terms that
we discarded in (16). We can reduce the errors of the second type
by introducing correcting multipliers. Assuming a corrected so-
lution of the form

Is,corr(z) = ξ(z)Is(z) Ip,corr(z) = ξ(z)Ip(z)

we find from (15) the correcting multiplier

ξ(z) =
(

1 + 2κ

∫ z

0
Ip(z′)Is(z′) dz′

)−1/2

where Ip(z) and Is(z) are given by (17). Once corrected with
this multiplier, (17) provides an analytical solution of (15) that
is quite close to the exact numerical solution of (14). The ap-
plicability range of this solution can be estimated by consid-
ering that the TPA terms in (14) are small compared with the
linear-loss or FCA terms when I0 � α/β or I0 
 β/κ. For
α = 1 dB/cm, β = 0.5 cm/GW, and λs = 1686 nm, we obtain
α/β ≈ 0.5 GW/cm2 and β/κ ≈ 0.01 GW/cm2 . Thus, the re-
sult in (17) is a good approximate solution of (14) for all input
intensities. The lower panel of Fig. 2 demonstrates this point by
comparing the analytical solution with the exact numerical solu-
tion of (14) (solid curves) for two values of input pump powers.
The corrected and uncorrected solutions (17) are shown by the
dashed and dotted curves, respectively. For reference, the solu-
tion that corresponds to the undepleted-pump approximation is
also plotted by the dashed-dotted curves.

C. Noise Transfer in Silicon Raman Amplifiers

An important issue for any amplifier is related to the transfer
of noise from the pump to the signal. Because of the exponential
nature of the Raman amplification, at least during early stages
before gain saturation sets in, any intensity noise associated with
the pump can be enhanced severely, thus resulting in consider-
able fluctuation of the amplified signal. The concept of RIN is
often employed to quantify this effect. The coupled intensity
equations obtained in the preceding section can be used to study
the RIN transfer in silicon Raman amplifiers by introducing two
time derivatives in (16) as follows:

∂Ip

∂z
+ β1p

∂Ip

∂t
≈ −α Ip − κ (Ip + Is)2Ip − γ IsIp (18a)

∂Is

∂z
+ β1s

∂Is

∂t
≈ −α Is − κ (Ip + Is)2Is + γ IpIs . (18b)

The variables Ip and Is are used instead of Ip and Is to distin-
guish between the functions of two and one variables.

One fundamental difference between the RIN transfer in fiber
Raman amplifiers and that in silicon Raman amplifiers can be
clearly seen in (18). Whereas the former occurs only due to SRS,
the latter results from both SRS and FCA. This FCA contribution
to the RIN transfer results from the nonuniform absorption of the
signal by the free carrier density whose small-scale variations
result from the noise induced by the pump. Hence, in silicon
Raman amplifiers, the RIN transfer may take place even if there
is negligible energy exchange between the pump and signal that
occurs due to the Raman effect. This happens in practice when
the frequency difference between the pump and signal exceeds
the Raman shift of 15.6 THz.

Equations (18) are difficult to solve because, in general, the
pump and signal travel at different speeds. However, they can
be solved easily if we take β1p = β1s ≡ β1 that amounts to as-
suming the same group velocity for the pump and signal waves.
Since we exclude the “walk-off” effects with this assumption,
the following analysis does not provide the dependance of RIN
transfer on noise frequency. However, this is not a serious limi-
tation because of the relatively small length of SOI waveguides
in practice. According to numerical simulations in [88], such
an approximation is valid for frequencies below 100 GHz in a
typical waveguide. If we introduce a reduced time τ = t − β1z,
the time-derivative terms in (18) disappear, and these two equa-
tions reduce to those in (16) with the only difference that the
intensities Ip and Is depend both on z and τ . Because of this
feature, we can use the analytic solution given in (17). More
specifically, the solution of (18) with the boundary conditions

Ip(0, t) = Ip0f(t) Is(0, t) = Is0 = const

where f(t) is a function representing noise, is given by (17)
with the replacement

Ip0 → Ip0f(t − β1z).

It is common to model the intensity noise as a weak sinusoidal
modulation of the pump at a specific frequency [89]

f(t) = 1 + am sin(ωm t)
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where am � 1 is the modulation amplitude and ωm is the
modulation frequency. Using this representation, we expand
the solution Is(z, t) as a Taylor series in the parameter am and
retain only the first two terms in the series to obtain the fol-
lowing expression for the relative variation of signal gain in the
presence of noise:

δG(z, t)
G(z)

=
Is(z, t)
Is(z)

− 1 ≈ am R(z) sin[ωm (t − β1z)]

where G(z, t) = Is(z, t)/Is0 and G(z) = Is(z)/Is0 are the sig-
nal gains in the presence and absence of noise, respectively, and
the noise enhancement factor R(z) is given by

R(z) =
Ip0/I0

1 + κ I2
0 Leff (2z)

− Ip(z)
I(z)

[
1 − Ip0

γ

α

1 − I(z)/I0

1 + κ I2
0 /α

]
.

According to its definition, the signal RIN rs(z) is the square
of relative intensity variations averaged over a fairly large time
interval. In our case, it suffices to carry out the averaging over a
period of noise oscillations Tm = 2π/ωm . The result is

rs(z) =
1

Tm

∫ Tm

0

[
δG(z, t)
G(z)

]2

dt =
a2

m

2
R2(z).

The RIN on pump can be calculated similarly

rp(z) =
1

Tm

∫ Tm

0

[
Ip(z, t)
Ip(z)

− 1
]2

dt =
a2

m

2
.

Using the last two equations, we arrive at the following ex-
pression for RIN transfer in CW silicon Raman amplifiers:

R(z) =
rs(z)
rp(z)

= R2(z). (19)

The RIN transfer calculated with (19) is plotted in Fig. 3 to-
gether with the average signal intensity. The solid and dashed-
dotted-dotted curves represent the RIN transfer under the
operating conditions used in the lower panel of Fig. 2 (in both
cases, τc = 1 ns). The results show that the RIN transfer grows
with propagation distance when the pump intensity is suffi-
ciently high, reaches a maximum value just before the signal
peaks, and starts decaying when pump intensity becomes low.
The decaying occurs because of signal smoothing caused by the
intensity-dependant FCA. When the signal intensity becomes
low enough to make FCA negligible, the extent of RIN transfer
reaches a constant value.

The situation becomes more intricate in the waveguides with a
longer free-carrier lifetime. As an example, dashed, dotted, and
dotted-dashed curves in Fig. 3 show how the situation changes
for τc = 2, 3, and 4 ns, respectively. All other parameters are
equal to those used for the solid curve. One can see that, at
some distance within the waveguide, the magnitude of RIN
transfer from the pump to the signal takes large negative values
on the decibel scale, indicating that the signal is much less
noisy than the pump. This interesting peculiarity has its origin
in the competition between the SRS and FCA effects described
quantitatively by the coupled equations in (18).

The mechanism behind RIN compensation can be understood
by noting that when τc is large, a higher pump power may pro-

Fig. 3. (Upper panel) RIN transfer and (lower panel) average signal intensity
as a function of propagation distance for τc = 1 ns (solid curves), 2 ns (dashed
curves), 3 ns (dotted curves), and 4 ns (dashed-dotted curves). Solid and dashed-
dotted-dotted curves represent the RIN transfer from the pump to the signal
shown in the lower panel of Fig. 2. For other curves, parameter values correspond
to those used in the lower left panel of Fig. 2.

vide lower signal gain because of stronger FCA (see the upper
panel in Fig. 4). As a consequence, near the input end, sig-
nal fluctuations are in antiphase with respect to pump intensity
fluctuations for τc = 2, 3, or 4 ns [R(z) < 0]. As the total in-
tensity in the waveguide diminishes during propagation, the
relative efficiency of FCA decreases and the signal fluctuations
become in-phase [R(z) > 0]. At some point zs along the waveg-
uide, these two contributions cancel each other, thus resulting
in R(zs) = 0 and no RIN transfer from the pump to the signal.
Using the Taylor series expansion of the noise enhancement
factor

R(z) ≈ Ip0(γ − 2κI0)z + o(z2)

we can find the critical value of the carrier lifetime τcr above
which the compensation of RIN transfer becomes possible.
From the expansion, it follows that τcr corresponds to κcr =
γ/(2I0), i.e.,

τcr ≈
κcr

σsps
=

γ�ωs

I0σsβs
.

In the case of Fig. 3, I0 = 505 MW/cm2 and τcr = 1.89 ns,
which is a value consistent with our results.

It is interesting to note that, due to the possibility of a self-
cancelation effect, if the device parameters are carefully chosen,
RIN transfer between the pump and the signal can be made
negligible without affecting the overall signal gain. This can
be seen from the lower panel in Fig. 3 where the maximum
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Fig. 4. (Upper panel) Amplification factor plotted as a function of launched
pump power for three values of τc . Solid curves correspond to T2 = 0 (in-
finite gain bandwidth) whereas T2 = 3 ps for dashed curves (105 GHz band-
width). (Lower panel) Evolution of pulsewidth with z for several values of initial
chirping. Open circles represent the corresponding values obtained numerically.
The simulation parameters are L = 1 cm, αs = 1 dB/cm, β = 0.5 cm/GW,
n2 = 6 × 10−18 m2 /W, gR = 76 cm/GW, τc = 10 ns, β2s = 20 ps2 /m,
µ = 7.5, λs = 1550 nm, Ts = 10 ps, T2 = 3 ps, Ip (0) = 250 MW/cm2 ,
and Is (0) = 0.25 MW/cm2 (after [90]).

of the signal intensity (at z ≈ 1 cm) occurring for τc = 4 ns
nearly coincides with the dip in the corresponding RIN transfer
function shown in the upper panel of the same figure. Hence,
the effect of RIN transfer compensation can be realized in SOI-
based, gain-optimized, Raman amplifiers with a suitable design.

V. RAMAN AMPLIFICATION OF ULTRASHORT PULSES

So far, we have ignored dispersive effects by assuming ei-
ther a CW situation or relatively broad pulses for which the
dispersion length far exceeds the waveguide length. In this sec-
tion, we focus on the Raman amplification of short pulses for
which the dispersive effects cannot be neglected. To keep the
analysis simple, we still assume a CW pump that is sufficiently
strong to remain nearly undepleted [89]. In this case, a varia-
tional formalism allows one to derive a set of relatively simple,
first-order, coupled differential equations [90] that describe the

evolution of pulse parameters and provide considerable phys-
ical insight for designing SOI-based Raman amplifiers. Since
this set of equations must be solved numerically, we call this
method semianalytical. The main point to stress is that the nu-
merical solution of these equations can be obtained much faster
than the original equations and it provides direct information
about changes in the amplitude, phase, width, and chirp of the
pulse during the Raman amplification process.

The starting point again is the the set of three coupled equa-
tions (2) and (3), but we simplify them with the following ap-
proximations. First, assuming that the pump is much stronger
than the signal, we discard all the terms with As in (2a) and (3).
Further, because we assume a CW pump, we neglect the disper-
sion terms in (2a). As a result, the amplitude of the CW pump
and the density of free carriers depend only on z. Finally, lim-
iting our attention to the vicinity of the Raman frequency, i.e.,
assuming that Ωps ≈ ΩR , we simplify the last term (denoted
by TR ) in (2a) containing an integral over the Raman response
function as follows:

TR = iγs |Ap(z)|2
∫ ∞

0
h(t′)As(z, t − t′) eiΩs p t ′dt′

≈ γR
gR

2
|Ep(z)|2

∫ ∞

0
ei(Ωs p −ΩR )t ′−γR t ′ Es(z, t − t′) dt′

where Eu = Au/A
1/2
eff (u = p, s). Here, we assumed that Ω0 ≈

ΩR , ωs ≈ ωp , and left only the resonant term in the Raman
response function. Taking the Fourier transform (F) of this
expression and assuming |ω + Ωsp − ΩR | � γR , we obtain

F(TR ) ≈ gR

2
|Ep(z)|2Es(z, ω)

1 − i(ω + Ωsp − ΩR )/γR
.

This equation explicitly shows the frequency dependence of
the Raman susceptibility. We use the condition Ωsp ≈ ΩR , a
prerequisite for Raman amplification to take place, expand the
result in a Taylor series assuming ω � γR , retain first three
terms, and take the inverse Fourier transform. The result is

TR ≈ gR

2
|Ep(z)|2

[
Es(z, t) +

1
γR

∂Es

∂t
+

1
γ2

R

∂2Es

∂t2

]
.

The first-derivative term provides a small correction to the
group velocity and can be neglected in practice.

With the preceding simplifications, we can rewrite (2) using
the retarded time τ = t − β1sz and the steady-state solution of
the carrier density equation (3) as follows:

dEp

dz
= − αp

2
Ep − κpp

2
(1 + iµ)|Ep |4Ep

+ ikpn2(1 + ir)|Ep |2Ep (20a)

∂Es

∂z
+

iβ2s

2
∂2Es

∂τ 2 = −αs

2
Es −

κsp

2
(1 + iµ)|Ep |4Es

+ iksn2(1 + ir)(|Es |2 + 2|Ep |2)Es

+
gR

2

(
1 + T 2

2
∂2

∂τ 2

)
|Ep |2Es (20b)

where κpp = τcσpβ/(2�ωp), κsp = τcσsβ/(2�ωp), µ =
2ksσn/σr , r = β/(2ksn2), and T2 = 1/γR .
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It is important to note that the signal equations do not depend
on the pump phase because the Raman amplification process
is driven only by the pump intensity Ip(z) = |Ep(z)|2 . From
(20a), Ip(z) satisfies the simple equation

dIp

dz
= −αpIp − β I2

p − κppI
3
p

with the implicit solution of the form

−αpz = ln
Ip(z)
Ip(0)

+
1
2

ln
αp + β Ip(0) + κppI

2
p (0)

αp + β Ip(z) + κppI2
p (z)

+ Q
{
tan−1 [QK(0)] − tan−1 [QK(z)]

}

provided 4αpκpp > β2 . Here, Q = (4αpκpp/β2 − 1)−1/2 and
K(z) = 1 + 2(κpp/β)Ip(z). This solution is employed to solve
the signal equation (20b).

An approximate solution of the signal equation can be ob-
tained with a variational technique that makes use of a Rayleigh
dissipation function (RDF) to account for signal losses along the
waveguide [90]. More specifically, we introduce the Lagrangian
and the RDF as

L =
1
2

(
Es

∂E∗
s

∂z
− E∗

s

∂Es

∂z

)
+

iβ2s

2

∣∣∣∣∂Es

∂τ

∣∣∣∣
2

+
iksn2

2
(|Es |2 + 4Ip)|Es |2 −

iµκsp

2
I2
p |Es |2 (21)

and

R =
1
2
[
αs + β(|Es |2 + 2Ip) − gRIp + κspI

2
p

]

×
(
Es

∂E∗
s

∂z
− E∗

s

∂Es

∂z

)

− gR

2
T 2

2 Ip

(
∂2Es

∂τ 2

∂E∗
s

∂z
− ∂2E∗

s

∂τ 2

∂Es

∂z

)
. (22)

We assume that the signal pulse launched into a silicon waveg-
uide has a Gaussian shape and it maintains this shape during
Raman amplification even though its parameters change and
evolve with z. Thus, the signal field has the form

Es(z, τ) =
√

Is(z) exp
{
− [1 − ics(z)]

τ 2

2T 2
s (z)

+ iϕs(z)
}

where Is , cs , Ts , and ϕs represent, respectively, the peak in-
tensity, frequency chirp, width, and phase of the signal pulse.
Inserting this expression in (21) and (22), we can calculate the
reduced Lagrangian and the RDF defined as

Lg (z) =
∫ ∞

−∞
L(z, τ) dτ Rg (z) =

∫ ∞

−∞
R(z, τ) dτ

because time integrals can be done analytically. Employing the
Euler equation

d

dz

(
∂Lg

∂qz

)
− ∂Lg

∂q
= − ∂Rg

∂qz

where q = {Is, cs , Ts, ϕs} and qz = dq/dz, we arrive at the
following set of four ordinary differential equations for the pulse

parameters [90]:

dIs

dz
= − (αs + 2βIp)Is + gR

(
1 − T 2

2

T 2
s

)
IpIs

+ β2s
cs

T 2
s

Is −
5β

4
√

2
I2
s − κspI

2
p Is (23a)

dTs

dz
= −β2s

cs

Ts
+

β

4
√

2
TsIs

+
gR

2
T 2

2

Ts
(1 − c2

s )Ip (23b)

dcs

dz
= − β2s

T 2
s

(1 + c2
s ) −

ksn2√
2

Is +
β

2
√

2
csIs

− gR
T 2

2

T 2
s

(1 + c2
s ) csIp (23c)

dϕs

dz
=

β2s

2T 2
s

+
5ksn2

4
√

2
Is −

µκsp

2
I2
p

+
(

2ksn2 +
gR

2
T 2

2

T 2
s

cs

)
Ip . (23d)

These equations determine the evolution of the signal pulse
during Raman amplification. By looking at their structure, one
can understand physically which nonlinear phenomenon affects
which pulse parameters. For example, the presence of the gain
dispersion parameter T2 in (23a)–(23c) explicitly shows that
gain dispersion affects pulse amplitude, width, and chirp, and
thus, plays a significant role when pulsewidth is comparable
to T2 . Since T2 = 3 ps for silicon, gain dispersion effects be-
come negligible for Ts > 30 ps but cannot be neglected for
pulsewidths close to 10 ps or less.

In practice, the evolution of pulse intensity Is along the
waveguide is of primary interest as it governs the extent of
Raman amplification. Typically, the input intensity of the pump
is much higher than that of the signal. As a result, in the vicinity
of the waveguide input, TPA caused by the signal is relatively
small and we can safely drop the I2

s term in (23a). The amplifi-
cation of the signal is possible only if dIs/dz > 0, or

κspI
2
p −

[
gR

(
1 − T 2

2

T 2
s

)
− 2β

]
Ip + αs − β2s

cs

T 2
s

< 0.

If αsT
2
s > β2scs , this quadratic equation and the requirement

that pump intensity is a real positive quantity lead to the follow-
ing limitation on the carrier lifetime [90]:

τc < τth ≡
[
gR (1 − T 2

2 /T 2
s ) − 2β

]2

4σspp(αs − β2scs/T 2
s )

. (24)

Equation (24) shows that the carrier lifetime should be less than a
threshold value τth before CW pumping can be used for Raman
amplification of a signal pulse. Note that both the waveguide
dispersion and pulse chirp affect τth through their sign func-
tion sgn(β2scs). In particular, τth is reduced when β2scs be-
comes negative. On the other hand, if β2scs > 0, the threshold
value can be made relatively high. Also note that the restriction
on τc disappears altogether for β2scs > αsT

2
s . These conclu-

sions are quite important for Raman amplification of picosecond
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pulses in silicon waveguides and show why simple analytic tools
are essential for understanding nonlinear phenomena in such
devices.

As an example, we consider Raman amplification of 10-ps
Gaussian pulses in a 1-cm-long SOI waveguide and solve
coupled equations (23a)–(23c) numerically. The upper panel
in Fig. 4 shows the amplification factor Gs = Ps(L)/Ps(0) as
a function of input pump power for T2 = 0 (solid curves) and
T2 = 3 ps (dashed curves) for three values of the carrier life-
time τc . The Raman gain bandwidth is very large in the former
case but corresponds to the realistic value of 105 GHz in the
latter case. In all cases, an increase in the pump power does
not always enhance the signal gain; rather, after a certain value
of input pump power, the effective signal gain starts to de-
crease. This feature can be attributed to an increase in TPA and
the resulting FCA with increasing pump powers. The impor-
tant point to note is that Gs is reduced considerably for 10-ps
pulses because of a relatively narrow Raman gain bandwidth.
For example, the maximum value of Gs is reduced from 24 to
16 when carrier lifetime is 10 ns. We also find that Gs is re-
duced for chirped pulses because of an increased spectral band-
width for them. The lower panel of Fig. 4 shows how the width
of pulses being amplified changes along the waveguide. Al-
though unchirped input pulses always broaden because of gain
dispersion, chirped pulses go through an initial compression
stage. The width reduction occurs because the central part of a
linearly chirped pulse experiences more amplification compared
with its pedestals. Numerical results (shown by circles), which
are obtained by solving the full model, support the narrowing
of chirped pulses.

VI. RAMAN AMPLIFICATION IN TAPERED WAVEGUIDES

As a last example of the usefulness of analytic tools, we
consider Raman amplification inside a tapered waveguide and
ask if there is an optimum tapering profile that will maximize
the net signal amplification. To keep the problem tractable, we
assume that both the pump and the signal are in the form of
CW or quasi-CW waves so that dispersive effects are negligi-
ble. It is known that the net gain of silicon Raman amplifiers
can be altered by tapering a waveguide along its length [47],
[48], [52]. The principle behind tapering consists of balancing
of FCA and SRS processes inside the waveguide by varying
its lateral dimensions. Such a balancing is possible due to the
fact that FCA and SRS terms in (2) have different dependance
on EMA.

To find the optimal tapering profile of the SOI waveguide,
we convert the set (2) of coupled-amplitude equations into one
dealing with the pump and signal powers by using Pp(z) =
|Ap(z)|2 , Ps(z) = |As(z)|2 , and following the same procedure
used earlier for deriving (14). The result is [91]

dPp

dz
= − αpPp − βp

P 2
p

Aeff
− ζps

PpPs

Aeff

− σpτc(ppP
2
p + psP

2
s + ppsPpPs)

Pp

A2
eff

(25a)

dPs

dz
= − αsPs − βs

P 2
s

Aeff
− ζsp

PsPp

Aeff

− σsτc(ppP
2
p + psP

2
s + ppsPpPs)

Ps

A2
eff

(25b)

where we assumed that the EMA, Aeff , is the same for the pump
and signal beams. The EMA is related to the waveguide cross
section and can be changed by tapering the waveguide width.
To account for tapering, we allow Aeff to vary with z. Note that
equations (25) cannot be written in the form of coupled intensity
equations (14) when Aeff varies with z.

In the undepleted-pump approximation, the optimal EMA
profile that maximizes the output signal power for a given input
pump power can be found analytically [47]. When the pump
power depletion takes place during amplification, the problem
of EMA profile optimization can be reduced to a boundary-
value problem for the pump and signal powers and two auxiliary
functions introduced judiciously [91]. In this case, the input (or
output) waveguide cross section need to be kept fixed at a given
value. In this section, we consider the optimization process in
more detail.

A. Single-Pass Amplifier: Undepleted-Pump Approximation

When the pump is much stronger than the signal, equations
(25) can be simplified to take the form

d ln Pp

dz
≈− αp − βpIp(z) − κppI

2
p (z) (26a)

d ln Ps

dz
≈− αs + |ζsp |Ip(z) − κspI

2
p (z) (26b)

where Ip(z) = Pp(z)/Aeff (z).
It follows from (26b) that, at the end of the amplifier (z = L),

the signal gain G = Ps(L)/Ps(0) depends on the value of the
integral

∫ L

0

[
|ζsp | − κspIp(z)

]
Ip(z) dz

peaking at a constant pump intensity �p = |ζsp |/(2κsp). Thus,
the maximal signal gain is achieved when the pump power varies
in proportion to the EMA. As is easy to see from (26a), the
dependence of the pump power and EMA on z in this case takes
the exponential form and are given by

Pp(z) = Pp(0) exp(− qz)

Aeff (z) = Aeff (0) exp(− qz)

with q = αp + βp�p + κpp�2
p and Aeff (0) = Pp(0)/�p . The

resulting signal gain grows exponentially with the length of the
waveguide

G = exp[(κsp�2
p − αs)L].

Clearly, the previous solution will remain valid until

L � ln[Pp(0)/Ps(0)]
αp − αs + βp�p + (κpp + κsp)�2

p

.
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B. Single-Pass Amplifier: General Case

To maximize the net gain of signal at the end of the waveguide
in the general case, we should maximize the functional

F (Aeff ) =
∫ L

0

1
Ps

dPs

dz
dz =

∫ L

0
G(z,Aeff ) dz

where, according to (25b), the local gain coefficient G(z,Aeff )
is given by

G(z,Aeff ) = −αs − βs
Ps(z)
Aeff (z)

− ζsp
Pp(z)
Aeff (z)

− σsτc

ppP
2
p (z) + psP

2
s (z) + ppsPp(z)Ps(z)
A2

eff (z)
.

To maximize F (Aeff ), we utilize a standard technique known
as calculus of variations [91], [92]. Let Aeff (z) be the EMA
axial profile for which F is stationary. Equating the variation
δF to zero with respect to three variables Pp , Ps , and Aeff , we
obtain the relation

∫ L

0
(AδPp + BδPs) dz =

∫ L

0
CδAeff dz (27)

where δPp , δPs , and δAeff represent small axial variations, and
we have introduced

A =
1

Aeff

(
ζsp + σsτc

2ppPp + ppsPs

Aeff

)

B =
1

Aeff

(
βs + σsτc

2psPs + ppsPp

Aeff

)

C =
βsPs + ζspPp

A2
eff

+ 2σsτc

ppP
2
p + psP

2
s + ppsPpPs

A3
eff

.

One more relation among δPp , δPs , and δAeff can be found
by varying Pp and Ps in (25) by a small amount around fixed
values. The result is

d(δPp)
dz

= − apδPp − bsδPs + cpδAeff (28a)

d(δPs)
dz

= − asδPs − bpδPp + csδAeff (28b)

where bp = APs , cp = CPp , and ap is defined as

ap = αp + 2βp
Pp

Aeff
+ ζps

Ps

Aeff

+ σpτc

3ppP
2
p + psP

2
s + 2ppsPpPs

A2
eff

.

The coefficients as , bs , and cs are obtained from ap , bp , and cp

by interchanging subscripts p � s and assuming that psp = pps .
To express the optimal EMA profile Aeff (z) in terms of the

pump and signal powers, we introduce two auxiliary functions
ϕ(z) and ψ(z). Multiplying (28a) by ϕ, (28b) by ψ, and inte-
grating the resulting equations with respect to z from 0 to L, we

obtain∫ L

0
ϕ

d(δPp)
dz

dz = ϕ δPp

∣∣∣L
0
−

∫ L

0
ϕ′δPp dz

= −
∫ L

0
ϕ (apδPp + bsδPs − cpδAeff ) dz

∫ L

0
ψ

d(δPs)
dz

dz = ψ δPs

∣∣∣L
0
−

∫ L

0
ψ′δPs dz

= −
∫ L

0
ψ (asδPs + bpδPp − csδAeff ) dz

where ϕ′ = dϕ/dz and ψ′ = dψ/dz.
Assuming that the boundary conditions at z = 0 are fixed

(often the case in practice), we set δPp(0) = δPs(0) = 0. Since
the variational solution should maximize the signal power at
z = L, δPs(L) = 0 as well. Because of these constraints, we do
not need to set the boundary values for the auxiliary function ψ.
However, we can simplify the algebra considerably by choosing
ϕ(L) = 0. With this choice, the preceding two equations reduce
to ∫ L

0

[
(ϕap − ϕ′) δPp + ϕ bsδPs

]
dz =

∫ L

0
ϕcpδAeff dz

∫ L

0

[
ψbpδPp + (ψas − ψ′) δPs

]
dz =

∫ L

0
ψcsδAeff dz.

Adding these equations, we finally obtain the relation
∫ L

0

[
(ϕap + ψbp − ϕ′)δPp + (ψas + ϕbs − ψ′)δPs

]
dz

=
∫ L

0
(ϕcp + ψcs) δAeff dz. (29)

A comparison of (27) and (29) shows that the optimal EMA
of the SOI waveguide can be found from a simple relation

ϕcp + ψcs = C (30)

if the two auxiliary functions satisfy the differential equations

ϕ′ = apϕ + bpψ −A (31a)

ψ′ = asψ + bsϕ − B. (31b)

Equation (30) can be solved easily to provide the following
relation:

Aeff (z) =
2τc [σs(1 − ψPs) − σpϕPp ]
ϕPpQps − (1 − ψPs)Qsp

P (32)

where Quv = βuPu + ζuvPv and P = ppP
2
p + psP

2
s +

ppsPpPs .
Irrespective of input power levels and waveguide parame-

ters, the solution (32) maximizes the functional F , and thus the
net gain experienced by the signal during Raman amplification
(for proof, see [91]). Hence, the optimal EMA axial profile of
the SOI waveguide can be found by solving the system of four
coupled nonlinear differential equations, which are given in (25)
and (31), assuming that Aeff is given by (32). The four bound-
ary conditions needed for solving these four equations come
from the condition ϕ(L) = 0 and the three initial conditions:
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Fig. 5. (Upper panel) Solution of (25) and (31) for a 3-mm-long waveguide
with input values Pp0 = 1 W, Ps0 = 0.5 W, and A0 = 1 µm2 . Solid curves
show the pump and signal powers; dashed and dotted curves represent the two
auxiliary functions. (Lower panel) Optimized EMA profile (solid curve) and the
pump and signal intensities (dashed curves) under the same conditions. Param-
eter values used are λp = 1550 nm, λs = 1686 nm, αp = αs = 1 dB/cm,
βp = βs = βps = 0.5 cm/GW, and τc = 1 ns (after [91]).

Pp(0) = Pp0 , Ps(0) = Ps0 , and Aeff (0) = A0 . The last condi-
tion can also be used at z = L if the objective is to design a
Raman amplifier with a preset EMA at the output end of the
amplifier.

C. Numerical Example

As an example, Fig. 5 shows the optimized solution in the case
of a 3-mm-long amplifier. The upper panel represents variations
of the pump and signal powers, as well as of the two auxiliary
functions, along the amplifier length. The lower panel shows the
optimum EMA profile (solid curve) together with the pump and
signal intensities (dashed curves). The incident powers Pp0 =
1 W and Ps0 = 0.5 W are so high in this case that the optimum
EMA increases by about 30% between 0.6 and 1.4 mm so that
the pump and signal intensities decrease for a while to reduce
the extent of pump depletion and to conserve pump’s power for
subsequent energy conversion closer to the waveguide output.
Note that, even in this highly saturated regime, the pump is able
to transfer about 85% of its power to the signal in spite of losses
resulting from TPA and FCA.

To emphasize the role of waveguide tapering, Fig. 6 compares
Raman amplification in optimized silicon waveguides with that
occurring in untapered as well as linearly tapered waveguides.
Solid curves show the dependance of output signal power on the
output EMA for linearly tapered waveguides of four different
lengths. The crosses represent the corresponding output signal

Fig. 6. Output signal power as a function of output EMA for linearly tapered
waveguides of four different lengths when input pump power is 1 W and initial
EMA is 1 µm2 . Input signal power is 0.01 W for L = 8, 10, and 12 mm and
0.5 W for L = 3 mm. The central dotted line represents a waveguide with
constant EMA. The crosses show signal powers and EMAs for EMA-optimized
waveguides for the same input powers. Other parameter values are the same as
in Fig. 5 (after [91]).

powers realized with the optimum tapering. As one may expect,
a silicon waveguide with a constant EMA all along its length
performs the worst in some cases. For example, the output signal
power is enhanced by a factor of nearly 3 for an 8-mm-long am-
plifier with the optimum EMA profile. A smaller enhancement
(around 10%) occurs for a 10-mm-long waveguide, and nearly
no enhancement is found for 3- and 12-mm-long waveguides.
From a practical perspective, it is significant that, for each op-
timized amplifier, there exist a linearly tapered waveguide (its
parameters are determined by the maxima of the solid curves)
that gives nearly the same signal amplification. Thus, for ex-
ample, instead of reproducing the modal area profile shown in
the lower panel of Fig. 5, one can attain the same signal gain
by fabricating a linearly tapered amplifier with an output EMA
approximately equal to 1.3 µm2 .

VII. CONCLUSION

For an intuitive understanding of nonlinear optical phenom-
ena in silicon waveguides, numerical simulations should be sup-
ported by simple analytical solutions capable of providing a
reasonable estimate of the physical quantity involved. Such so-
lutions provide not only a rapid way of checking simulation
results but also considerable physical insight that is often lost
in voluminous data generated by numerical simulations. In this
paper, we have discussed several analytical and semianalytical
tools that have proved to be very successful in providing well-
needed physical insight into the nonlinear effects. In many in-
stances, the nontrivial information conveyed by the expressions
resulting from the analytic methods cannot be easily extracted
directly from pure numerical simulations.

Our first example considered propagation of short optical
pulse and analyzed the impact of TPA, FCA, and FCD on SPM-
induced spectral broadening. We then focused on Raman am-
plification in SOI waveguides when both the pump and the
signal are in the form of CW waves. With a careful analysis of
the approximate expressions describing the evolution of pump
and signal intensities in a CW silicon Raman amplifier, we
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theoretically predicted the possibility that RIN transfer from the
pump to the signal can be avoided under some conditions. Such
a prediction would not have been possible through a mere nu-
merical analysis [88]. Another example is the prediction of the
optimal longitudinal EMA profile of a silicon Raman amplifier
that provides the highest net gain for a given pump power. Due
to the presence of an infinite number of candidate profiles, it
is almost impossible to predict the correct longitudinal mode
area profile numerically. However, by a clever application of a
standard variational technique, stemming originally from clas-
sical mechanics, we could derive a set of equations that can
systematically generate the optimal EMA profile. Thereafter, a
simple numerical solution of these equations provided us with
an optimal amplifier design.

In conclusion, we would like to emphasize an important
point. Even though the presence of many intricate nonlineari-
ties makes the analysis of active and passive silicon waveguides
quite a complex task, we have shown that modern mathematics
and modern physics can be beautifully married with each other
to generate very useful approximations. We believe that these
methods are not only of methodological and heuristic interest
but eventually pave the way for a better design optimization
process.
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